java集合框架11——TreeMap和源码分析(二)

我们继续分析TreeMap的源码

1.TreeMap源码分析(续)

1. 存取方法

        TreeMap中的存取方法本质上就是对红黑树的插入和删除操作,从源码里体现的更为明显,其实就是对红黑树的插入和删除(可以参考:红黑树),下面简单看下源码:

/*************************** put和remove **********************************/
//将key-value对添加到TreeMap中,理解TreeMap的前提是理解红黑树
//因为和红黑树中的添加基本一样
public V put(K key, V value) {
	Entry<K,V> t = root;
	if (t == null) { //若红黑树为空,直接添加根节点
		compare(key, key); // type (and possibly null) check

		root = new Entry<>(key, value, null);
		size = 1;
		modCount++;
		return null;
	}
	int cmp;
	Entry<K,V> parent;
	//在红黑树中找到插入的位置
	Comparator<? super K> cpr = comparator;
	if (cpr != null) {
		do {
			parent = t;
			cmp = cpr.compare(key, t.key);
			if (cmp < 0)
				t = t.left;
			else if (cmp > 0)
				t = t.right;
			else
				return t.setValue(value);
		} while (t != null);
	}
	else {
		if (key == null)
			throw new NullPointerException();
		Comparable<? super K> k = (Comparable<? super K>) key;
		do {
			parent = t;
			cmp = k.compareTo(t.key);
			if (cmp < 0)
				t = t.left;
			else if (cmp > 0)
				t = t.right;
			else
				return t.setValue(value);
		} while (t != null);
	}
	//新建红黑树的节点e
	Entry<K,V> e = new Entry<>(key, value, parent);
	if (cmp < 0)
		parent.left = e;
	else
		parent.right = e;
	fixAfterInsertion(e);//插入新节点后,要重新修复红黑树的特性
	size++;
	modCount++;
	return null;
}

//插入新节点后的修正操作,保证红黑树的平衡性
//跟红黑树中的修正方式一样的
private void fixAfterInsertion(Entry<K,V> x) {
	x.color = RED;

	while (x != null && x != root && x.parent.color == RED) {
		if (parentOf(x) == leftOf(parentOf(parentOf(x)))) {
			Entry<K,V> y = rightOf(parentOf(parentOf(x)));
			if (colorOf(y) == RED) {
				setColor(parentOf(x), BLACK);
				setColor(y, BLACK);
				setColor(parentOf(parentOf(x)), RED);
				x = parentOf(parentOf(x));
			} else {
				if (x == rightOf(parentOf(x))) {
					x = parentOf(x);
					rotateLeft(x);
				}
				setColor(parentOf(x), BLACK);
				setColor(parentOf(parentOf(x)), RED);
				rotateRight(parentOf(parentOf(x)));
			}
		} else {
			Entry<K,V> y = leftOf(parentOf(parentOf(x)));
			if (colorOf(y) == RED) {
				setColor(parentOf(x), BLACK);
				setColor(y, BLACK);
				setColor(parentOf(parentOf(x)), RED);
				x = parentOf(parentOf(x));
			} else {
				if (x == leftOf(parentOf(x))) {
					x = parentOf(x);
					rotateRight(x);
				}
				setColor(parentOf(x), BLACK);
				setColor(parentOf(parentOf(x)), RED);
				rotateLeft(parentOf(parentOf(x)));
			}
		}
	}
	root.color = BLACK;
}

//左旋操作
private void rotateLeft(Entry<K,V> p) {
	if (p != null) {
		Entry<K,V> r = p.right;
		p.right = r.left;
		if (r.left != null)
			r.left.parent = p;
		r.parent = p.parent;
		if (p.parent == null)
			root = r;
		else if (p.parent.left == p)
			p.parent.left = r;
		else
			p.parent.right = r;
		r.left = p;
		p.parent = r;
	}
}

//右旋操作
private void rotateRight(Entry<K,V> p) {
	if (p != null) {
		Entry<K,V> l = p.left;
		p.left = l.right;
		if (l.right != null) l.right.parent = p;
		l.parent = p.parent;
		if (p.parent == null)
			root = l;
		else if (p.parent.right == p)
			p.parent.right = l;
		else p.parent.left = l;
		l.right = p;
		p.parent = l;
	}
}

//删除指定key的Entry
public V remove(Object key) {
	Entry<K,V> p = getEntry(key);
	if (p == null)
		return null;

	V oldValue = p.value;
	deleteEntry(p);
	return oldValue;
}

private void deleteEntry(Entry<K,V> p) {
	modCount++;
	size--;

	// If strictly internal, copy successor's element to p and then make p
	// point to successor.
	if (p.left != null && p.right != null) {
		Entry<K,V> s = successor(p);
		p.key = s.key;
		p.value = s.value;
		p = s;
	} // p has 2 children

	// Start fixup at replacement node, if it exists.
	Entry<K,V> replacement = (p.left != null ? p.left : p.right);

	if (replacement != null) {
		// Link replacement to parent
		replacement.parent = p.parent;
		if (p.parent == null)
			root = replacement;
		else if (p == p.parent.left)
			p.parent.left  = replacement;
		else
			p.parent.right = replacement;

		// Null out links so they are OK to use by fixAfterDeletion.
		p.left = p.right = p.parent = null;

		// Fix replacement
		if (p.color == BLACK)
			fixAfterDeletion(replacement);
	} else if (p.parent == null) { // return if we are the only node.
		root = null;
	} else { //  No children. Use self as phantom replacement and unlink.
		if (p.color == BLACK)
			fixAfterDeletion(p);

		if (p.parent != null) {
			if (p == p.parent.left)
				p.parent.left = null;
			else if (p == p.parent.right)
				p.parent.right = null;
			p.parent = null;
		}
	}
}

//删除后的修复,与红黑树一样
private void fixAfterDeletion(Entry<K,V> x) {
	while (x != root && colorOf(x) == BLACK) {
		if (x == leftOf(parentOf(x))) {
			Entry<K,V> sib = rightOf(parentOf(x));

			if (colorOf(sib) == RED) {
				setColor(sib, BLACK);
				setColor(parentOf(x), RED);
				rotateLeft(parentOf(x));
				sib = rightOf(parentOf(x));
			}

			if (colorOf(leftOf(sib))  == BLACK &&
				colorOf(rightOf(sib)) == BLACK) {
				setColor(sib, RED);
				x = parentOf(x);
			} else {
				if (colorOf(rightOf(sib)) == BLACK) {
					setColor(leftOf(sib), BLACK);
					setColor(sib, RED);
					rotateRight(sib);
					sib = rightOf(parentOf(x));
				}
				setColor(sib, colorOf(parentOf(x)));
				setColor(parentOf(x), BLACK);
				setColor(rightOf(sib), BLACK);
				rotateLeft(parentOf(x));
				x = root;
			}
		} else { // symmetric
			Entry<K,V> sib = leftOf(parentOf(x));

			if (colorOf(sib) == RED) {
				setColor(sib, BLACK);
				setColor(parentOf(x), RED);
				rotateRight(parentOf(x));
				sib = leftOf(parentOf(x));
			}

			if (colorOf(rightOf(sib)) == BLACK &&
				colorOf(leftOf(sib)) == BLACK) {
				setColor(sib, RED);
				x = parentOf(x);
			} else {
				if (colorOf(leftOf(sib)) == BLACK) {
					setColor(rightOf(sib), BLACK);
					setColor(sib, RED);
					rotateLeft(sib);
					sib = leftOf(parentOf(x));
				}
				setColor(sib, colorOf(parentOf(x)));
				setColor(parentOf(x), BLACK);
				setColor(leftOf(sib), BLACK);
				rotateRight(parentOf(x));
				x = root;
			}
		}
	}

	setColor(x, BLACK);
}

        理解了红黑树,这里的源码基本没啥好看的……因为是一回事!其他的方法我就放到源码里了,这里也不赘述了。到最后我们再看一下TreeMap的遍历方式。下面要耐住性子,因为TreeMap的源码很多……

