我正在尝试训练keras模型并使用keras 1.2.2和TensorFlow后端将其转换为coreML模型.这是一个分类任务. CoreML的输入显示为MultiArray.我需要这个是
Image< BGR,32,32>或类似CVPixelBuffer的东西.我尝试添加image_input_names =’data’,如
here所述.此外,我的输入形状是(高度,宽度,深度),我相信这是必需的.
请帮助解决此问题.我使用了cifar10数据集和以下代码(Reference):
from keras.datasets import cifar10
from keras.models import Model
from keras.layers import Input, Convolution2D, MaxPooling2D, Dense, Dropout, Flatten
from keras.utils import np_utils
import numpy as np
import coremltools
np.random.seed(1234)
batch_size = 32
num_epochs = 1
kernel_size = 3
pool_size = 2
conv_depth_1 = 32
conv_depth_2 = 64
drop_prob_1 = 0.25
drop_prob_2 = 0.5
hidden_size = 512
(X_train, y_train), (X_test, y_test) = cifar10.load_data()
num_train, height, width, depth = X_train.shape
num_test = X_test.shape[0]
num_classes = 10
X_train = X_train.astype('float32')
X_test = X_test.astype('float32')
X_train /= np.max(X_train)
X_test /= np.max(X_test)
y_train = np_utils.to_categorical(y_train, num_classes)
y_test = np_utils.to_categorical(y_test, num_classes)
data = Input(shape=(height, width, depth))
conv_1 = Convolution2D(conv_depth_1, (kernel_size, kernel_size), padding='same', activation='relu')(data)
conv_2 = Convolution2D(conv_depth_1, (kernel_size, kernel_size), padding='same', activation='relu')(conv_1)
pool_1 = MaxPooling2D(pool_size=(pool_size, pool_size))(conv_2)
drop_1 = Dropout(drop_prob_1)(pool_1)
conv_3 = Convolution2D(conv_depth_2, (kernel_size, kernel_size), padding='same', activation='relu')(drop_1)
conv_4 = Convolution2D(conv_depth_2, (kernel_size, kernel_size), padding='same', activation='relu')(conv_3)
pool_2 = MaxPooling2D(pool_size=(pool_size, pool_size))(conv_4)
drop_2 = Dropout(drop_prob_1)(pool_2)
flat = Flatten()(drop_2)
hidden = Dense(hidden_size, activation='relu')(flat)
drop_3 = Dropout(drop_prob_2)(hidden)
out = Dense(num_classes, activation='softmax')(drop_3)
model = Model(inputs=data, outputs=out)
model.compile(loss='categorical_crossentropy',
optimizer='adam',
metrics=['accuracy'])
model.fit(X_train, y_train,
batch_size=batch_size, epochs=num_epochs,
verbose=1, validation_split=0.1)
loss, accuracy = model.evaluate(X_test, y_test, verbose=1)
print ("\nTest Loss: {loss} and Test Accuracy: {acc}\n".format(loss = loss, acc = accuracy))
coreml_model = coremltools.converters.keras.convert(model, input_names='data', image_input_names='data')
coreml_model.save('my_model.mlmodel')
最佳答案 我刚刚用Keras 2检查了这个,你的模型的输入是Image< RGB,32,32>而不是MultiArray.也许这取决于Keras版本.
如果需要它是BGR,请将is_bgr = True添加到coremltools.converters.keras.convert()调用.