TensorFlow 卷积层

让我们看下如何在 TensorFlow 里面实现 CNN。

TensorFlow 提供了 tf.nn.conv2d()tf.nn.bias_add() 函数来创建你自己的卷积层。

# Output depth
k_output = 64

# Image Properties
image_width = 10
image_height = 10
color_channels = 3

# Convolution filter
filter_size_width = 5
filter_size_height = 5

# Input/Image
input = tf.placeholder(
    tf.float32,
    shape=[None, image_height, image_width, color_channels])

# Weight and bias
weight = tf.Variable(tf.truncated_normal(
    [filter_size_height, filter_size_width, color_channels, k_output]))
bias = tf.Variable(tf.zeros(k_output))

# Apply Convolution
conv_layer = tf.nn.conv2d(input, weight, strides=[1, 2, 2, 1], padding='SAME')
# Add bias
conv_layer = tf.nn.bias_add(conv_layer, bias)
# Apply activation function
conv_layer = tf.nn.relu(conv_layer)

上述代码用了 tf.nn.conv2d() 函数来计算卷积,weights 作为滤波器,[1, 2, 2, 1] 作为 strides。TensorFlow 对每一个 input 维度使用一个单独的 stride 参数,[batch, input_height, input_width, input_channels]。我们通常把 batch 和 input_channels (strides 序列中的第一个第四个)的 stride 设为 1。

你可以专注于修改 input_height 和 input_width, batch 和 input_channels 都设置成 1。input_height 和 input_width strides 表示滤波器在input 上移动的步长。上述例子中,在 input 之后,设置了一个 5×5 ,stride 为 2 的滤波器。

tf.nn.bias_add() 函数对矩阵的最后一维加了偏置项。

TensorFlow 最大池化

[图片上传失败…(image-c8b801-1532135439580)]

由 Aphex34 (自己的作品) CC BY-SA 4.0, 通过 Wikimedia Commons 共享

这是一个最大池化的例子max pooling 用了 2×2 的滤波器 stride 为 2。四个 2×2 的颜色代表滤波器移动每个步长所产出的最大值。

例如 <mark style=”box-sizing: border-box;”>[[1, 0], [4, 6]]</mark> 生成 6,因为 6 是这4个数字中最大的。

同理 <mark style=”box-sizing: border-box;”>[[2, 3], [6, 8]]</mark> 生成 8。 理论上,最大池化操作的好处是减小输入大小,使得神经网络能够专注于最重要的元素。最大池化只取覆盖区域中的最大值,其它的值都丢弃。

TensorFlow 提供了 tf.nn.max_pool() 函数,用于对卷积层实现 最大池化 。

...
conv_layer = tf.nn.conv2d(input, weight, strides=[1, 2, 2, 1], padding='SAME')
conv_layer = tf.nn.bias_add(conv_layer, bias)
conv_layer = tf.nn.relu(conv_layer)
# Apply Max Pooling
conv_layer = tf.nn.max_pool(
    conv_layer,
    ksize=[1, 2, 2, 1],
    strides=[1, 2, 2, 1],
    padding='SAME')

tf.nn.max_pool() 函数实现最大池化时, ksize参数是滤波器大小,strides参数是步长。2×2 的滤波器配合 2×2 的步长是常用设定。

ksize 和 strides 参数也被构建为四个元素的列表,每个元素对应 input tensor 的一个维度 ([batch, height, width, channels]),对 ksize 和 strides 来说,batch 和 channel 通常都设置成 1。

池化层主要作用:

  • 减小输出大小
  • 避免过拟合

降低过拟合是减小输出大小的结果,它同样也减少了后续层中的参数的数量。

近期,池化层并不是很受青睐。部分原因是:

  • 现在的数据集又大又复杂,我们更关心欠拟合问题。
  • Dropout 是一个更好的正则化方法。
  • 池化导致信息损失。想想最大池化的例子,n 个数字中我们只保留最大的,把余下的 n-1 完全舍弃了。