1.2 其他方法

public int size() {
	return size;
}

//返回TreeMap中是否包含“键(key)”
public boolean containsKey(Object key) {
	return getEntry(key) != null;
}

//返回TreeMap中是否包含"值(value)"
public boolean containsValue(Object value) {
	//从最小的节点开始找
	for (Entry<K,V> e = getFirstEntry(); e != null; e = successor(e))
		if (valEquals(value, e.value))
			return true;
	return false;
}

// 获取“键(key)”对应的“值(value)”
public V get(Object key) {
	Entry<K,V> p = getEntry(key);
	return (p==null ? null : p.value);
}

public Comparator<? super K> comparator() {
	return comparator;
}

// 获取第一个节点对应的key
public K firstKey() {
	return key(getFirstEntry());
}
// 获取最后一个节点对应的key
public K lastKey() {
	return key(getLastEntry());
}

// 返回不大于key的最大的键值对所对应的KEY,没有的话返回null
public K floorKey(K key) {
	return keyOrNull(getFloorEntry(key));
}
// 返回不小于key的最小的键值对所对应的KEY,没有的话返回null
public K ceilingKey(K key) {
	return keyOrNull(getCeilingEntry(key));
}
// 返回小于key的最大的键值对所对应的KEY,没有的话返回null
public K lowerKey(K key) {
	return keyOrNull(getLowerEntry(key));
}
// 返回大于key的最小的键值对所对应的KEY,没有的话返回null
public K higherKey(K key) {
	return keyOrNull(getHigherEntry(key));
}

//TreeMap的红黑树节点对应的集合
private transient EntrySet entrySet = null;
//navigableKeySet为KeySet导航类
private transient KeySet<K> navigableKeySet = null;
//descendingMap为键值对的倒序“映射”
private transient NavigableMap<K,V> descendingMap = null;

// 返回TreeMap的“键的集合”
public Set<K> keySet() {
	return navigableKeySet();
}

// 获取“可导航”的Key的集合
// 实际上是返回KeySet类的对象。
public NavigableSet<K> navigableKeySet() {
	KeySet<K> nks = navigableKeySet;
	return (nks != null) ? nks : (navigableKeySet = new KeySet(this));
}
// 获取TreeMap的降序的key的集合
public NavigableSet<K> descendingKeySet() {
	return descendingMap().navigableKeySet();
}
// 获取TreeMap的降序Map
// 实际上是返回DescendingSubMap类的对象
public NavigableMap<K, V> descendingMap() {
	NavigableMap<K, V> km = descendingMap;
	return (km != null) ? km :
		(descendingMap = new DescendingSubMap(this,
											  true, null, true,
											  true, null, true));
}
// 返回“TreeMap的值对应的集合”
public Collection<V> values() {
	Collection<V> vs = values;
	return (vs != null) ? vs : (values = new Values());
}
// ”TreeMap的值的集合“对应的类,它继承于AbstractCollection
class Values extends AbstractCollection<V> {
	public Iterator<V> iterator() {
		return new ValueIterator(getFirstEntry());
	}

	public int size() {
		return TreeMap.this.size();
	}

	public boolean contains(Object o) {
		return TreeMap.this.containsValue(o);
	}

	public boolean remove(Object o) {
		for (Entry<K,V> e = getFirstEntry(); e != null; e = successor(e)) {
			if (valEquals(e.getValue(), o)) {
				deleteEntry(e);
				return true;
			}
		}
		return false;
	}

	public void clear() {
		TreeMap.this.clear();
	}
}

// 获取TreeMap的Entry的集合,实际上是返回EntrySet类的对象。
public Set<Map.Entry<K,V>> entrySet() {
	EntrySet es = entrySet;
	return (es != null) ? es : (entrySet = new EntrySet());
}
// EntrySet是“TreeMap的所有键值对组成的集合”,
// EntrySet集合的单位是单个“键值对”。
class EntrySet extends AbstractSet<Map.Entry<K,V>> {
	public Iterator<Map.Entry<K,V>> iterator() {
		return new EntryIterator(getFirstEntry());
	}

	public boolean contains(Object o) {
		if (!(o instanceof Map.Entry))
			return false;
		Map.Entry<K,V> entry = (Map.Entry<K,V>) o;
		V value = entry.getValue();
		Entry<K,V> p = getEntry(entry.getKey());
		return p != null && valEquals(p.getValue(), value);
	}

	public boolean remove(Object o) {
		if (!(o instanceof Map.Entry))
			return false;
		Map.Entry<K,V> entry = (Map.Entry<K,V>) o;
		V value = entry.getValue();
		Entry<K,V> p = getEntry(entry.getKey());
		if (p != null && valEquals(p.getValue(), value)) {
			deleteEntry(p);
			return true;
		}
		return false;
	}

	public int size() {
		return TreeMap.this.size();
	}

	public void clear() {
		TreeMap.this.clear();
	}
}

// 获取TreeMap的子Map
// 范围是从fromKey 到 toKey;fromInclusive是是否包含fromKey的标记,toInclusive是是否包含toKey的标记
public NavigableMap<K,V> subMap(K fromKey, boolean fromInclusive,
								K toKey,   boolean toInclusive) {
	return new AscendingSubMap(this,
							   false, fromKey, fromInclusive,
							   false, toKey,   toInclusive);
}

// 获取“Map的头部”
// 范围从第一个节点 到 toKey, inclusive是是否包含toKey的标记
public NavigableMap<K,V> headMap(K toKey, boolean inclusive) {
	return new AscendingSubMap(this,
							   true,  null,  true,
							   false, toKey, inclusive);
}

// 获取“Map的尾部”。
// 范围是从 fromKey 到 最后一个节点,inclusive是是否包含fromKey的标记
public NavigableMap<K,V> tailMap(K fromKey, boolean inclusive) {
	return new AscendingSubMap(this,
							   false, fromKey, inclusive,
							   true,  null,    true);
}

// 获取“子Map”。
// 范围是从fromKey(包括) 到 toKey(不包括)
public SortedMap<K,V> subMap(K fromKey, K toKey) {
	return subMap(fromKey, true, toKey, false);
}

// 获取“Map的头部”。
// 范围从第一个节点 到 toKey(不包括)
public SortedMap<K,V> headMap(K toKey) {
	return headMap(toKey, false);
}

