HashMap简介
JangGwa从源码角度带你熟悉一下JDK1.8的HashMap,首先简单介绍下HashMap。
1.HashMap有三种数据结构,数组,链表,红黑树。
2.HashMap是非线程安全的
3.HashMap存储的内容是键值对(key-value)映射,key、value都可以为null。
4.HashMap中的映射不是有序的。
5.实现了Cloneable接口,能被克隆。
6.实现了Serializable接口,支持序列化。
HashMap源码解析
HashMap继承了AbstractMap并实现了Map, Cloneable, java.io.Serializable 接口,上面做了相应的介绍就不再阐述了。关键我们看两个重要的属性initialCapacity,loadFactor。
initialCapacity:初始容量,是哈希表创建中桶的数量。
loadFactor:加载因子(默认0.75),是哈希表在其容量自动增加之前可以达到多满的一种尺度。
当哈希表中的条目数超出了加载因子与当前容量的乘积时,哈希表将具有两倍的桶数。
public class More ...HashMap
extends AbstractMap
implements Map
, Cloneable, Serializable { private static final long serialVersionUID = 362498820763181265L; // 默认的初始容量(容量为HashMap中槽的数目)是16 static final int DEFAULT_INITIAL_CAPACITY = 1 << 4; // aka 16 // 最大容量(必须是2的幂且小于2的30次方,传入容量过大将被这个值替换) static final int MAXIMUM_CAPACITY = 1 << 30; // 默认加载因子 static final float DEFAULT_LOAD_FACTOR = 0.75f; // list to tree 的临界值 static final int TREEIFY_THRESHOLD = 8; // 删除冲突节点后,hash相同的节点数目小于这个数,红黑树就恢复成链表 static final int UNTREEIFY_THRESHOLD = 6; // 扩容的临界值 static final int MIN_TREEIFY_CAPACITY = 64; // 存储元素的数组 transient Node
[] table;
Node节点的数据结构
// 继承自 Map.Entry
static class Node
implements Map.Entry
{ final int hash; final K key; V value; // 指向下一个节点 Node
next; Node(int hash, K key, V value, Node
next) { this.hash = hash; this.key = key; this.value = value; this.next = next; } public final K getKey() { return key; } public final V getValue() { return value; } public final String toString() { return key + "=" + value; } // 返回 Hash 值 public final int hashCode() { return Objects.hashCode(key) ^ Objects.hashCode(value); } public final V setValue(V newValue) { V oldValue = value; value = newValue; return oldValue; } // 重写 equals() public final boolean equals(Object o) { if (o == this) return true; if (o instanceof Map.Entry) { Map.Entry
e = (Map.Entry
)o; if (Objects.equals(key, e.getKey()) && Objects.equals(value, e.getValue())) return true; } return false; } }
树节点数据结构
static final class TreeNode
extends LinkedHashMap.Entry
{ TreeNode
parent; // 父 TreeNode
left; // 左 TreeNode
right; // 右 TreeNode
prev; // needed to unlink next upon deletion boolean red; // 判断颜色 TreeNode(int hash, K key, V val, Node
next) { super(hash, key, val, next); } // 返回根节点 final TreeNode
root() { for (TreeNode
r = this, p;;) { if ((p = r.parent) == null) return r; r = p; }
HashMap的4个构造函数
// 默认构造函数。
public More ...HashMap() {
this.loadFactor = DEFAULT_LOAD_FACTOR; // all other fields defaulted
}
// 包含“子Map”的构造函数
public More ...HashMap(Map
m) {
this.loadFactor = DEFAULT_LOAD_FACTOR;
putMapEntries(m, false);
}
// 指定“容量大小”的构造函数
public More ...HashMap(int initialCapacity) {
this(initialCapacity, DEFAULT_LOAD_FACTOR);
}
// 指定“容量大小”和“加载因子”的构造函数
public More ...HashMap(int initialCapacity, float loadFactor) {
if (initialCapacity < 0)
throw new IllegalArgumentException("Illegal initial capacity: " + initialCapacity);
if (initialCapacity > MAXIMUM_CAPACITY)
initialCapacity = MAXIMUM_CAPACITY;