池化机制

设置

H = height, W = width, D = depth

  • 输入维度是 4x4x5 (HxWxD)
  • 滤波器大小 2×2 (HxW)
  • stride 的高和宽都是 2 (S)

新的高和宽的公式是:

new_height = (input_height - filter_height)/S + 1
new_width = (input_width - filter_width)/S + 1

注意:池化层的输出深度与输入的深度相同。另外池化操作是分别应用到每一个深度切片层。

下图给你一个最大池化层如何工作的示例。这里,最大池化滤波器的大小是 2×2。当最大池化层在输入层滑动时,输出是这个 2×2 方块的最大值。

[图片上传失败…(image-5166f9-1532135439580)]

池化层输出结果
输出的维度大小是什么?格式写成 HxWxD。

答案

答案是 2x2x5。计算公式如下:

(4 - 2)/2 + 1 = 2
(4 - 2)/2 + 1 = 2

深度保持不变 这是对应的代码:

input = tf.placeholder(tf.float32, (None, 4, 4, 5))
filter_shape = [1, 2, 2, 1]
strides = [1, 2, 2, 1]
padding = 'VALID'
pool = tf.nn.max_pool(input, filter_shape, strides, padding)

pool 的输出维度是 [1, 2, 2, 5],即使把 padding 改成 ‘SAME’ 也是一样。

TensorFlow 中的卷积网络

是时候看一下 TensorFlow 中的卷积神经网络的例子了。

网络的结构跟经典的 CNNs 结构一样,是卷积层,最大池化层和全链接层的混合。

这里你看到的代码与你在 TensorFlow 深度神经网络的代码类似,我们按 CNN 重新组织了结构。

如那一节一样,这里你将会学习如何分解一行一行的代码。你还可以下载代码自己运行。

感谢 Aymeric Damien 提供了这节课的原始 TensorFlow 模型。

现在开看下!

数据集

你从之前的课程中见过这节课的代码。这里我们导入 MNIST 数据集,用一个方便的函数完成对数据集的 batch,缩放和独热编码。

from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets(".", one_hot=True, reshape=False)

import tensorflow as tf

# Parameters
# 参数
learning_rate = 0.00001
epochs = 10
batch_size = 128

# Number of samples to calculate validation and accuracy
# Decrease this if you're running out of memory to calculate accuracy
# 用来验证和计算准确率的样本数
# 如果内存不够,可以调小这个数字
test_valid_size = 256

# Network Parameters
# 神经网络参数
n_classes = 10  # MNIST total classes (0-9 digits)
dropout = 0.75  # Dropout, probability to keep units

Weights and Biases

# Store layers weight & bias
weights = {
    'wc1': tf.Variable(tf.random_normal([5, 5, 1, 32])),
    'wc2': tf.Variable(tf.random_normal([5, 5, 32, 64])),
    'wd1': tf.Variable(tf.random_normal([7*7*64, 1024])),
    'out': tf.Variable(tf.random_normal([1024, n_classes]))}

biases = {
    'bc1': tf.Variable(tf.random_normal([32])),
    'bc2': tf.Variable(tf.random_normal([64])),
    'bd1': tf.Variable(tf.random_normal([1024])),
    'out': tf.Variable(tf.random_normal([n_classes]))}

卷积

[图片上传失败…(image-332551-1532135439580)]

3×3 卷积滤波器。[来源:](http://deeplearning.stanford.edu/wiki/index.php/Feature_extraction_using_convolution)

