ACM POJ 1458 Common Subsequence (最长公共子序列,动态规划)

Common Subsequence

Time Limit: 1000MSMemory Limit: 10000K
Total Submissions: 25178Accepted: 9726

Description

A subsequence of a given sequence is the given sequence with some elements (possible none) left out. Given a sequence X = < x1, x2, …, xm > another sequence Z = < z1, z2, …, zk > is a subsequence of X if there exists a strictly increasing sequence < i1, i2, …, ik > of indices of X such that for all j = 1,2,…,k, x
ij = zj. For example, Z = < a, b, f, c > is a subsequence of X = < a, b, c, f, b, c > with index sequence < 1, 2, 4, 6 >. Given two sequences X and Y the problem is to find the length of the maximum-length common subsequence of X and Y.

Input

The program input is from the std input. Each data set in the input contains two strings representing the given sequences. The sequences are separated by any number of white spaces. The input data are correct.

Output

For each set of data the program prints on the standard output the length of the maximum-length common subsequence from the beginning of a separate line.

Sample Input

abcfbc         abfcab
programming    contest 
abcd           mnp

Sample Output

4
2
0

Source

Southeastern Europe 2003  

/*
POJ1458Common Subsequence

*/
#include
<stdio.h>
#include
<algorithm>
#include
<string.h>
using namespace std;
#define MAXN 210
char str1[MAXN];
char str2[MAXN];
int dp[MAXN][MAXN];
int solve()
{
int len1=strlen(str1);
int len2=strlen(str2);
int i,j;
for(i=0;i<=len1;i++) dp[i][0]=0;
for(i=0;i<=len2;i++) dp[0][i]=0;
for(i=0;i<len1;i++)
for(j=0;j<len2;j++)
{
if(str1[i]==str2[j]) dp[i+1][j+1]=dp[i][j]+1;
else
{
dp[i
+1][j+1]=max(dp[i][j+1],dp[i+1][j]);
}
}
return dp[len1][len2];
}
int main()
{
while(scanf("%s%s",&str1,&str2)!=EOF)
{

printf(
"%d\n",solve());
}
return 0;
}

    原文作者:kuangbin
    原文地址: https://www.cnblogs.com/kuangbin/archive/2011/08/03/2126598.html
    本文转自网络文章,转载此文章仅为分享知识,如有侵权,请联系博主进行删除。
点赞