使用dplyr和ggplot包括负值的多面水平发散堆积条形图

我希望这个例子很清楚.我想在中间条跨越’0’时有叠条,因为它代表一个中性值.这与Likert量表一起使用.为了重复性,使用钻石数据集.

下面的例子足够接近我的用例,并证明我难以让“好”或“正”数据处于正确的顺序(因此中性点最接近0).

这是我的代码:

require(tidyverse)

diamonds_new <- diamonds %>%
  mutate(quality = fct_recode(cut, "Very poor" = "Fair", "Poor" = "Good", "Neutral" = "Very Good", "Good" = "Premium", "Excellent" = "Ideal")) %>% 
  select(color, clarity, quality) %>% 
  group_by(color, clarity, quality) %>% count()

diamonds_bad <- 
  diamonds_new %>% filter(quality %in% c("Very poor", "Poor", "Neutral")) %>% 
  mutate(n = ifelse(quality == "Neutral", -n/2, -n))

diamonds_good <- 
  diamonds_new %>% filter(quality %in% c("Neutral", "Good", "Excellent")) %>% 
  mutate(n = ifelse(quality == "Neutral", n/2, n)) # %>% 
#  arrange(color, clarity, desc(quality))  # this doesn't seem to make a difference

ggplot() + geom_col(data = diamonds_bad, aes(x=color, y = n, fill = quality)) +  
  geom_col(data = diamonds_good, aes(x=color, y = n, fill = quality)) + 
  facet_grid(. ~ clarity, scales = "free") + 
  coord_flip()

《使用dplyr和ggplot包括负值的多面水平发散堆积条形图》
我也尝试过使用scale_fill_manual(),但也没有办法让它工作.

我认为这比一些现有的例子更复杂,这些例子没有负值的复杂性或需要跨越0.使用当前版本的ggplot,我缺少什么?

另外,我是否正确,正面和负面需要分开,或者至少更容易这样做?

最佳答案 由geom_colare创建的列使用position_stack形成,它分别堆积正值和负值,其中正值向上堆叠,负值向下堆积.在此示例中,中心组中性,通过将其设置为等于其原始值的一半,然后将其绘制为正值和负值,使其跨越0.此外,对于正值,需要反转组的顺序.

这种方法有助于展示我合作的一些调查结果,因此我已将其变为一种功能,使其更加通用.

library(tidyverse)
#
# summarize groups and save counts in variable quality_cnt
#
  diamonds_cnt <- diamonds %>%
    mutate(quality = fct_recode(cut, "Very_Poor" = "Fair", "Poor" = "Good",
                                "Neutral" = "Very Good", "Good" = "Premium", "Excellent" = "Ideal")) %>%
    select(color, clarity, quality) %>%
    group_by(color, clarity, quality) %>% summarize(quality_cnt = n())

# make function to plot counts    

  plot_ratings <- function(survey, rated_item, rating_cnt, rating, rating_cat, facet = "wrap") {
#
#  Input:   
#         rated_item  =  unquoted variable name of rated items
#         rating = unquoted variable name of ratings for each rated_items; 
#                  variable should be a factor ordered from lowest to highest 
#         rating_cnt = unquoted variable name of counts or frequencies for each rated_item 
#         rated_cat = unquoted variable name of categories of rated items
#         facet  = "grid" for all panels on one row or 
#                   "wrap" to spread panels across multiple rows
#
#  make arguments quosures
#
    rated_item <- enquo(rated_item)
    rating_cnt <- enquo(rating_cnt)  
    rating <- enquo(rating)
    rating_cat <- enquo(rating_cat)
#
# If number of rating levels is odd, find middle rating
#
  rating_levels <- levels(pull(survey, !!rating))
  mid_level <-  ceiling(length(rating_levels)/2)
  mid_rating <- ifelse(length(rating_levels)%%2 == 1, rating_levels[mid_level], NA_character_)  
#
# make local variabels for use with aes
# plot positive and negative columns separately
#
  survey <- survey %>% mutate( rating_plt = !!rating, rating_cnt_plt = !!rating_cnt)

  sp <- ggplot(survey, aes_(x = rated_item,  fill = rating)) + 
        geom_col(data=filter(survey, !!rating %in% tail(rating_levels, mid_level)),
                 aes( y = ifelse(rating_plt == mid_rating, .5*rating_cnt_plt, rating_cnt_plt)),
                 position = position_stack(reverse = TRUE )) +
        geom_col(data=filter(survey, !!rating %in% head(rating_levels, mid_level)),
                 aes( y = ifelse(rating_plt == mid_rating, -.5*rating_cnt_plt, -rating_cnt_plt)),
                 position = "stack") +
        labs(y = rating_cnt) +
        scale_fill_brewer(palette = "RdYlGn", direction = -1) +
        coord_flip() +
        switch(facet,
               grid = facet_grid( facets=rating_cat, scales = "free_x"),
               wrap = facet_wrap( facets=rating_cat, scales = "free_x"))
  plot(sp)
  } 
#
#  Use function to make charts
#
  plot_ratings(diamonds_cnt,  rated_item = color, rating_cnt = quality_cnt, 
               rating = quality, rating_cat = clarity, facet = "wrap")

给出了图表

《使用dplyr和ggplot包括负值的多面水平发散堆积条形图》

点赞