这是一个 3×3 的卷积滤波器的示例。以 stride 为 1 应用到一个范围在 0 到 1 之间的数据上。每一个 3×3 的部分与权值 [[1, 0, 1], [0, 1, 0], [1, 0, 1]] 做卷积,把偏置加上后得到右边的卷积特征。这里偏置是 0 。TensorFlow 中这是通过 tf.nn.conv2d() 和 tf.nn.bias_add() 来完成的。

def conv2d(x, W, b, strides=1):
x = tf.nn.conv2d(x, W, strides=[1, strides, strides, 1], padding='SAME')
x = tf.nn.bias_add(x, b)
return tf.nn.relu(x)

tf.nn.conv2d() 函数与权值 W 做卷积。

在 TensorFlow 中,strides 是一个4个元素的序列;第一个位置表示 stride 的 batch 参数,最后一个位置表示 stride 的特征(feature)参数。最好的移除 batch 和特征(feature)的方法是你直接在数据集中把他们忽略,而不是使用 stride。要使用所有的 batch 和特征(feature),你可以把第一个和最后一个元素设成1。

中间两个元素指纵向(height)和横向(width)的 stride,之前也提到过 stride 通常是正方形,height = width。当别人说 stride 是 3 的时候,他们意思是 tf.nn.conv2d(x, W, strides=[1, 3, 3, 1])。

为了更简洁,这里的代码用了tf.nn.bias_add() 来添加偏置。 tf.add() 这里不能使用,因为 tensors 的维度不同。

最大池化

[图片上传失败…(image-550c88-1532135439580)]

带有 2x2 滤波器 和 stride 为 2 的最大池化。来源:

上面是一个最大池化的示例。滤波器大小是 2×2,stride 是 2。左边是输入,右边是输出。 四个 2×2 的颜色代表每一次滤波器应用在左侧来构建右侧的最大结果。例如。<mark style=”box-sizing: border-box;”>[[1, 1], [5, 6]]</mark> 变成 6,<mark style=”box-sizing: border-box;”>[[3, 2], [1, 2]]</mark> 变成 3。 def maxpool2d(x, k=2): return tf.nn.max_pool( x, ksize=[1, k, k, 1], strides=[1, k, k, 1], padding=’SAME’) tf.nn.max_pool() 函数做的与你期望的一样,它通过设定 ksize 参数来设定滤波器大小,从而实现最大池化。

模型

[图片上传失败…(image-a3a58-1532135439580)]

Image from Explore The Design Space video

在下面的代码中,我们创建了 3 层来实现卷积,最大池化以及全链接层和输出层。每一层对维度的改变都写在注释里。例如第一层在卷积部分把图片从 28x28x1 变成了 28x28x32。后面应用了最大池化,每个样本变成了 14x14x32。从 conv1 经过多层网络,最后到 output 生成 10 个分类。

def conv_net(x, weights, biases, dropout):
    # Layer 1 - 28*28*1 to 14*14*32
    conv1 = conv2d(x, weights['wc1'], biases['bc1'])
    conv1 = maxpool2d(conv1, k=2)

    # Layer 2 - 14*14*32 to 7*7*64
    conv2 = conv2d(conv1, weights['wc2'], biases['bc2'])
    conv2 = maxpool2d(conv2, k=2)

    # Fully connected layer - 7*7*64 to 1024
    fc1 = tf.reshape(conv2, [-1, weights['wd1'].get_shape().as_list()[0]])
    fc1 = tf.add(tf.matmul(fc1, weights['wd1']), biases['bd1'])
    fc1 = tf.nn.relu(fc1)
    fc1 = tf.nn.dropout(fc1, dropout)

    # Output Layer - class prediction - 1024 to 10
    out = tf.add(tf.matmul(fc1, weights['out']), biases['out'])
    return out

Session

现在让我们开始运行神经网络!