// 获取“Map的尾部”。
// 范围是从 fromKey(包括) 到 最后一个节点
public SortedMap<K,V> tailMap(K fromKey) {
	return tailMap(fromKey, true);
}

//返回“TreeMap的KEY组成的迭代器(顺序)”
Iterator<K> keyIterator() {
	return new KeyIterator(getFirstEntry());
}

// 返回“TreeMap的KEY组成的迭代器(逆序)”
Iterator<K> descendingKeyIterator() {
	return new DescendingKeyIterator(getLastEntry());
}

// KeySet是“TreeMap中所有的KEY组成的集合”
// KeySet继承于AbstractSet,而且实现了NavigableSet接口。
static final class KeySet<E> extends AbstractSet<E> implements NavigableSet<E> {
	private final NavigableMap<E, Object> m;
	KeySet(NavigableMap<E,Object> map) { m = map; }

	//升序迭代器
	public Iterator<E> iterator() {
		// 若是TreeMap对象,则调用TreeMap的迭代器keyIterator()
		// 否则,调用TreeMap子类NavigableSubMap的迭代器keyIterator()
		if (m instanceof TreeMap)
			return ((TreeMap<E,Object>)m).keyIterator();
		else
			return (Iterator<E>)(((TreeMap.NavigableSubMap)m).keyIterator());
	}
	
	//降序迭代器
	public Iterator<E> descendingIterator() {
		// 若是TreeMap对象,则调用TreeMap的迭代器descendingKeyIterator()
		// 否则,调用TreeMap子类NavigableSubMap的迭代器descendingKeyIterator()
		if (m instanceof TreeMap)
			return ((TreeMap<E,Object>)m).descendingKeyIterator();
		else
			return (Iterator<E>)(((TreeMap.NavigableSubMap)m).descendingKeyIterator());
	}

	public int size() { return m.size(); }
	public boolean isEmpty() { return m.isEmpty(); }
	public boolean contains(Object o) { return m.containsKey(o); }
	public void clear() { m.clear(); }
	public E lower(E e) { return m.lowerKey(e); }
	public E floor(E e) { return m.floorKey(e); }
	public E ceiling(E e) { return m.ceilingKey(e); }
	public E higher(E e) { return m.higherKey(e); }
	public E first() { return m.firstKey(); }
	public E last() { return m.lastKey(); }
	public Comparator<? super E> comparator() { return m.comparator(); }
	public E pollFirst() {
		Map.Entry<E,Object> e = m.pollFirstEntry();
		return (e == null) ? null : e.getKey();
	}
	public E pollLast() {
		Map.Entry<E,Object> e = m.pollLastEntry();
		return (e == null) ? null : e.getKey();
	}
	public boolean remove(Object o) {
		int oldSize = size();
		m.remove(o);
		return size() != oldSize;
	}
	public NavigableSet<E> subSet(E fromElement, boolean fromInclusive,
								  E toElement,   boolean toInclusive) {
		return new KeySet<>(m.subMap(fromElement, fromInclusive,
									  toElement,   toInclusive));
	}
	public NavigableSet<E> headSet(E toElement, boolean inclusive) {
		return new KeySet<>(m.headMap(toElement, inclusive));
	}
	public NavigableSet<E> tailSet(E fromElement, boolean inclusive) {
		return new KeySet<>(m.tailMap(fromElement, inclusive));
	}
	public SortedSet<E> subSet(E fromElement, E toElement) {
		return subSet(fromElement, true, toElement, false);
	}
	public SortedSet<E> headSet(E toElement) {
		return headSet(toElement, false);
	}
	public SortedSet<E> tailSet(E fromElement) {
		return tailSet(fromElement, true);
	}
	public NavigableSet<E> descendingSet() {
		return new KeySet(m.descendingMap());
	}
}

/// 它是TreeMap中的一个抽象迭代器,实现了一些通用的接口。
abstract class PrivateEntryIterator<T> implements Iterator<T> {
	Entry<K,V> next;
	Entry<K,V> lastReturned;
	int expectedModCount;

	PrivateEntryIterator(Entry<K,V> first) {
		expectedModCount = modCount;
		lastReturned = null;
		next = first;
	}

	public final boolean hasNext() {
		return next != null;
	}

	final Entry<K,V> nextEntry() {
		Entry<K,V> e = next;
		if (e == null)
			throw new NoSuchElementException();
		if (modCount != expectedModCount)
			throw new ConcurrentModificationException();
		next = successor(e);
		lastReturned = e;
		return e;
	}

	final Entry<K,V> prevEntry() {
		Entry<K,V> e = next;
		if (e == null)
			throw new NoSuchElementException();
		if (modCount != expectedModCount)
			throw new ConcurrentModificationException();
		next = predecessor(e);
		lastReturned = e;
		return e;
	}

	public void remove() {
		if (lastReturned == null)
			throw new IllegalStateException();
		if (modCount != expectedModCount)
			throw new ConcurrentModificationException();
		// 这里重点强调一下“为什么当lastReturned的左右孩子都不为空时,要将其赋值给next”。
		// 目的是为了“删除lastReturned节点之后,next节点指向的仍然是下一个节点”。
		//     根据“红黑树”的特性可知:
		//     当被删除节点有两个儿子时。那么,首先把“它的后继节点的内容”复制给“该节点的内容”;之后,删除“它的后继节点”。
		//     这意味着“当被删除节点有两个儿子时,删除当前节点之后,'新的当前节点'实际上是‘原有的后继节点(即下一个节点)’”。
		//     而此时next仍然指向"新的当前节点"。也就是说next是仍然是指向下一个节点;能继续遍历红黑树。
		if (lastReturned.left != null && lastReturned.right != null)
			next = lastReturned;
		deleteEntry(lastReturned);
		expectedModCount = modCount;
		lastReturned = null;
	}
}

// TreeMap的Entry对应的迭代器
final class EntryIterator extends PrivateEntryIterator<Map.Entry<K,V>> {
	EntryIterator(Entry<K,V> first) {
		super(first);
	}
	public Map.Entry<K,V> next() {
		return nextEntry();
	}
}

// TreeMap的Value对应的迭代器
final class ValueIterator extends PrivateEntryIterator<V> {
	ValueIterator(Entry<K,V> first) {
		super(first);
	}
	public V next() {
		return nextEntry().value;
	}
}

// reeMap的KEY组成的迭代器(顺序)
final class KeyIterator extends PrivateEntryIterator<K> {
	KeyIterator(Entry<K,V> first) {
		super(first);
	}
	public K next() {
		return nextEntry().key;
	}
}

// TreeMap的KEY组成的迭代器(逆序)
final class DescendingKeyIterator extends PrivateEntryIterator<K> {
	DescendingKeyIterator(Entry<K,V> first) {
		super(first);
	}
	public K next() {
		return prevEntry().key;
	}
}

// 比较两个对象的大小
final int compare(Object k1, Object k2) {
	return comparator==null ? ((Comparable<? super K>)k1).compareTo((K)k2)
		: comparator.compare((K)k1, (K)k2);
}

// 判断两个对象是否相等
static final boolean valEquals(Object o1, Object o2) {
	return (o1==null ? o2==null : o1.equals(o2));
}

