从源码分析java集合【LinkedList】

LinkedList是一个双端链表,他继承了AbstractSequentaiList顺序列表,实现了List,Deque,Cloneable,和Serializable接口。Deque是双端队列的接口,LinkedList有记录头的 first 和 尾的 last,所以我们可以对队列的两端进行操作。它还实现了Cloneable和Serializeble接口,它们分别是实现队列进行拷贝和序列化的接口。

LinkedList的节点的结构是:

private static class Node<E> {
        E item;
        Node<E> next;
        Node<E> prev;

        Node(Node<E> prev, E element, Node<E> next) {
            this.item = element;
            this.next = next;
            this.prev = prev;
        }
    }

其中l
LinkedList除了含有first和last两个基本属性外,还有:

transient int size = 0;
//记录集合中元素数量


//Fields inherited from class java.util.AbstractList
protected transient int modCount = 0;
//修了几个的次数
//当利用Iterator进行操作时会用上

它记录了下一个节点和后一个节点。LinkedList的很多操作是调用以下函数来完成的:

/*
    * 将一个元素作为头结点插入集合中
    * */
    private void linkFirst(E e) {
        final Node<E> f = first;
        final Node<E> newNode = new Node<>(null, e, f);
        first = newNode;
        if (f == null)
            last = newNode;
        else
            f.prev = newNode;
        size++;
        modCount++;
    }

    /*
    * 将一个元素作为队尾插入集合中
    * */
    void linkLast(E e) {
    final Node<E> l = last;
    final Node<E> newNode = new Node<>(l, e, null);
    last = newNode;
    if (l == null)
        first = newNode;
    else
        l.next = newNode;
    size++;
    modCount++;
}

    /**
     *将一个元素插入在指定结点之前,其中指定结点不能为null
     */
    void linkBefore(E e, Node<E> succ) {
        // assert succ != null;
        final Node<E> pred = succ.prev;
        final Node<E> newNode = new Node<>(pred, e, succ);
        succ.prev = newNode;
        if (pred == null)
            first = newNode;
        else
            pred.next = newNode;
        size++;
        modCount++;
    }

    /**
     * 删除指定结点值,指定结点后的结点将作为头结点,f不能为null
     */
    private E unlinkFirst(Node<E> f) {
        // assert f == first && f != null;
        final E element = f.item;
        final Node<E> next = f.next;
        f.item = null;
        f.next = null; // help GC
        first = next;
        if (next == null)
            last = null;
        else
            next.prev = null;
        size--;
        modCount++;
        return element;
    }

    /**
     * 删除指定结点值,指定结点前的结点将作为尾结点,f不能为null
     */
    private E unlinkLast(Node<E> l) {
        // assert l == last && l != null;
        final E element = l.item;
        final Node<E> prev = l.prev;
        l.item = null;
        l.prev = null; // help GC
        last = prev;
        if (prev == null)
            first = null;
        else
            prev.next = null;
        size--;
        modCount++;
        return element;
    }

    /**
     * 删除指定结点 ,x值不能为null
     */
    E unlink(Node<E> x) {
        // assert x != null;
        final E element = x.item;
        final Node<E> next = x.next;
        final Node<E> prev = x.prev;

        if (prev == null) {
            first = next;
        } else {
            prev.next = next;
            x.prev = null;
        }

        if (next == null) {
            last = prev;
        } else {
            next.prev = prev;
            x.next = null;
        }

        x.item = null;
        size--;
        modCount++;
        return element;
    }

需要注意的是LinkedList没法在O(n)的时间复杂度内,根据index值来指定位置的节点进行操作,我们先来看看随机访问,修改,增加,修改的源码:

public E get(int index) {
        checkElementIndex(index);
        return node(index).item;
    }

 public E set(int index, E element) {
        checkElementIndex(index);
        Node<E> x = node(index);
        E oldVal = x.item;
        x.item = element;
        return oldVal;
    }

public void add(int index, E element) {
        checkPositionIndex(index);

        if (index == size)
            linkLast(element);
        else
            linkBefore(element, node(index));
    }

public E remove(int index) {
        checkElementIndex(index);
        return unlink(node(index));
    }

checkXXXXIndex(index)函数是用来检测index是否能用的,我们可以看到每次调用方法时,它都是在底层调用了node()方法,那它又是怎样的呢

Node<E> node(int index) {
        // assert isElementIndex(index);

        if (index < (size >> 1)) {
            Node<E> x = first;
            for (int i = 0; i < index; i++)
                x = x.next;
            return x;
        } else {
            Node<E> x = last;
            for (int i = size - 1; i > index; i--)
                x = x.prev;
            return x;
        }
    }

首先会先确定index离对头还是队尾更近,在确定从哪开始遍历。所以,LinkedList的随机访问效率为O(n)。因此我们不会通过调用

while(index < list.size()){
    get(index++);
}

来遍历LinkedList,当需要遍历LinkedList时怎么办呢,需要调用listIterator();或者descendingIterator();或者调用继承自Deque的iterator();

无论是listIterator()还是descendingIterator()都是对LinkedList的内部类ListItr进行操作,它实现了ListIterator<E>.

private class ListItr implements ListIterator<E> {
        private Node<E> lastReturned; 			<span style="white-space:pre">				</span>//最后一次返回的节点
        private Node<E> next;<span style="white-space:pre">								</span>//下一个操作的节点
        private int nextIndex;<span style="white-space:pre">								</span>//next的索引
        private int expectedModCount = modCount; <span style="white-space:pre">					</span>//iterator的修改次数 当modCount != expectedModCount时会抛出ConcurrentModficationException


        //方法
        ......
}

我们可以看到,它记录了指向最后一次返回的节点信息和下一次操作节点的信息,所以我们对LinkedList遍历时使用如下代码:

ListIterator<String> iterator = list.listIterator();
        while (iterator.hasNext()){
            iterator.next()
}

因为实现了ListIterator接口,所以它相对Iterator而言,还能够add,set,previous,hasPrevious和previousIndex。还有一点需要提醒一下,ListItr有个属性expectedModCount属性是被赋值为LinkedList的modCount的,并且,调用ListItr的方法时,除了hasXXX或者XXXindex方法外,都会检测expectedModCount 是否等于 modCount, 不等会被抛出异常,所以在调用LInkedList的XXXXIterator()方法后,都不应该在直接通过LinkedList的方法对List进行操作而应该直接利用XXXXIterator的方法进行操作。

    原文作者:java集合源码分析
    原文地址: https://blog.csdn.net/u010233260/article/details/45245499
    本文转自网络文章,转载此文章仅为分享知识,如有侵权,请联系博主进行删除。
点赞