尽管如此,我找不到正确的方法来获得在pandas中运行的等效查询.
update product
set maxrating = (select max(rating)
from rating
where source = 'customer'
and product.sku = rating.sku
group by sku)
where maxrating is null;
熊猫
product = pd.DataFrame({'sku':[1,2,3],'maxrating':[0,0,1]})
rating = pd.DataFrame({'sku':[1,1,2,3,3],'rating':[2,5,3,5,4],'source':['retailer','customer','customer','retailer','customer']})
expected_result = pd.DataFrame({'sku':[1,2,3],'maxrating':[5,3,1]})
SQL
drop table if exists product;
create table product(sku integer primary key, maxrating int);
insert into product(maxrating) values(null),(null),(1);
drop table if exists rating; create table rating(sku int, rating int, source text);
insert into rating values(1,2,'retailer'),(1,5,'customer'),(2,3,'customer'),(2,5,'retailer'),(3,3,'retailer'),(3,4,'customer');
update product
set maxrating = (select max(rating)
from rating
where source = 'customer'
and product.sku = rating.sku
group by sku)
where maxrating is null;
select *
from product;
怎么做到呢?
最佳答案 试试这个:
In [220]: product.ix[product.maxrating == 0, 'maxrating'] = product.sku.map(rating.groupby('sku')['rating'].max())
In [221]: product
Out[221]:
maxrating sku
0 5 1
1 3 2
2 1 3
或使用普通面具:
In [222]: mask = (product.maxrating == 0)
In [223]: product.ix[mask, 'maxrating'] = product.ix[mask, 'maxrating'].map(rating.groupby('sku')['rating'].max())
In [224]: product
Out[224]:
maxrating sku
0 5 1
1 3 2
2 1 3