// 返回“Key-Value键值对”的一个简单拷贝(AbstractMap.SimpleImmutableEntry<K,V>对象)
// 可用来读取“键值对”的值
static <K,V> Map.Entry<K,V> exportEntry(TreeMap.Entry<K,V> e) {
	return (e == null) ? null :
		new AbstractMap.SimpleImmutableEntry<>(e);
}

// 若“键值对”不为null,则返回KEY;否则,返回null
static <K,V> K keyOrNull(TreeMap.Entry<K,V> e) {
	return (e == null) ? null : e.key;
}

// 若“键值对”不为null,则返回KEY;否则,抛出异常
static <K> K key(Entry<K,?> e) {
	if (e==null)
		throw new NoSuchElementException();
	return e.key;
}

private static final Object UNBOUNDED = new Object();

// TreeMap的SubMap,它一个抽象类,实现了公共操作。
// 它包括了"(升序)AscendingSubMap"和"(降序)DescendingSubMap"两个子类。
abstract static class NavigableSubMap<K,V> extends AbstractMap<K,V>
	implements NavigableMap<K,V>, java.io.Serializable {
	// TreeMap的拷贝
	final TreeMap<K,V> m;

	// lo是“子Map范围的最小值”,hi是“子Map范围的最大值”;
	// loInclusive是“是否包含lo的标记”,hiInclusive是“是否包含hi的标记”
	// fromStart是“表示是否从第一个节点开始计算”,
	// toEnd是“表示是否计算到最后一个节点   
	final K lo, hi;
	final boolean fromStart, toEnd;
	final boolean loInclusive, hiInclusive;

	NavigableSubMap(TreeMap<K,V> m,
					boolean fromStart, K lo, boolean loInclusive,
					boolean toEnd,     K hi, boolean hiInclusive) {
		if (!fromStart && !toEnd) {
			if (m.compare(lo, hi) > 0)
				throw new IllegalArgumentException("fromKey > toKey");
		} else {
			if (!fromStart) // type check
				m.compare(lo, lo);
			if (!toEnd)
				m.compare(hi, hi);
		}

		this.m = m;
		this.fromStart = fromStart;
		this.lo = lo;
		this.loInclusive = loInclusive;
		this.toEnd = toEnd;
		this.hi = hi;
		this.hiInclusive = hiInclusive;
	}

	// 判断key是否太小
	final boolean tooLow(Object key) {
		// 若该SubMap不包括“起始节点”,
		// 并且,“key小于最小键(lo)”或者“key等于最小键(lo),但最小键却没包括在该SubMap内”
		// 则判断key太小。其余情况都不是太小!
		if (!fromStart) {
			int c = m.compare(key, lo);
			if (c < 0 || (c == 0 && !loInclusive))
				return true;
		}
		return false;
	}
	
	// 判断key是否太大
	final boolean tooHigh(Object key) {
		// 若该SubMap不包括“结束节点”,
		// 并且,“key大于最大键(hi)”或者“key等于最大键(hi),但最大键却没包括在该SubMap内”
		// 则判断key太大。其余情况都不是太大!
		if (!toEnd) {
			int c = m.compare(key, hi);
			if (c > 0 || (c == 0 && !hiInclusive))
				return true;
		}
		return false;
	}
	
	// 判断key是否在“lo和hi”开区间范围内
	final boolean inRange(Object key) {
		return !tooLow(key) && !tooHigh(key);
	}
	
	// 判断key是否在封闭区间内
	final boolean inClosedRange(Object key) {
		return (fromStart || m.compare(key, lo) >= 0)
			&& (toEnd || m.compare(hi, key) >= 0);
	}
	
	// 判断key是否在区间内, inclusive是区间开关标志
	final boolean inRange(Object key, boolean inclusive) {
		return inclusive ? inRange(key) : inClosedRange(key);
	}

	// 返回最低的Entry
	final TreeMap.Entry<K,V> absLowest() {
		// 若“包含起始节点”,则调用getFirstEntry()返回第一个节点
		// 否则的话,若包括lo,则调用getCeilingEntry(lo)获取大于/等于lo的最小的Entry;
		// 否则,调用getHigherEntry(lo)获取大于lo的最小Entry
		TreeMap.Entry<K,V> e =
			(fromStart ?  m.getFirstEntry() :
			 (loInclusive ? m.getCeilingEntry(lo) :
							m.getHigherEntry(lo)));
		return (e == null || tooHigh(e.key)) ? null : e;
	}

	// 返回最高的Entry
	final TreeMap.Entry<K,V> absHighest() {
		// 若“包含结束节点”,则调用getLastEntry()返回最后一个节点
		// 否则的话,若包括hi,则调用getFloorEntry(hi)获取小于/等于hi的最大的Entry;
		//           否则,调用getLowerEntry(hi)获取大于hi的最大Entry
		TreeMap.Entry<K,V> e =
			(toEnd ?  m.getLastEntry() :
			 (hiInclusive ?  m.getFloorEntry(hi) :
							 m.getLowerEntry(hi)));
		return (e == null || tooLow(e.key)) ? null : e;
	}
	// 返回"大于/等于key的最小的Entry"
	final TreeMap.Entry<K,V> absCeiling(K key) {
		// 只有在“key太小”的情况下,absLowest()返回的Entry才是“大于/等于key的最小Entry”
		// 其它情况下不行。例如,当包含“起始节点”时,absLowest()返回的是最小Entry了!
		if (tooLow(key))
			return absLowest();
		// 获取“大于/等于key的最小Entry”
		TreeMap.Entry<K,V> e = m.getCeilingEntry(key);
		return (e == null || tooHigh(e.key)) ? null : e;
	}
	
	// 返回"大于key的最小的Entry"
	final TreeMap.Entry<K,V> absHigher(K key) {
		// 只有在“key太小”的情况下,absLowest()返回的Entry才是“大于key的最小Entry”
		// 其它情况下不行。例如,当包含“起始节点”时,absLowest()返回的是最小Entry了,而不一定是“大于key的最小Entry”!
		if (tooLow(key))
			return absLowest();
		// 获取“大于key的最小Entry”
		TreeMap.Entry<K,V> e = m.getHigherEntry(key);
		return (e == null || tooHigh(e.key)) ? null : e;
	}

	// 返回"小于/等于key的最大的Entry"
	final TreeMap.Entry<K,V> absFloor(K key) {
		// 只有在“key太大”的情况下,(absHighest)返回的Entry才是“小于/等于key的最大Entry”
		// 其它情况下不行。例如,当包含“结束节点”时,absHighest()返回的是最大Entry了!
		if (tooHigh(key))
			return absHighest();
		// 获取"小于/等于key的最大的Entry"
		TreeMap.Entry<K,V> e = m.getFloorEntry(key);
		return (e == null || tooLow(e.key)) ? null : e;
	}
	
	// 返回"小于key的最大的Entry"
	final TreeMap.Entry<K,V> absLower(K key) {
		// 只有在“key太大”的情况下,(absHighest)返回的Entry才是“小于key的最大Entry”
		// 其它情况下不行。例如,当包含“结束节点”时,absHighest()返回的是最大Entry了,而不一定是“小于key的最大Entry”!
		if (tooHigh(key))
			return absHighest();
		// 获取"小于key的最大的Entry"
		TreeMap.Entry<K,V> e = m.getLowerEntry(key);
		return (e == null || tooLow(e.key)) ? null : e;
	}

