假设我将摄影胶片负片扫描为RGB图像,我试图找到一种将颜色值转换为RGB正片的算法.
由于橙色偏差(http://photo.net/learn/orange-negative-mask),如果我简单地说redPositive = 255 – redNegative我得到一个具有强烈青色色调的最终图像,并且非常褪色.这意味着这里给出的答案:Convert negative image to positive不正确.
那么我将如何制作以下例程:
struct RGB
{
unsigned byte red;
unsigned byte green;
unsigned byte blue;
};
void FilmNegativeToPositive(RGB const &negative, RGB &positive)
{
// What goes here?
}
最佳答案 我没有要测试的数据,但根据你提供的链接,负片是青色,品红色和黄色染料的混合物,它们是不纯的:
The yellow dye layer is the most pure. The magenta dye layer has a noticeable amount of yellow in it. The cyan dye layer has noticeable amounts of both yellow and magenta in it.
因此,你想做这样的事情(未经测试的伪代码):
Let I_MY be the ratio of yellow impurity to pure magenta dye
Let I_CY be the ratio of yellow impurity to pure cyan dye
Let I_CM be the ratio of magenta impurity to pure cyan dye
Given R, G, B in [0, 255]
Convert to CMY:
C = 1.0 - R/255.0
M1 = 1.0 - G/255.0
Y1 = 1.0 - B/255.0
Calculate the impurities in the cyan dye and remove them, since we assume no other dye has cyan impurities:
M = M1 - I_CM×C
Y2 = Y1 - I_CY×C
Now the amount of magenta dye is correct, so subtract its yellow impurity:
Y = Y2 - I_MY×M
Convert the corrected CMY values back to RGB:
R' = 255×(1.0-C)
G' = 255×(1.0-M)
B' = 255×(1.0-Y)
如果事实证明那里的污染比那更复杂,那么就会出现线性代数问题:
[ 1 I_MC I_YC] [C'] [C]
[I_CM 1 I_YM] × [M'] = [M]
[I_CY I_MY 1] [Y'] [Y]
在想要求解C’,M’和Y’的位置,然后转换回RGB色彩空间.