# tf Graph input
x = tf.placeholder(tf.float32, [None, 28, 28, 1])
y = tf.placeholder(tf.float32, [None, n_classes])
keep_prob = tf.placeholder(tf.float32)

# Model
logits = conv_net(x, weights, biases, keep_prob)

# Define loss and optimizer
cost = tf.reduce_mean(\
    tf.nn.softmax_cross_entropy_with_logits(logits=logits, labels=y))
optimizer = tf.train.GradientDescentOptimizer(learning_rate=learning_rate)\
    .minimize(cost)

# Accuracy
correct_pred = tf.equal(tf.argmax(logits, 1), tf.argmax(y, 1))
accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32))

# Initializing the variables
init = tf. global_variables_initializer()

# Launch the graph
with tf.Session() as sess:
    sess.run(init)

    for epoch in range(epochs):
        for batch in range(mnist.train.num_examples//batch_size):
            batch_x, batch_y = mnist.train.next_batch(batch_size)
            sess.run(optimizer, feed_dict={
                x: batch_x,
                y: batch_y,
                keep_prob: dropout})

            # Calculate batch loss and accuracy
            loss = sess.run(cost, feed_dict={
                x: batch_x,
                y: batch_y,
                keep_prob: 1.})
            valid_acc = sess.run(accuracy, feed_dict={
                x: mnist.validation.images[:test_valid_size],
                y: mnist.validation.labels[:test_valid_size],
                keep_prob: 1.})

            print('Epoch {:>2}, Batch {:>3} -'
                  'Loss: {:>10.4f} Validation Accuracy: {:.6f}'.format(
                epoch + 1,
                batch + 1,
                loss,
                valid_acc))

    # Calculate Test Accuracy
    test_acc = sess.run(accuracy, feed_dict={
        x: mnist.test.images[:test_valid_size],
        y: mnist.test.labels[:test_valid_size],
        keep_prob: 1.})
    print('Testing Accuracy: {}'.format(test_acc))

这就是 TensorFlow 中的 CNN。接下来你亲手实践一下。

最简单的神经网络

说明 在conv2d函数中完成所有 TODO。 设定 strides 、 padding 、 filter weight/bias (F_w and F_b) 输出是 (1, 2, 2, 3)。除了 strides 所有变量的类型都应该为 TensorFlow 变量。

"""
Setup the strides, padding and filter weight/bias such that
the output shape is (1, 2, 2, 3).
"""
import tensorflow as tf
import numpy as np

# `tf.nn.conv2d` requires the input be 4D (batch_size, height, width, depth)
# (1, 4, 4, 1)
x = np.array([
    [0, 1, 0.5, 10],
    [2, 2.5, 1, -8],
    [4, 0, 5, 6],
    [15, 1, 2, 3]], dtype=np.float32).reshape((1, 4, 4, 1))
X = tf.constant(x)

def conv2d(input):
    # Filter (weights and bias)
    # The shape of the filter weight is (height, width, input_depth, output_depth)
    # The shape of the filter bias is (output_depth,)
    # TODO: Define the filter weights `F_W` and filter bias `F_b`.
    # NOTE: Remember to wrap them in `tf.Variable`, they are trainable parameters after all.
    F_W = tf.Variable(tf.truncated_normal((2,2,1,3))
    F_b = tf.Variable(tf.zeros(3))
    # TODO: Set the stride for each dimension (batch_size, height, width, depth)
    strides = [1, 2, 2, 1]
    # TODO: set the padding, either 'VALID' or 'SAME'.
    padding = 'VALID'
    # https://www.tensorflow.org/versions/r0.11/api_docs/python/nn.html#conv2d
    # `tf.nn.conv2d` does not include the bias computation so we have to add it ourselves after.
    return tf.nn.conv2d(input, F_W, strides, padding) + F_b

out = conv2d(X)

方案

这是我的做法。注意:有不止一种方法得到正确的输出维度,你的答案可能会跟我的有所不同。

def conv2d(input):
    # Filter (weights and bias)
    F_W = tf.Variable(tf.truncated_normal((2, 2, 1, 3)))
    F_b = tf.Variable(tf.zeros(3))
    strides = [1, 2, 2, 1]
    padding = 'VALID'
    return tf.nn.conv2d(input, F_W, strides, padding) + F_b