	// 返回“大于最大节点中的最小节点”,不存在的话,返回null
	final TreeMap.Entry<K,V> absHighFence() {
		return (toEnd ? null : (hiInclusive ?
								m.getHigherEntry(hi) :
								m.getCeilingEntry(hi)));
	}

	// 返回“小于最小节点中的最大节点”,不存在的话,返回null
	final TreeMap.Entry<K,V> absLowFence() {
		return (fromStart ? null : (loInclusive ?
									m.getLowerEntry(lo) :
									m.getFloorEntry(lo)));
	}

	// 下面几个abstract方法是需要NavigableSubMap的实现类实现的方法
	abstract TreeMap.Entry<K,V> subLowest();
	abstract TreeMap.Entry<K,V> subHighest();
	abstract TreeMap.Entry<K,V> subCeiling(K key);
	abstract TreeMap.Entry<K,V> subHigher(K key);
	abstract TreeMap.Entry<K,V> subFloor(K key);
	abstract TreeMap.Entry<K,V> subLower(K key);

	// 返回“顺序”的键迭代器
	abstract Iterator<K> keyIterator();

	// 返回“逆序”的键迭代器
	abstract Iterator<K> descendingKeyIterator();

	// 返回SubMap是否为空。空的话,返回true,否则返回false
	public boolean isEmpty() {
		return (fromStart && toEnd) ? m.isEmpty() : entrySet().isEmpty();
	}
	// 返回SubMap的大小
	public int size() {
		return (fromStart && toEnd) ? m.size() : entrySet().size();
	}
	// 返回SubMap是否包含键key
	public final boolean containsKey(Object key) {
		return inRange(key) && m.containsKey(key);
	}
	// 将key-value 插入SubMap中
	public final V put(K key, V value) {
		if (!inRange(key))
			throw new IllegalArgumentException("key out of range");
		return m.put(key, value);
	}
	// 获取key对应值
	public final V get(Object key) {
		return !inRange(key) ? null :  m.get(key);
	}
	// 删除key对应的键值对
	public final V remove(Object key) {
		return !inRange(key) ? null : m.remove(key);
	}
	// 获取“大于/等于key的最小键值对”
	public final Map.Entry<K,V> ceilingEntry(K key) {
		return exportEntry(subCeiling(key));
	}
	// 获取“大于/等于key的最小键”
	public final K ceilingKey(K key) {
		return keyOrNull(subCeiling(key));
	}
	// 获取“大于key的最小键值对”
	public final Map.Entry<K,V> higherEntry(K key) {
		return exportEntry(subHigher(key));
	}
	// 获取“大于key的最小键”
	public final K higherKey(K key) {
		return keyOrNull(subHigher(key));
	}
	// 获取“小于/等于key的最大键值对”
	public final Map.Entry<K,V> floorEntry(K key) {
		return exportEntry(subFloor(key));
	}
	// 获取“小于/等于key的最大键”
	public final K floorKey(K key) {
		return keyOrNull(subFloor(key));
	}
	// 获取“小于key的最大键值对”
	public final Map.Entry<K,V> lowerEntry(K key) {
		return exportEntry(subLower(key));
	}
	// 获取“小于key的最大键”
	public final K lowerKey(K key) {
		return keyOrNull(subLower(key));
	}
	// 获取"SubMap的第一个键"
	public final K firstKey() {
		return key(subLowest());
	}
	// 获取"SubMap的最后一个键"
	public final K lastKey() {
		return key(subHighest());
	}
	// 获取"SubMap的第一个键值对"
	public final Map.Entry<K,V> firstEntry() {
		return exportEntry(subLowest());
	}
	// 获取"SubMap的最后一个键值对"
	public final Map.Entry<K,V> lastEntry() {
		return exportEntry(subHighest());
	}
	// 返回"SubMap的第一个键值对",并从SubMap中删除改键值对
	public final Map.Entry<K,V> pollFirstEntry() {
		TreeMap.Entry<K,V> e = subLowest();
		Map.Entry<K,V> result = exportEntry(e);
		if (e != null)
			m.deleteEntry(e);
		return result;
	}
	// 返回"SubMap的最后一个键值对",并从SubMap中删除改键值对
	public final Map.Entry<K,V> pollLastEntry() {
		TreeMap.Entry<K,V> e = subHighest();
		Map.Entry<K,V> result = exportEntry(e);
		if (e != null)
			m.deleteEntry(e);
		return result;
	}

	// Views
	transient NavigableMap<K,V> descendingMapView = null;
	transient EntrySetView entrySetView = null;
	transient KeySet<K> navigableKeySetView = null;
	// 返回NavigableSet对象,实际上返回的是当前对象的"Key集合"。 
	public final NavigableSet<K> navigableKeySet() {
		KeySet<K> nksv = navigableKeySetView;
		return (nksv != null) ? nksv :
			(navigableKeySetView = new TreeMap.KeySet(this));
	}
	// 返回"Key集合"对象
	public final Set<K> keySet() {
		return navigableKeySet();
	}
	// 返回“逆序”的Key集合
	public NavigableSet<K> descendingKeySet() {
		return descendingMap().navigableKeySet();
	}
	// 排列fromKey(包含) 到 toKey(不包含) 的子map
	public final SortedMap<K,V> subMap(K fromKey, K toKey) {
		return subMap(fromKey, true, toKey, false);
	}
	// 返回当前Map的头部(从第一个节点 到 toKey, 不包括toKey)
	public final SortedMap<K,V> headMap(K toKey) {
		return headMap(toKey, false);
	}
	// 返回当前Map的尾部[从 fromKey(包括fromKeyKey) 到 最后一个节点]
	public final SortedMap<K,V> tailMap(K fromKey) {
		return tailMap(fromKey, true);
	}

	// Map的Entry的集合
	abstract class EntrySetView extends AbstractSet<Map.Entry<K,V>> {
		private transient int size = -1, sizeModCount;

		public int size() {
			if (fromStart && toEnd)
				return m.size();
			if (size == -1 || sizeModCount != m.modCount) {
				sizeModCount = m.modCount;
				size = 0;
				Iterator i = iterator();
				while (i.hasNext()) {
					size++;
					i.next();
				}
			}
			return size;
		}

		public boolean isEmpty() {
			TreeMap.Entry<K,V> n = absLowest();
			return n == null || tooHigh(n.key);
		}

		public boolean contains(Object o) {
			if (!(o instanceof Map.Entry))
				return false;
			Map.Entry<K,V> entry = (Map.Entry<K,V>) o;
			K key = entry.getKey();
			if (!inRange(key))
				return false;
			TreeMap.Entry node = m.getEntry(key);
			return node != null &&
				valEquals(node.getValue(), entry.getValue());
		}

		public boolean remove(Object o) {
			if (!(o instanceof Map.Entry))
				return false;
			Map.Entry<K,V> entry = (Map.Entry<K,V>) o;
			K key = entry.getKey();
			if (!inRange(key))
				return false;
			TreeMap.Entry<K,V> node = m.getEntry(key);
			if (node!=null && valEquals(node.getValue(),
										entry.getValue())) {
				m.deleteEntry(node);
				return true;
			}
			return false;
		}
	}

