原文:http://blog.csdn.net/icebamboo_moyun/article/details/9391915#comments
java中的几种锁:synchronized,ReentrantLock,ReentrantReadWriteLock已基本可以满足编程需求,但其粒度都太大,同一时刻只有一个线程能进入同步块,这对于某些高并发的场景并不适用。本文实现了一个基于KEY(主键)的互斥锁,具有更细的粒度,在缓存或其他基于KEY的场景中有很大的用处。下面将讲解这个锁的设计和实现
(关于这个锁的讨论贴:KeyLock讨论贴-CSDN)
设想这么一个场景:转账
private int[] accounts; // 账户数组,其索引为账户ID,内容为金额
public boolean transfer(int from, int to, int money) {
if (accounts[from] < money)
return false;
accounts[from] -= money;
accounts[to] += money;
return true;
}
从from中转出金额到to中。可能同时会有很多个线程同时调用这个转账方法,为保证原子性,保证金额不会出错,必须为这个方法加个锁,防止对共享变量accounts的并发修改。
加锁后的代码如下:
private int[] accounts; // 账户数组,其索引为账户ID,内容为金额
private Lock lock = new ReentrantLock();
public boolean transfer(int from, int to, int money) {
lock.lock();
try {
if (accounts[from] < money)
return false;
accounts[from] -= money;
accounts[to] += money;
return true;
} finally {
lock.unlock();
}
}
好了,加锁后这个代码就能保证金额不出错了。但问题又出现了,一次只能执行一个转账过程!意思就是A给B转账的时候,C要给D转账也得等A给B转完了才能开始转。这就有点扯蛋了,就像只有一个柜台,所有人必须排队等前面的处理完了才能到自己,效率太低。
解决这种情况有一个方案:A给B转账的时候只锁定A和B的账户,使其转账期间不能再有其他针对A和B账户的操作,但其他账户的操作可以并行发生。类似于如下场景:
public boolean transfer(int from, int to, int money) {
lock.lock(from, to);
try {
if (accounts[from] < money)
return false;
accounts[from] -= money;
accounts[to] += money;
return true;
} finally {
lock.unlock(from, to);
}
}
但很显然,JAVA并没有为我们提供这样的锁(也有可能是我没找到。。。)
于是,就在这样的需求下我花了整一天来实现了这个锁——KeyLock(代码量很短,但多线程的东西真的很让人头疼)
不同于synchronized等锁,KeyLock是对所需处理的数据的KEY(主键)进行加锁,只要是对不同key操作,其就可以并行处理,大大提高了线程的并行度(最后有几个锁的对比测试)
总结下就是:对相同KEY操作的线程互斥,对不同KEY操作的线程可以并行
KeyLock有如下几个特性:
1、细粒度,高并行性
2、可重入
3、公平锁
4、加锁开销比ReentrantLock大,适用于处理耗时长、key范围大的场景
KeyLock代码如下(注释很少,因为我也不知道该怎么写清楚,能看懂就看,懒得看的直接用就行):
public class KeyLock<K> {
// 保存所有锁定的KEY及其信号量
private final ConcurrentMap<K, Semaphore> map = new ConcurrentHashMap<K, Semaphore>();
// 保存每个线程锁定的KEY及其锁定计数
private final ThreadLocal<Map<K, LockInfo>> local = new ThreadLocal<Map<K, LockInfo>>() {
@Override
protected Map<K, LockInfo> initialValue() {
return new HashMap<K, LockInfo>();
}
};
/**
* 锁定key,其他等待此key的线程将进入等待,直到调用{@link #unlock(K)}
* 使用hashcode和equals来判断key是否相同,因此key必须实现{@link #hashCode()}和
* {@link #equals(Object)}方法
*
* @param key
*/
public void lock(K key) {
if (key == null)
return;
LockInfo info = local.get().get(key);
if (info == null) {
Semaphore current = new Semaphore(1);
current.acquireUninterruptibly();
Semaphore previous = map.put(key, current);
if (previous != null)
previous.acquireUninterruptibly();
local.get().put(key, new LockInfo(current));
} else {
info.lockCount++;
}
}
/**
* 释放key,唤醒其他等待此key的线程
* @param key
*/
public void unlock(K key) {
if (key == null)
return;
LockInfo info = local.get().get(key);
if (info != null && --info.lockCount == 0) {
info.current.release();
map.remove(key, info.current);
local.get().remove(key);
}
}
/**
* 锁定多个key
* 建议在调用此方法前先对keys进行排序,使用相同的锁定顺序,防止死锁发生
* @param keys
*/
public void lock(K[] keys) {
if (keys == null)
return;
for (K key : keys) {
lock(key);
}
}
/**
* 释放多个key
* @param keys
*/
public void unlock(K[] keys) {
if (keys == null)
return;
for (K key : keys) {
unlock(key);
}
}
private static class LockInfo {
private final Semaphore current;
private int lockCount;
private LockInfo(Semaphore current) {
this.current = current;
this.lockCount = 1;
}
}
}
KeyLock
使用示例
:
private int[] accounts;
private KeyLock<Integer> lock = new KeyLock<Integer>();
public boolean transfer(int from, int to, int money) {
Integer[] keys = new Integer[] {from, to};
Arrays.sort(keys); //对多个key进行排序,保证锁定顺序防止死锁
lock.lock(keys);
try {
//处理不同的from和to的线程都可进入此同步块
if (accounts[from] < money)
return false;
accounts[from] -= money;
accounts[to] += money;
return true;
} finally {
lock.unlock(keys);
