This is a personal translation by Anormi.
Copyright (C) Anormi.
所有事实来自Gauss Facts。
从最早的开始。
Here we go↓
Gauss never needs the axiom of choice.
高斯从来不用选择公理。
Gauss didn’t discover the normal distribution, nature conformed to his will.
高斯并没有发现正态分布,自然规律遵循着他的模型。
Gauss can trisect an angle with a straightedge and compass.
高斯可以用尺规作图三等分角。
Gauss can get to the other side of a Möbius strip.
高斯可以到达莫比乌斯环的反面。(莫比乌斯环即单面环)
“Uncountably Infinite” was a phrase coined to explain the intelligence of Gauss.
创造“不可数无穷”这个短语是用来形容高斯的智力的。
There are no Fermat Primes greater than 65,537 because Gauss saw that Fermat was on to something, and well…he put an end to that.
费马素数中的最大数是65537,这是因为高斯发现费马似乎找到了什么,然后…他终结了它。
For Gauss, arithmetic is consistent AND complete.
对高斯而言,算法是一致而完备的。(哥德尔不完备定理证明,任何表达力足够强的形式系统都不可能同时具有「一致性」和「完备性」)(但在Consistency – Wikipedia也可以看到,哥德尔不完备定理是基于皮亚诺算法的系统,而Presburger artithmetic是完备而一致的)
(哥德尔不完备定理的表达太多,可自行搜索。为了与译文一致和方便理解,这里选用了知乎用户 @周子涵 的说法。 周子涵:如何简单清晰地解释哥德尔不完备定理?)
Imaginary numbers are simply those that Gauss has not deemed worthy of existence.
虚数只不过是高斯认为没有存在价值的数。
Gauss once played himself in a zero-sum game and won $50.
高斯和自己玩零和游戏,赢了50美元。
For Gauss, point nine repeating equals whatever he wants it to equal.
高斯想让0.999…等于几它就等于几。(破乎打不出带循环符号的数字)
Gauss did not prove theorems, he simply stared at them until they yielded their solutions.
高斯从不证明定理,他盯着它们直到它们缴出自己的解。
It only takes Gauss 4 minutes to sing “Aleph-Null Bottles of Beer on the Wall”.
高斯唱完“墙上的艾礼富零瓶酒”用了四分钟。(原曲是99 Bottles of Beer,一首数啤酒的歌,从99,98,97…数到0。Aleph-Null是最小的无限,也是唯一可数的。详细解释见99 Bottles of Beer)
When Gauss tells you that he’s lying, he’s telling the truth.
高斯说自己说谎时,他说的是实话。
Occam’s Razor – The principle stating that the explanation of any phenomenon is equal to the explanation that came out of Gauss’ mouth.
奥卡姆剃刀原理:任意现象的解等价于高斯给出的解。(这个原理的原文为“如无必要,勿增实体”,换而言之就是高斯可解万物)
Gauss drinks his beer from a Klein bottle.
高斯用克莱因瓶喝啤酒。(Klein bottle:一个从三维看上去像瓶子的封闭曲面,没有内外之分,被认为只存在于四维或以上空间)(与莫比乌斯环类似,莫比乌斯环可在三维空间出现)
For Gauss, there are no indefinite integrals.
对高斯来说没有不定积分。
Gauss once started falling asleep in his complex analysis class. The result…singularities.
有次高斯在复分析课上快睡着了。结果是…奇点。(这是The result作双关语的笑话,result既可指事情的结果,也可以指问题的解,奇点是复变函数中的概念。但第二句指代不明,可能是说老师讲的内容高斯就听到了开头和结尾的singularities)
The shortest distance between two points is Gauss.
两点之间高斯最短。
Once, while playing chess, Gauss solved the Knights Problem in six moves.
有次下棋,高斯用六步解决了骑士巡游问题。(在N行N列的棋盘上,一个骑士按跳马规则从初始位置(1, 1)出发,要求经过棋盘中每个位置一次。国际象棋的棋盘是8*8=64格的)
Gauss is neither a Frequentist nor a Bayesian. For Gauss, the probability is always 1.
高斯不属于频率学派或贝叶斯学派。对他而言概率永远为1。
Fermat once made Gauss angry. The result – Fermat’s Last Theorem.
费马有次惹火了高斯。结果是:费马大定理。
In Gauss’ mind, there is no such branch of mathematics as “Number Theory”. This is because he knows it as “Number Facts”.
在高斯脑海里数学没有“数论”这个分支。他觉得都是“数实”。(把理论认为是事实,意指超越人类理论水平)
There are no theorems, just a list of propositions Gauss allows to be true.
没有定理,只有高斯允许其为真的命题。
Some problems are NP because Gauss doesn’t like computers.
存在NP问题是因为高斯不喜欢计算机。(关于NP问题参见我的上一篇文章,这里是说如果高斯来解所有的NP问题都会成为P类问题)
Gauss can construct transcendental numbers only using a compass.
高斯可以在只用圆规的情况下画出超越数。(超越数是不满足任何整系数(有理系数)多项式方程的实数,超越数的证明对“尺规作图三大问题(倍立方,三等分角,化圆为方)是尺规不能问题”作出了证明)
Parallel lines meet where Gauss tells them to.
平行线会相交,如果高斯说要的话。
Gauss never runs out of room in the margin.
高斯从来都用不完页边白边的空间。(费马:“可惜这里空白的地方太小,写不下”)
Gauss can write irrationals as the ratio of 2 integers.
高斯可以把无理数写成两个整数的比。(反定义系列)
Gauss can square the circle and then transform it into the hyper-sphere.
高斯可以化圆为方然后把它变成超球面。
The location and momentum of a particle are what Gauss say they are.
高斯知道粒子的位置和动量。
Gauss doesn’t look for roots of equations, they come to him.
高斯不求方程解,它们自己出来。
When Gauss integrates he doesn’t need to add a constant.
高斯求积分时不需要再加常量。
Hilbert put forward 23 unsolved problems because he hadn’t properly read Gauss’ notebooks.
希尔伯特提出23个问题是因为他没读好高斯笔记。
Gauss knows the topological difference between a doughnut and a coffee cup.
高斯知道甜甜圈和咖啡杯拓扑结构上的差异。
An elegant proof is one line long. Gauss’ elegant proofs are one word long.
一个优美的论证只有一行,而高斯的只有一词。
God does not play dice, unless Gauss promises to let him win once in a while.
上帝不投骰子……除非高斯答应等会让他赢一回。
Gauss has Hilbert hotels on Mayfair and Park Lane.
高斯在伦敦的梅菲尔区和公园路上有几家希尔伯特酒店。(这样我们就可以解决人口问题了草)
Erdos believed God had a book of all perfect mathematical proofs. God believes Gauss has such a book.
埃尔德什相信上帝有本《完美数学证明全集》,上帝相信它在高斯手上。
If Gauss had to walk 100 metres, and half the remaining distance, then half the remaining distance again, and so on, he’d get there.
如果高斯像阿基里斯那样走,那他会走到终点。(太久不动脑了……我居然花了三分钟来想起这是芝诺)
52页搞完。
天坑等我一年回来更哈~~~~~哈哈哈哈哈哈哈哈哈哈哈哈哈哈
References:
1.【大坑】Gauss Facts(高斯很萌哒乃们可不要黑她)
追加(神奇的贴吧一个)3.我被魔王抓住了,破喉咙破喉咙【奥妮克希亚的巢穴吧】_百度贴吧