	// SubMap的迭代器
	abstract class SubMapIterator<T> implements Iterator<T> {
		TreeMap.Entry<K,V> lastReturned;
		TreeMap.Entry<K,V> next;
		final Object fenceKey;
		int expectedModCount;

		SubMapIterator(TreeMap.Entry<K,V> first,
					   TreeMap.Entry<K,V> fence) {
			expectedModCount = m.modCount;
			lastReturned = null;
			next = first;
			fenceKey = fence == null ? UNBOUNDED : fence.key;
		}

		public final boolean hasNext() {
			return next != null && next.key != fenceKey;
		}

		final TreeMap.Entry<K,V> nextEntry() {
			TreeMap.Entry<K,V> e = next;
			if (e == null || e.key == fenceKey)
				throw new NoSuchElementException();
			if (m.modCount != expectedModCount)
				throw new ConcurrentModificationException();
			next = successor(e);
			lastReturned = e;
			return e;
		}

		final TreeMap.Entry<K,V> prevEntry() {
			TreeMap.Entry<K,V> e = next;
			if (e == null || e.key == fenceKey)
				throw new NoSuchElementException();
			if (m.modCount != expectedModCount)
				throw new ConcurrentModificationException();
			next = predecessor(e);
			lastReturned = e;
			return e;
		}
		// 删除当前节点(用于“升序的SubMap”)。
		// 删除之后,可以继续升序遍历;红黑树特性没变。
		final void removeAscending() {
			if (lastReturned == null)
				throw new IllegalStateException();
			if (m.modCount != expectedModCount)
				throw new ConcurrentModificationException();
			// 这里重点强调一下“为什么当lastReturned的左右孩子都不为空时,要将其赋值给next”。
			// 目的是为了“删除lastReturned节点之后,next节点指向的仍然是下一个节点”。
			//     根据“红黑树”的特性可知:
			//     当被删除节点有两个儿子时。那么,首先把“它的后继节点的内容”复制给“该节点的内容”;之后,删除“它的后继节点”。
			//     这意味着“当被删除节点有两个儿子时,删除当前节点之后,'新的当前节点'实际上是‘原有的后继节点(即下一个节点)’”。
			//     而此时next仍然指向"新的当前节点"。也就是说next是仍然是指向下一个节点;能继续遍历红黑树。
			if (lastReturned.left != null && lastReturned.right != null)
				next = lastReturned;
			m.deleteEntry(lastReturned);
			lastReturned = null;
			expectedModCount = m.modCount;
		}
		// 删除当前节点(用于“降序的SubMap”)。
		// 删除之后,可以继续降序遍历;红黑树特性没变。
		final void removeDescending() {
			if (lastReturned == null)
				throw new IllegalStateException();
			if (m.modCount != expectedModCount)
				throw new ConcurrentModificationException();
			m.deleteEntry(lastReturned);
			lastReturned = null;
			expectedModCount = m.modCount;
		}

	}
	// SubMap的Entry迭代器,它只支持升序操作,继承于SubMapIterator
	final class SubMapEntryIterator extends SubMapIterator<Map.Entry<K,V>> {
		SubMapEntryIterator(TreeMap.Entry<K,V> first,
							TreeMap.Entry<K,V> fence) {
			super(first, fence);
		}
		public Map.Entry<K,V> next() {
			return nextEntry();
		}
		public void remove() {
			removeAscending();
		}
	}
	// SubMap的Key迭代器,它只支持升序操作,继承于SubMapIterator
	final class SubMapKeyIterator extends SubMapIterator<K> {
		SubMapKeyIterator(TreeMap.Entry<K,V> first,
						  TreeMap.Entry<K,V> fence) {
			super(first, fence);
		}
		// 获取下一个节点(升序)
		public K next() {
			return nextEntry().key;
		}
		// 删除当前节点(升序)
		public void remove() {
			removeAscending();
		}
	}
	// 降序SubMap的Entry迭代器,它只支持降序操作,继承于SubMapIterator
	final class DescendingSubMapEntryIterator extends SubMapIterator<Map.Entry<K,V>> {
		DescendingSubMapEntryIterator(TreeMap.Entry<K,V> last,
									  TreeMap.Entry<K,V> fence) {
			super(last, fence);
		}
		// 获取下一个节点(降序)
		public Map.Entry<K,V> next() {
			return prevEntry();
		}
		// 删除当前节点(降序)
		public void remove() {
			removeDescending();
		}
	}
	// 降序SubMap的Key迭代器,它只支持降序操作,继承于SubMapIterator
	final class DescendingSubMapKeyIterator extends SubMapIterator<K> {
		DescendingSubMapKeyIterator(TreeMap.Entry<K,V> last,
									TreeMap.Entry<K,V> fence) {
			super(last, fence);
		}
		// 获取下一个节点(降序)
		public K next() {
			return prevEntry().key;
		}
		// 删除当前节点(降序)
		public void remove() {
			removeDescending();
		}
	}
}

// 升序的SubMap,继承于NavigableSubMap
static final class AscendingSubMap<K,V> extends NavigableSubMap<K,V> {
	private static final long serialVersionUID = 912986545866124060L;

	AscendingSubMap(TreeMap<K,V> m,
					boolean fromStart, K lo, boolean loInclusive,
					boolean toEnd,     K hi, boolean hiInclusive) {
		super(m, fromStart, lo, loInclusive, toEnd, hi, hiInclusive);
	}

	public Comparator<? super K> comparator() {
		return m.comparator();
	}
	// 获取“子Map”。
	// 范围是从fromKey 到 toKey;fromInclusive是是否包含fromKey的标记,toInclusive是是否包含toKey的标记
	public NavigableMap<K,V> subMap(K fromKey, boolean fromInclusive,
									K toKey,   boolean toInclusive) {
		if (!inRange(fromKey, fromInclusive))
			throw new IllegalArgumentException("fromKey out of range");
		if (!inRange(toKey, toInclusive))
			throw new IllegalArgumentException("toKey out of range");
		return new AscendingSubMap(m,
								   false, fromKey, fromInclusive,
								   false, toKey,   toInclusive);
	}
	
	// 获取“Map的头部”。
	// 范围从第一个节点 到 toKey, inclusive是是否包含toKey的标记
	public NavigableMap<K,V> headMap(K toKey, boolean inclusive) {
		if (!inRange(toKey, inclusive))
			throw new IllegalArgumentException("toKey out of range");
		return new AscendingSubMap(m,
								   fromStart, lo,    loInclusive,
								   false,     toKey, inclusive);
	}
	