}
}
好,工具有了,接下来就是测试了,为了测出并行度,我把转账过程延长了,加了个sleep(2),使每个转账过程至少要花2毫秒(这只是个demo,真实环境下对数据库操作也很费时)。
测试代码如下:
//场景:多线程并发转账
public class Test {
private final int[] account; // 账户数组,其索引为账户ID,内容为金额
public Test(int count, int money) {
account = new int[count];
Arrays.fill(account, money);
}
boolean transfer(int from, int to, int money) {
if (account[from] < money)
return false;
account[from] -= money;
try {
Thread.sleep(2);
} catch (Exception e) {
}
account[to] += money;
return true;
}
int getAmount() {
int result = 0;
for (int m : account)
result += m;
return result;
}
public static void main(String[] args) throws Exception {
int count = 100; //账户个数
int money = 10000; //账户初始金额
int threadNum = 8; //转账线程数
int number = 10000; //转账次数
int maxMoney = 1000; //随机转账最大金额
Test test = new Test(count, money);
//不加锁
// Runner runner = test.new NonLockRunner(maxMoney, number);
//加synchronized锁
// Runner runner = test.new SynchronizedRunner(maxMoney, number);
//加ReentrantLock锁
// Runner runner = test.new ReentrantLockRunner(maxMoney, number);
//加KeyLock锁
Runner runner = test.new KeyLockRunner(maxMoney, number);
Thread[] threads = new Thread[threadNum];
for (int i = 0; i < threadNum; i++)
threads[i] = new Thread(runner, "thread-" + i);
long begin = System.currentTimeMillis();
for (Thread t : threads)
t.start();
for (Thread t : threads)
t.join();
long time = System.currentTimeMillis() - begin;
System.out.println("类型:" + runner.getClass().getSimpleName());
System.out.printf("耗时:%dms\n", time);
System.out.printf("初始总金额:%d\n", count * money);
System.out.printf("终止总金额:%d\n", test.getAmount());
}
// 转账任务
abstract class Runner implements Runnable {
final int maxMoney;
final int number;
private final Random random = new Random();
private final AtomicInteger count = new AtomicInteger();
Runner(int maxMoney, int number) {
this.maxMoney = maxMoney;
this.number = number;
}
@Override
public void run() {
while(count.getAndIncrement() < number) {
int from = random.nextInt(account.length);
int to;
while ((to = random.nextInt(account.length)) == from)
;
int money = random.nextInt(maxMoney);
doTransfer(from, to, money);
}
}
abstract void doTransfer(int from, int to, int money);
}
// 不加锁的转账
class NonLockRunner extends Runner {
NonLockRunner(int maxMoney, int number) {
super(maxMoney, number);
}
@Override
void doTransfer(int from, int to, int money) {
transfer(from, to, money);
}
}
// synchronized的转账
class SynchronizedRunner extends Runner {
SynchronizedRunner(int maxMoney, int number) {
super(maxMoney, number);
}
@Override
synchronized void doTransfer(int from, int to, int money) {
transfer(from, to, money);
}
}
// ReentrantLock的转账
class ReentrantLockRunner extends Runner {
private final ReentrantLock lock = new ReentrantLock();
ReentrantLockRunner(int maxMoney, int number) {
super(maxMoney, number);
}
@Override
void doTransfer(int from, int to, int money) {
lock.lock();
try {
transfer(from, to, money);
} finally {
lock.unlock();
}
}
}
// KeyLock的转账
class KeyLockRunner extends Runner {
private final KeyLock<Integer> lock = new KeyLock<Integer>();
KeyLockRunner(int maxMoney, int number) {
super(maxMoney, number);
}
@Override
void doTransfer(int from, int to, int money) {
Integer[] keys = new Integer[] {from, to};
Arrays.sort(keys);
lock.lock(keys);
try {
transfer(from, to, money);
} finally {
lock.unlock(keys);
}
}
}
}
最最重要的
测试结果
:
(8线程对100个账户随机转账总共10000次):
类型:NonLockRunner(不加锁)
耗时:2482ms
初始总金额:1000000
终止总金额:998906(无法保证原子性)
类型:SynchronizedRunner(加synchronized锁)
耗时:20872ms
初始总金额:1000000
终止总金额:1000000
类型:ReentrantLockRunner(加ReentrantLock锁)
耗时:21588ms
初始总金额:1000000
终止总金额:1000000
类型:KeyLockRunner(加KeyLock锁)
耗时:2831ms
初始总金额:1000000
终止总金额:1000000