MAX Average Problem
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 3521 Accepted Submission(s): 896
Problem Description Consider a simple sequence which only contains positive integers as a1, a2 … an, and a number k. Define ave(i,j) as the average value of the sub sequence ai … aj, i<=j. Let’s calculate max(ave(i,j)), 1<=i<=j-k+1<=n.
Input There multiple test cases in the input, each test case contains two lines.
The first line has two integers, N and k (k<=N<=10^5).
The second line has N integers, a1, a2 … an. All numbers are ranged in [1, 2000].
Output For every test case, output one single line contains a real number, which is mentioned in the description, accurate to 0.01.
Sample Input 10 6 6 4 2 10 3 8 5 9 4 1
Sample Output 6.50
Source
2009 Multi-University Training Contest 19 – Host by BNU
Recommend chenrui
本题有个比较2的地方就是要自己写输入函数,用scanf就超时。。。看来这也是个很好的优化方法,没办法的时候可以试一试呢。 给定一个长度为n的序列,从其中找连续的长度大于m的子序列使得子序列中的平均值最小。 详细分析见: NOI2004年周源的论文《
浅谈数形结合思想在信息学竞赛中的应用》,
做法是参考了网上其他人的,用单调队列去维护,如下面的代码一。
但是会有问题,虽然不会影响结果。
已经有人指出该问题了:
http://hi.baidu.com/lccycc_acm/item/e05b5b85c9b27a1fc31627bf
这个问题正是我纠结了好久的。
后来看到用二分来查找点,感觉是比较严密的做法,如代码二:
代码一:
#include<stdio.h> #include<iostream> #include<string.h> #include<queue> #include<algorithm> using namespace std; const int MAXN=100010; double sum[MAXN]; int a[MAXN]; int q[MAXN]; int head,tail; double max(double a,double b) { if(a>b)return a; else return b; } double getUP(int i,int j)//i>j { return sum[i]-sum[j]; } int getDOWN(int i,int j) { return i-j; } int input() { char ch=' '; while(ch<'0'||ch>'9')ch=getchar(); int x=0; while(ch<='9'&&ch>='0')x=x*10+ch-'0',ch=getchar(); return x; } int main() { //freopen("in.txt","r",stdin); //freopen("out.txt","w",stdout); int n,k; while(scanf("%d%d",&n,&k)!=EOF) { sum[0]=0; for(int i=1;i<=n;i++) { // scanf("%d",&a[i]); a[i]=input(); sum[i]=sum[i-1]+a[i]; } head=tail=0; q[tail++]=0; double ans=0; for(int i=k;i<=n;i++) { while(head+1<tail&&getUP(i,q[head])*getDOWN(i,q[head+1])<=getUP(i,q[head+1])*getDOWN(i,q[head])) head++; ans=max(ans,getUP(i,q[head])/getDOWN(i,q[head])); int j=i-k+1; while(head+1<tail&&getUP(j,q[tail-1])*getDOWN(q[tail-1],q[tail-2])<=getUP(q[tail-1],q[tail-2])*getDOWN(j,q[tail-1])) tail--; q[tail++]=j; } printf("%.2lf\n",ans); } return 0; }
代码二:
#include<stdio.h> #include<iostream> #include<string.h> #include<queue> #include<algorithm> using namespace std; const int MAXN=100010; int sum[MAXN]; int q[MAXN]; int top; long long cross(int a,int b,int c) { long long x1=b-a; long long y1=sum[b]-sum[a]; long long x2=c-b; long long y2=sum[c]-sum[b]; return x1*y2-y1*x2; } int bsearch(int l,int r,int i) { while(l<r) { int mid=(l+r)>>1; if(cross(q[mid],q[mid+1],i)<0)r=mid; else l=mid+1; } return l; } int input() { char ch=' '; while(ch<'0'||ch>'9')ch=getchar(); int x=0; while(ch<='9'&&ch>='0')x=x*10+ch-'0',ch=getchar(); return x; } int main() { // freopen("in.txt","r",stdin); // freopen("out.txt","w",stdout); int n,k; while(scanf("%d%d",&n,&k)!=EOF) { top=0; sum[0]=0; for(int i=1;i<=n;i++) { sum[i]=input(); sum[i]+=sum[i-1]; } double ans=0; q[top++]=0; for(int i=k;i<=n;i++) { int j=i-k; while(top>1&&cross(q[top-2],q[top-1],j)<0)top--; q[top++]=j; int temp=bsearch(0,top-1,i); double f=((double)(sum[i]-sum[q[temp]]))/(i-q[temp]); if(f>ans)ans=f; } printf("%.2lf\n",ans); } return 0; }