Given n, generate all structurally unique BST’s (binary search trees) that store values 1…n.
For example,
Given n = 3, your program should return all 5 unique BST’s shown below.
1 3 3 2 1 \ / / / \ \ 3 2 1 1 3 2 / / \ \ 2 1 2 3
confused what "{1,#,2,3}"
means? > read more on how binary tree is serialized on OJ.
OJ’s Binary Tree Serialization:
The serialization of a binary tree follows a level order traversal, where ‘#’ signifies a path terminator where no node exists below.
Here’s an example:
1 / \ 2 3 / 4 \ 5
The above binary tree is serialized as
"{1,2,3,#,#,4,#,#,5}"
.
题目解析:
返回所有二叉搜索树的集合!
还是基于上一道题目的思想,依次选取1…..n个结点为根,然后递归遍历。但是由于要构造各种各样的树,因此要将返回的孩子跟结点集,一个一个的进行遍历
for(int i = begin;i <= end;i++){
vector<TreeNode *>leftTrees = GSubTrees(begin,i-1);
vector<TreeNode *>rightTrees = GSubTrees(i+1,end);
for(int j = 0;j < leftTrees.size();j++){
for(int k = 0;k < rightTrees.size();k++){
TreeNode *T = new TreeNode(i);//每次都要创建一个,不能共用!
T->left = leftTrees[j];
T->right = rightTrees[k];
tmp.push_back(T);
}
}
}
完整代码如下:
/**
* Definition for binary tree
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode(int x) : val(x), left(NULL), right(NULL) {}
* };
*/
class Solution {
public:
vector<TreeNode *> generateTrees(int n) {
return GSubTrees(1,n);
}
vector<TreeNode *> GSubTrees(int begin,int end){
vector<TreeNode *> tmp;
if(begin>end){
tmp.push_back(NULL);
return tmp;
}
for(int i = begin;i <= end;i++){
vector<TreeNode *>leftTrees = GSubTrees(begin,i-1);
vector<TreeNode *>rightTrees = GSubTrees(i+1,end);
for(int j = 0;j < leftTrees.size();j++){
for(int k = 0;k < rightTrees.size();k++){
TreeNode *T = new TreeNode(i);//每次都要创建一个,不能共用!
T->left = leftTrees[j];
T->right = rightTrees[k];
tmp.push_back(T);
}
}
}
return tmp;
}
};