Minimum Inversion Number
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 4647 Accepted Submission(s): 2809
Problem Description The inversion number of a given number sequence a1, a2, …, an is the number of pairs (ai, aj) that satisfy i < j and ai > aj.
For a given sequence of numbers a1, a2, …, an, if we move the first m >= 0 numbers to the end of the seqence, we will obtain another sequence. There are totally n such sequences as the following:
a1, a2, …, an-1, an (where m = 0 – the initial seqence)
a2, a3, …, an, a1 (where m = 1)
a3, a4, …, an, a1, a2 (where m = 2)
…
an, a1, a2, …, an-1 (where m = n-1)
You are asked to write a program to find the minimum inversion number out of the above sequences.
Input The input consists of a number of test cases. Each case consists of two lines: the first line contains a positive integer n (n <= 5000); the next line contains a permutation of the n integers from 0 to n-1.
Output For each case, output the minimum inversion number on a single line.
Sample Input 10 1 3 6 9 0 8 5 7 4 2
Sample Output 16
Author CHEN, Gaoli
Source
ZOJ Monthly, January 2003
Recommend Ignatius.L 本题就是求循环移位后逆序数的最小值。 其实主要就是求序列的逆序数。 逆序数的求法很多,可以用归并排序求。 也可以用树状数组和线段树求逆序数。 逆序数求得之后,把第一个数移到最后的逆序数是可以直接得到的。 比如原来的逆序数是ans,把a[0]移到最后后,减少逆序数a[0],同时增加逆序数n-a[0]-1个 就是ans-a[0]+n-a[0]-1; 只要i从0-n-1循环一遍取最小值就可以了。 线段树的做法:
/* HDU 1394 G++ 78ms 280K */ #include<stdio.h> #include<string.h> #include<algorithm> using namespace std; const int MAXN=5050; struct Node { int l,r; int sum; }segTree[MAXN*3]; void Build(int i,int l,int r) { segTree[i].l=l; segTree[i].r=r; if(l==r) { segTree[i].sum=0; return; } int mid=(l+r)>>1; Build(i<<1,l,mid); Build((i<<1)|1,mid+1,r); segTree[i].sum=0; } void add(int i,int t,int val) { segTree[i].sum+=val; if(segTree[i].l==segTree[i].r) { return; } int mid=(segTree[i].l+segTree[i].r)>>1; if(t<=mid) add(i<<1,t,val); else add((i<<1)|1,t,val); } int sum(int i,int l,int r) { if(segTree[i].l==l&&segTree[i].r==r) return segTree[i].sum; int mid=(segTree[i].l+segTree[i].r)>>1; if(r<=mid) return sum(i<<1,l,r); else if(l>mid) return sum((i<<1)|1,l,r); else return sum(i<<1,l,mid)+sum((i<<1)|1,mid+1,r); } int a[MAXN]; int main() { // freopen("in.txt","r",stdin); // freopen("out.txt","w",stdout); int n; while(scanf("%d",&n)!=EOF) { Build(1,0,n-1); for(int i=0;i<n;i++) scanf("%d",&a[i]); int ans=0; for(int i=0;i<n;i++) { ans+=sum(1,a[i],n-1); add(1,a[i],1); } int Min=ans; for(int i=0;i<n;i++) { ans-=a[i];//减少的逆序数 ans+=n-a[i]-1; if(ans<Min)Min=ans; } printf("%d\n",Min); } return 0; }
树状数组:
/* HDU 1394 AC G++ 46ms 252k */ #include<stdio.h> #include<string.h> #include<algorithm> using namespace std; const int MAXN=5050; int c[MAXN]; int n; int lowbit(int x) { return x&(-x); } void add(int i,int val) { while(i<=n) { c[i]+=val; i+=lowbit(i); } } int sum(int i) { int s=0; while(i>0) { s+=c[i]; i-=lowbit(i); } return s; } int a[MAXN]; int main() { while(scanf("%d",&n)!=EOF) { int ans=0; memset(c,0,sizeof(c)); for(int i=1;i<=n;i++) { scanf("%d",&a[i]); a[i]++; ans+=sum(n)-sum(a[i]); add(a[i],1); } int Min=ans; for(int i=1;i<=n;i++) { ans+=n-a[i]-(a[i]-1); if(ans<Min)Min=ans; } printf("%d\n",Min); } return 0; }