	// 获取“Map的尾部”。
	// 范围是从 fromKey 到 最后一个节点,inclusive是是否包含fromKey的标记
	public NavigableMap<K,V> tailMap(K fromKey, boolean inclusive) {
		if (!inRange(fromKey, inclusive))
			throw new IllegalArgumentException("fromKey out of range");
		return new AscendingSubMap(m,
								   false, fromKey, inclusive,
								   toEnd, hi,      hiInclusive);
	}
	// 获取对应的降序Map
	public NavigableMap<K,V> descendingMap() {
		NavigableMap<K,V> mv = descendingMapView;
		return (mv != null) ? mv :
			(descendingMapView =
			 new DescendingSubMap(m,
								  fromStart, lo, loInclusive,
								  toEnd,     hi, hiInclusive));
	}
	// 返回“升序Key迭代器”
	Iterator<K> keyIterator() {
		return new SubMapKeyIterator(absLowest(), absHighFence());
	}
	// 返回“降序Key迭代器”
	Iterator<K> descendingKeyIterator() {
		return new DescendingSubMapKeyIterator(absHighest(), absLowFence());
	}
	// “升序EntrySet集合”类
	// 实现了iterator()
	final class AscendingEntrySetView extends EntrySetView {
		public Iterator<Map.Entry<K,V>> iterator() {
			return new SubMapEntryIterator(absLowest(), absHighFence());
		}
	}
	// 返回“升序EntrySet集合”
	public Set<Map.Entry<K,V>> entrySet() {
		EntrySetView es = entrySetView;
		return (es != null) ? es : new AscendingEntrySetView();
	}

	TreeMap.Entry<K,V> subLowest()       { return absLowest(); }
	TreeMap.Entry<K,V> subHighest()      { return absHighest(); }
	TreeMap.Entry<K,V> subCeiling(K key) { return absCeiling(key); }
	TreeMap.Entry<K,V> subHigher(K key)  { return absHigher(key); }
	TreeMap.Entry<K,V> subFloor(K key)   { return absFloor(key); }
	TreeMap.Entry<K,V> subLower(K key)   { return absLower(key); }
}

// 降序的SubMap,继承于NavigableSubMap
// 相比于升序SubMap,它的实现机制是将“SubMap的比较器反转”!
static final class DescendingSubMap<K,V>  extends NavigableSubMap<K,V> {
	private static final long serialVersionUID = 912986545866120460L;
	DescendingSubMap(TreeMap<K,V> m,
					boolean fromStart, K lo, boolean loInclusive,
					boolean toEnd,     K hi, boolean hiInclusive) {
		super(m, fromStart, lo, loInclusive, toEnd, hi, hiInclusive);
	}
	// 反转的比较器:是将原始比较器反转得到的。
	private final Comparator<? super K> reverseComparator =
		Collections.reverseOrder(m.comparator);
	// 获取反转比较器
	public Comparator<? super K> comparator() {
		return reverseComparator;
	}
	// 获取“子Map”。
	// 范围是从fromKey 到 toKey;fromInclusive是是否包含fromKey的标记,toInclusive是是否包含toKey的标记
	public NavigableMap<K,V> subMap(K fromKey, boolean fromInclusive,
									K toKey,   boolean toInclusive) {
		if (!inRange(fromKey, fromInclusive))
			throw new IllegalArgumentException("fromKey out of range");
		if (!inRange(toKey, toInclusive))
			throw new IllegalArgumentException("toKey out of range");
		return new DescendingSubMap(m,
									false, toKey,   toInclusive,
									false, fromKey, fromInclusive);
	}
	// 获取“Map的头部”。
	// 范围从第一个节点 到 toKey, inclusive是是否包含toKey的标记
	public NavigableMap<K,V> headMap(K toKey, boolean inclusive) {
		if (!inRange(toKey, inclusive))
			throw new IllegalArgumentException("toKey out of range");
		return new DescendingSubMap(m,
									false, toKey, inclusive,
									toEnd, hi,    hiInclusive);
	}
	// 获取“Map的尾部”。
	// 范围是从 fromKey 到 最后一个节点,inclusive是是否包含fromKey的标记
	public NavigableMap<K,V> tailMap(K fromKey, boolean inclusive) {
		if (!inRange(fromKey, inclusive))
			throw new IllegalArgumentException("fromKey out of range");
		return new DescendingSubMap(m,
									fromStart, lo, loInclusive,
									false, fromKey, inclusive);
	}
	// 获取对应的降序Map
	public NavigableMap<K,V> descendingMap() {
		NavigableMap<K,V> mv = descendingMapView;
		return (mv != null) ? mv :
			(descendingMapView =
			 new AscendingSubMap(m,
								 fromStart, lo, loInclusive,
								 toEnd,     hi, hiInclusive));
	}
	// 返回“升序Key迭代器”
	Iterator<K> keyIterator() {
		return new DescendingSubMapKeyIterator(absHighest(), absLowFence());
	}
	// 返回“降序Key迭代器”
	Iterator<K> descendingKeyIterator() {
		return new SubMapKeyIterator(absLowest(), absHighFence());
	}
	// “降序EntrySet集合”类
	// 实现了iterator()
	final class DescendingEntrySetView extends EntrySetView {
		public Iterator<Map.Entry<K,V>> iterator() {
			return new DescendingSubMapEntryIterator(absHighest(), absLowFence());
		}
	}
	// 返回“降序EntrySet集合”
	public Set<Map.Entry<K,V>> entrySet() {
		EntrySetView es = entrySetView;
		return (es != null) ? es : new DescendingEntrySetView();
	}

	TreeMap.Entry<K,V> subLowest()       { return absHighest(); }
	TreeMap.Entry<K,V> subHighest()      { return absLowest(); }
	TreeMap.Entry<K,V> subCeiling(K key) { return absFloor(key); }
	TreeMap.Entry<K,V> subHigher(K key)  { return absLower(key); }
	TreeMap.Entry<K,V> subFloor(K key)   { return absCeiling(key); }
	TreeMap.Entry<K,V> subLower(K key)   { return absHigher(key); }
}
// SubMap是旧版本的类,新的Java中没有用到。
private class SubMap extends AbstractMap<K,V>
	implements SortedMap<K,V>, java.io.Serializable {
	private static final long serialVersionUID = -6520786458950516097L;
	private boolean fromStart = false, toEnd = false;
	private K fromKey, toKey;
	private Object readResolve() {
		return new AscendingSubMap(TreeMap.this,
								   fromStart, fromKey, true,
								   toEnd, toKey, false);
	}
	public Set<Map.Entry<K,V>> entrySet() { throw new InternalError(); }
	public K lastKey() { throw new InternalError(); }
	public K firstKey() { throw new InternalError(); }
	public SortedMap<K,V> subMap(K fromKey, K toKey) { throw new InternalError(); }
	public SortedMap<K,V> headMap(K toKey) { throw new InternalError(); }
	public SortedMap<K,V> tailMap(K fromKey) { throw new InternalError(); }
	public Comparator<? super K> comparator() { throw new InternalError(); }
}

private static final boolean RED   = false;
private static final boolean BLACK = true;

// 返回“节点t的后继节点”
static <K,V> TreeMap.Entry<K,V> successor(Entry<K,V> t) {
	if (t == null)
		return null;
	else if (t.right != null) {
		Entry<K,V> p = t.right;
		while (p.left != null)
			p = p.left;
		return p;
	} else {
		Entry<K,V> p = t.parent;
		Entry<K,V> ch = t;
		while (p != null && ch == p.right) {
			ch = p;
			p = p.parent;
		}
		return p;
	}
}

