文章均迁移到我的主页 http://zhenlianghe.com
my github: https://github.com/LynnHo
tf.Variable
- 变量域?
- tf.name_scope和tf.variable_scope都会对tf.Variable生成的变量域造成影响,tf.variable_scope中的reuse参数对tf.Variable没有影响(本质上是因为tf.Variable受到了tf.variable_scope中同时创建的tf.name_scope的影响)
- 重名?
- 当变量名相同的时候,tf会自动打上序号
with tf.name_scope('s'): # or tf.variable_scope('s') a = tf.Variable(initial_value=10, name='a') b = tf.Variable(initial_value=10, name='a') print(a.name) print(b.name) [out] s/a:0 s/a_1:0
- 当变量名相同的时候,tf会自动打上序号
- 初始化?
- tf.Variable是用一个tensor来初始化的,
a = tf.Variable(initial_value=[1, 2]) b = tf.Variable(initial_value=tf.constant([1, 2])) c = tf.Variable(initial_value=tf.random_uniform(shape=(1, 2))) d = tf.Variable(initial_value=tf.zeros_initializer()(shape=(1, 2), dtype=tf.int64)) e = tf.Variable(initial_value=slim.xavier_initializer()(shape=(1, 2)))
- tf.zeros_initializer()返回的是一个对象,对象对应的类有相应的call函数,这个call函数负责产生一个相应类型的tensor
- slim.xavier_initializer()则返回的是一个函数,调用这个函数能够产生一个相应类型的tensor
- tf.Variable是用一个tensor来初始化的,
- 变量共享?
- 用生成的变量去干不同的事情不就共享了嘛
- tf.Variable产生的变量不能用tf.variable_scope的reuse设置共享,否则会报错
tf.get_variable
- 变量域?
- tf.get_variable产生的变量只会受到tf.variable_scope的影响,不受tf.name_scope的影响
with tf.name_scope('s'): a = tf.get_variable(name='a', shape=(10, 10)) with tf.variable_scope('s'): b = tf.get_variable(name='a', shape=(10, 10)) print(a.name) print(b.name) [out] a:0 s/a:0
- tf.get_variable产生的变量只会受到tf.variable_scope的影响,不受tf.name_scope的影响
- 重名?变量共享?
- 在同一个域下,重名是会报错的。
with tf.variable_scope('s'): a = tf.get_variable(name='a', shape=(10, 10)) b = tf.get_variable(name='a') [out] ValueError: Variable s/a already exists, disallowed. Did you mean to set reuse=True in VarScope?
- 可以在需要复用变量之前改变scope的reuse状态
with tf.variable_scope('s') as s: a = tf.get_variable(name='a', shape=(10, 10)) s.reuse_variables() b = tf.get_variable(name='a') print(a == b) [out] True
- 也可以设置tf.variable_scope的reuse参数为True来复用已经定义过的同名变量,但如果没定义过而设置reuse=True也是会报错的
with tf.variable_scope('s', reuse=True): a = tf.get_variable(name='a') [out] ValueError: Variable s/a does not exist, or was not created with tf.get_variable(). Did you mean to set reuse=None in VarScope?
with tf.variable_scope('s'): a = tf.get_variable(name='a', shape=(10, 10)) with tf.variable_scope('s', reuse=True): b = tf.get_variable(name='a') print(a == b) [out] True
- 可以在需要复用变量之前改变scope的reuse状态
- 在同一个域下,重名是会报错的。
- 初始化?
