ENV:
Scala spark版本:2.1.1
这是我的溪流(从卡夫卡读取):
val conf = new SparkConf()
.setMaster("local[1]")
.setAppName("JoinStreams")
val spark = SparkSession.builder().config(conf).getOrCreate()
import spark.implicits._
val schema = StructType(
List(
StructField("t", DataTypes.StringType),
StructField("dst", DataTypes.StringType),
StructField("dstPort", DataTypes.IntegerType),
StructField("src", DataTypes.StringType),
StructField("srcPort", DataTypes.IntegerType),
StructField("ts", DataTypes.LongType),
StructField("len", DataTypes.IntegerType),
StructField("cpu", DataTypes.DoubleType),
StructField("l", DataTypes.StringType),
StructField("headers", DataTypes.createArrayType(DataTypes.StringType))
)
)
val baseDataFrame = spark
.readStream
.format("kafka")
.option("kafka.bootstrap.servers", "host:port")
.option("subscribe", 'topic')
.load()
.selectExpr("cast (value as string) as json")
.select(from_json($"json", schema).as("data"))
.select($"data.*")
val requestsDataFrame = baseDataFrame
.filter("t = 'REQUEST'")
.repartition($"dst")
.withColumn("rowId", monotonically_increasing_id())
val responseDataFrame = baseDataFrame
.filter("t = 'RESPONSE'")
.repartition($"src")
.withColumn("rowId", monotonically_increasing_id())
responseDataFrame.createOrReplaceTempView("responses")
requestsDataFrame.createOrReplaceTempView("requests")
val dataFrame = spark.sql("select * from requests left join responses ON requests.rowId = responses.rowId")
启动应用程序时出现此错误:
org.apache.spark.sql.AnalysisException: Left outer/semi/anti joins with a streaming DataFrame/Dataset on the right is not supported;;
我如何加入这两个流?
我也尝试直接连接并得到相同的错误.
我应该先将它保存到文件然后再读一遍吗?
什么是最佳做法?
最佳答案 看来你需要Spark 2.3:
“在Spark 2.3中,我们增加了对流 – 流连接的支持……”
https://spark.apache.org/docs/latest/structured-streaming-programming-guide.html#stream-stream-joins