我想要把输入的 (1, 4, 4, 1) 转变成 (1, 2, 2, 3)。padding 方法我选择 ‘VALID’。我觉得这更容易理解,也得到了我想要的结果。

out_height = ceil(float(in_height - filter_height + 1) / float(strides[1]))
out_width  = ceil(float(in_width - filter_width + 1) / float(strides[2]))

把值带入

out_height = ceil(float(4 - 2 + 1) / float(2)) = ceil(1.5) = 2
out_width  = ceil(float(4 - 2 + 1) / float(2)) = ceil(1.5) = 2

要把深度从 1 变成 3。我要把我滤波器的输出做相应的设置:

F_W = tf.Variable(tf.truncated_normal((2, 2, 1, 3))) # (height, width, input_depth, output_depth)
F_b = tf.Variable(tf.zeros(3)) # (output_depth)

输入的深度是 1,所以我选择 1 作为滤波器的 input_depth。

在 TensorFlow 中使用池化层

在下面的练习中,你需要设定池化层的大小,strides,以及相应的 padding。你可以参考 tf.nn.max_pool()。Padding 与卷积 padding 的原理一样。

说明 1.完成 maxpool 函数中所有的 TODO。 2.设定 strides,padding 和 ksize 使得池化的结果维度为 (1, 2, 2, 1)。

“”” Set the values to strides and ksize such that the output shape after pooling is (1, 2, 2, 1). “”” import tensorflow as tf import numpy as np

# `tf.nn.max_pool` requires the input be 4D (batch_size, height, width, depth)
# (1, 4, 4, 1)
x = np.array([
    [0, 1, 0.5, 10],
    [2, 2.5, 1, -8],
    [4, 0, 5, 6],
    [15, 1, 2, 3]], dtype=np.float32).reshape((1, 4, 4, 1))
X = tf.constant(x)

def maxpool(input):
    # TODO: Set the ksize (filter size) for each dimension (batch_size, height, width, depth)
    ksize = [2, 2, 1, 1]
    # TODO: Set the stride for each dimension (batch_size, height, width, depth)
    strides = [1, 2, 2, 1]
    # TODO: set the padding, either 'VALID' or 'SAME'.
    padding = 'VALID'
    # https://www.tensorflow.org/versions/r0.11/api_docs/python/nn.html#max_pool
    return tf.nn.max_pool(input, ksize, strides, padding)

out = maxpool(X)

方案

这是我的做法。注意:有不止一种方法得到正确的输出维度,你的答案可能会跟我的有所不同。

def maxpool(input):
    ksize = [1, 2, 2, 1]
    strides = [1, 2, 2, 1]
    padding = 'VALID'
    return tf.nn.max_pool(input, ksize, strides, padding)

我想要把输入的 (1, 4, 4, 1) 转变成 (1, 2, 2, 1)。padding 方法我选择 ‘VALID’。我觉得他更容易理解,也得到了我想要的结果。

out_height = ceil(float(in_height - filter_height + 1) / float(strides[1]))
out_width  = ceil(float(in_width - filter_width + 1) / float(strides[2]))

替换入值:

out_height = ceil(float(4 - 2 + 1) / float(2)) = ceil(1.5) = 2
out_width  = ceil(float(4 - 2 + 1) / float(2)) = ceil(1.5) = 2

深度在池化的时候不变,所以不用担心。

补充材料

有很多免费的资源可以让你对卷积神经网络有更深入的了解。在本课中,我们的目标是让你了解这个概念如何解决现实问题。你也有了能力来继续探索。我们强烈推荐你参考下列资源来强化你的理解以及了解更多概念。

我们特别推荐的阅读材料如下:

  • Andrej Karpathy’s CS231n Stanford course on Convolutional Neural Networks.
  • Michael Nielsen’s free book on Deep Learning.
  • Goodfellow, Bengio, and Courville’s more advanced free book on Deep Learning.
    原文作者:DonkeyJason
    原文地址: https://www.jianshu.com/p/9654dc57a059
    本文转自网络文章,转载此文章仅为分享知识,如有侵权,请联系博主进行删除。
点赞