a = tf.get_variable(name='a', shape=(1, 2), initializer=tf.constant_initializer([1, 2]), dtype=tf.int64) b = tf.get_variable(name='b', shape=(1, 2), initializer=tf.random_uniform_initializer()) c = tf.get_variable(name='c', shape=(1, 2), initializer=tf.zeros_initializer(), dtype=tf.int64) d = tf.get_variable(name='d', shape=(1, 2), initializer=slim.xavier_initializer())
可见,只要给定相应的initializer就可以了,但是要注意dtype的设置,只有设置tf.get_variable的dtype参数才能正确生效,设置initializer的dtype参数是无效的
slim层里面的variable
- 注意,slim里面的variable生成机制实际上是和tf.get_variable是一样的,所以特性也是一样的,比如说变量域只受tf.variable_scope影响而不受tf.name_scope影响
- 层的命名
- 自动命名变量域,每一个slim层都有一个scope参数,如果不设置这个参数(默认为None),会有以下两种情况
- 在同一个上下问管理器中(with tf.variable_scope(‘s’):)定义层,slim会按生成顺序自动命名变量域(本质上就是因为slim层里面利用了with tf.variable_scope(None, default_name, …)的机制)
x = tf.placeholder(tf.float32, shape=[None, 10]) with tf.variable_scope('s'): a = slim.fully_connected(x, 10) b = slim.fully_connected(a, 10) for var in tf.trainable_variables(): print(var.name) [out] s/fully_connected/weights:0 s/fully_connected/biases:0 s/fully_connected_1/weights:0 s/fully_connected_1/biases:0
- 在不同的上下问管理器中定义层,但域名是一样的,slim将报错
- 报错的例子
x = tf.placeholder(tf.float32, shape=[None, 10]) with tf.variable_scope('s'): a = slim.fully_connected(x, 10) with tf.variable_scope('s'): b = slim.fully_connected(x, 10) for var in tf.trainable_variables(): print(var.name) [out] Variable s/fully_connected/weights already exists, disallowed. Did you mean to set reuse=True in VarScope?
- 报错的例子
x = tf.placeholder(tf.float32, shape=[None, 10]) with tf.variable_scope('s'): a = slim.layer_norm(x) with tf.variable_scope('s'): b = slim.layer_norm(x) for var in tf.trainable_variables(): print(var.name) [out] ValueError: Variable s/LayerNorm/beta already exists, disallowed. Did you mean to set reuse=True in VarScope?
- 报错的例子
- 在同一个上下问管理器中(with tf.variable_scope(‘s’):)定义层,slim会按生成顺序自动命名变量域(本质上就是因为slim层里面利用了with tf.variable_scope(None, default_name, …)的机制)
- 手动命名变量域,顾名思义。需要注意以下情况
- 在同一个域中,如果两个层设置的scope参数是同一个名字,那么slim将报错
报错的例子
x = tf.placeholder(tf.float32, shape=[None, 2]) with tf.variable_scope('s'): a = slim.fully_connected(x, 2, scope='a') with tf.variable_scope('s'): # 在这个例子中,这一行可有可无,效果相同 b = slim.fully_connected(x, 2, scope='a') for var in tf.trainable_variables(): print(var.name) [out] Variable s/a/weights already exists, disallowed. Did you mean to set reuse=True in VarScope?
报错的例子
x = tf.placeholder(tf.float32, shape=[None, 10]) with tf.variable_scope('s'): a = slim.layer_norm(x, scope='a') with tf.variable_scope('s'): # 在这个例子中,这一行可有可无,效果相同 b = slim.layer_norm(x, scope='a') [out] ValueError: Variable s/a/beta already exists, disallowed. Did you mean to set reuse=True in VarScope?
- 在同一个域中,如果两个层设置的scope参数是同一个名字,那么slim将报错
- 自动命名变量域,每一个slim层都有一个scope参数,如果不设置这个参数(默认为None),会有以下两种情况
- 那么最合理的变量共享方式???实际上是和tf.get_variable定义的变量的共享机制是一样的,用reuse参数
x = tf.placeholder(tf.float32, shape=[None, 2]) with tf.variable_scope('s'): y = slim.fully_connected(x, 2, weights_initializer=tf.random_normal_initializer()) a = slim.layer_norm(y) with tf.variable_scope('s', reuse=True): y = slim.fully_connected(x, 2) b = slim.layer_norm(y) for var in tf.trainable_variables(): print(var.name) sess = tf.Session() sess.run(tf.global_variables_initializer()) print(sess.run(a, feed_dict={x: [[1, 7]]})) print(sess.run(b, feed_dict={x: [[1, 7]]})) [out] s/fully_connected/weights:0 s/fully_connected/biases:0 s/LayerNorm/beta:0 s/LayerNorm/gamma:0 [[-1. 1.00000012]] [[-1. 1.00000012]]