// 返回“节点t的前继节点”
static <K,V> Entry<K,V> predecessor(Entry<K,V> t) {
	if (t == null)
		return null;
	else if (t.left != null) {
		Entry<K,V> p = t.left;
		while (p.right != null)
			p = p.right;
		return p;
	} else {
		Entry<K,V> p = t.parent;
		Entry<K,V> ch = t;
		while (p != null && ch == p.left) {
			ch = p;
			p = p.parent;
		}
		return p;
	}
}

// 返回“节点p的颜色”
// 根据“红黑树的特性”可知:空节点颜色是黑色。
private static <K,V> boolean colorOf(Entry<K,V> p) {
	return (p == null ? BLACK : p.color);
}
// 返回“节点p的父节点”
private static <K,V> Entry<K,V> parentOf(Entry<K,V> p) {
	return (p == null ? null: p.parent);
}
// 设置“节点p的颜色为c”
private static <K,V> void setColor(Entry<K,V> p, boolean c) {
	if (p != null)
		p.color = c;
}
// 设置“节点p的左孩子”
private static <K,V> Entry<K,V> leftOf(Entry<K,V> p) {
	return (p == null) ? null: p.left;
}
// 设置“节点p的右孩子”
private static <K,V> Entry<K,V> rightOf(Entry<K,V> p) {
	return (p == null) ? null: p.right;
}

private static final long serialVersionUID = 919286545866124006L;

// java.io.Serializable的写入函数
// 将TreeMap的“容量,所有的Entry”都写入到输出流中  
private void writeObject(java.io.ObjectOutputStream s)
	throws java.io.IOException {
	// Write out the Comparator and any hidden stuff
	s.defaultWriteObject();

	// Write out size (number of Mappings)
	s.writeInt(size);

	// Write out keys and values (alternating)
	for (Iterator<Map.Entry<K,V>> i = entrySet().iterator(); i.hasNext(); ) {
		Map.Entry<K,V> e = i.next();
		s.writeObject(e.getKey());
		s.writeObject(e.getValue());
	}
}

// java.io.Serializable的读取函数:根据写入方式读出
// 先将TreeMap的“容量、所有的Entry”依次读出
private void readObject(final java.io.ObjectInputStream s)
	throws java.io.IOException, ClassNotFoundException {
	// Read in the Comparator and any hidden stuff
	s.defaultReadObject();

	// Read in size
	int size = s.readInt();

	buildFromSorted(size, null, s, null);
}

/** Intended to be called only from TreeSet.readObject */
void readTreeSet(int size, java.io.ObjectInputStream s, V defaultVal)
	throws java.io.IOException, ClassNotFoundException {
	buildFromSorted(size, null, s, defaultVal);
}

/** Intended to be called only from TreeSet.addAll */
void addAllForTreeSet(SortedSet<? extends K> set, V defaultVal) {
	try {
		buildFromSorted(set.size(), set.iterator(), null, defaultVal);
	} catch (java.io.IOException cannotHappen) {
	} catch (ClassNotFoundException cannotHappen) {
	}
}
// 根据已经一个排好序的map创建一个TreeMap
private void buildFromSorted(int size, Iterator it,
							 java.io.ObjectInputStream str,
							 V defaultVal)
	throws  java.io.IOException, ClassNotFoundException {
	this.size = size;
	root = buildFromSorted(0, 0, size-1, computeRedLevel(size),
						   it, str, defaultVal);
}
// 根据已经一个排好序的map创建一个TreeMap
// 将map中的元素逐个添加到TreeMap中,并返回map的中间元素作为根节点。
private final Entry<K,V> buildFromSorted(int level, int lo, int hi,
										 int redLevel,
										 Iterator it,
										 java.io.ObjectInputStream str,
										 V defaultVal)
	throws  java.io.IOException, ClassNotFoundException {
   
	if (hi < lo) return null;
	// 获取中间元素
	int mid = (lo + hi) >>> 1;

	Entry<K,V> left  = null;
	// 若lo小于mid,则递归调用获取(middel的)左孩子。
	if (lo < mid)
		left = buildFromSorted(level+1, lo, mid - 1, redLevel,
							   it, str, defaultVal);

	// 获取middle节点对应的key和value
	K key;
	V value;
	if (it != null) {
		if (defaultVal==null) {
			Map.Entry<K,V> entry = (Map.Entry<K,V>)it.next();
			key = entry.getKey();
			value = entry.getValue();
		} else {
			key = (K)it.next();
			value = defaultVal;
		}
	} else { // use stream
		key = (K) str.readObject();
		value = (defaultVal != null ? defaultVal : (V) str.readObject());
	}
	// 创建middle节点
	Entry<K,V> middle =  new Entry<>(key, value, null);

	// 若当前节点的深度=红色节点的深度,则将节点着色为红色。
	if (level == redLevel)
		middle.color = RED;
	// 设置middle为left的父亲,left为middle的左孩子
	if (left != null) {
		middle.left = left;
		left.parent = middle;
	}

	if (mid < hi) {
		// 递归调用获取(middel的)右孩子。
		Entry<K,V> right = buildFromSorted(level+1, mid+1, hi, redLevel,
										   it, str, defaultVal);
		// 设置middle为left的父亲,left为middle的左孩子
		middle.right = right;
		right.parent = middle;
	}

	return middle;
}
// 计算节点树为sz的最大深度,也是红色节点的深度值。
private static int computeRedLevel(int sz) {
	int level = 0;
	for (int m = sz - 1; m >= 0; m = m / 2 - 1)
		level++;
	return level;
}

        ……终于结束了源码,TreeMap有这么多我也没办法……最后看一下TreeMap的遍历方式。

2. TreeMap的遍历方式

       TreeMap的遍历方式一般分为两步:

        1. 先通过entrySet()或keySet()或value()方法获得相应的集合;

        2. 通过Iterator迭代器遍历上面得到的集合。

2.1 遍历TreeMap的Entry

// 假设map是TreeMap对象
// map中的key是String类型,value是Integer类型
Integer integ = null;
Iterator iter = map.entrySet().iterator();
while(iter.hasNext()) {
    Map.Entry entry = (Map.Entry)iter.next();
    // 获取key
    key = (String)entry.getKey();
    // 获取value
    integ = (Integer)entry.getValue();
}

2.2 遍历TreeMap的key

// 假设map是TreeMap对象
// map中的key是String类型,value是Integer类型
String key = null;
Integer integ = null;
Iterator iter = map.keySet().iterator();
while (iter.hasNext()) {
        // 获取key
    key = (String)iter.next();
        // 根据key,获取value
    integ = (Integer)map.get(key);
}

2.3 遍历TreeMap的value

// 假设map是TreeMap对象
// map中的key是String类型,value是Integer类型
Integer value = null;
Collection c = map.values();
Iterator iter= c.iterator();
while (iter.hasNext()) {
    value = (Integer)iter.next();
}

TreeMap就介绍这么多吧,如有错误之处,欢迎留言指正~

_____________________________________________________________________________________________________________________________________________________

—–乐于分享,共同进步!

—–更多文章请看:http://blog.csdn.net/eson_15

    原文作者:java集合源码分析
    原文地址: https://blog.csdn.net/eson_15/article/details/51239885
    本文转自网络文章,转载此文章仅为分享知识,如有侵权,请联系博主进行删除。
点赞