if (loadFactor <= 0="" ||="" float.isnan(loadfactor))="" throw="" new="" illegalargumentexception("illegal="" load="" factor:="" "="" +="" loadfactor);="" this.loadfactor="loadFactor;" this.threshold="tableSizeFor(initialCapacity);" }<="" code="">
put函数
public V put(K key, V value) {
// 对key的hashCode()做hash
return putVal(hash(key), key, value, false, true);
}
final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
boolean evict) {
Node
[] tab; Node
p; int n, i; // tab为空则创建 if ((tab = table) == null || (n = tab.length) == 0) n = (tab = resize()).length; // 计算index,并对null做处理 if ((p = tab[i = (n - 1) & hash]) == null) tab[i] = newNode(hash, key, value, null); else { Node
e; K k; // 节点存在 if (p.hash == hash && ((k = p.key) == key || (key != null && key.equals(k)))) e = p; // 该链为树 else if (p instanceof TreeNode) e = ((TreeNode
)p).putTreeVal(this, tab, hash, key, value); // 该链为链表 else { for (int binCount = 0; ; ++binCount) { if ((e = p.next) == null) { p.next = newNode(hash, key, value, null); if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st treeifyBin(tab, hash); break; } if (e.hash == hash && ((k = e.key) == key || (key != null && key.equals(k)))) break; p = e; } } // 写入 if (e != null) { // existing mapping for key V oldValue = e.value; if (!onlyIfAbsent || oldValue == null) e.value = value; afterNodeAccess(e); return oldValue; } } ++modCount; // 超过load factor*current capacity,resize if (++size > threshold) resize(); afterNodeInsertion(evict); return null; }
get函数
public V get(Object key) {
Node
e; return (e = getNode(hash(key), key)) == null ? null : e.value; } final Node
getNode(int hash, Object key) { Node
[] tab; Node
first, e; int n; K k; if ((tab = table) != null && (n = tab.length) > 0 && (first = tab[(n - 1) & hash]) != null) { // 数组元素相等 if (first.hash == hash && // always check first node ((k = first.key) == key || (key != null && key.equals(k)))) return first; // 桶中不止一个节点 if ((e = first.next) != null) { // 在树中get if (first instanceof TreeNode) return ((TreeNode
)first).getTreeNode(hash, key); // 在链表中get do { if (e.hash == hash && ((k = e.key) == key || (key != null && key.equals(k)))) return e; } while ((e = e.next) != null); } } return null; }
resize函数
final Node
[] resize() { Node
[] oldTab = table; int oldCap = (oldTab == null) ? 0 : oldTab.length; int oldThr = threshold; int newCap, newThr = 0; if (oldCap > 0) { // 超过最大值就不再扩充了,就只好随你碰撞去吧 if (oldCap >= MAXIMUM_CAPACITY) { threshold = Integer.MAX_VALUE; return oldTab; } // 没超过最大值,就扩充为原来的2倍 else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY && oldCap >= DEFAULT_INITIAL_CAPACITY) newThr = oldThr << 1; // double threshold } else if (oldThr > 0) // initial capacity was placed in threshold newCap = oldThr; else { signifies using defaults newCap = DEFAULT_INITIAL_CAPACITY; newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY); } // 计算新的resize上限 if (newThr == 0) { float ft = (float)newCap * loadFactor; newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ? (int)ft : Integer.MAX_VALUE); } threshold = newThr; @SuppressWarnings({"rawtypes","unchecked"}) Node
[] newTab = (Node
[])new Node[newCap]; table = newTab; if (oldTab != null) { // 把每个bucket都移动到新的buckets中 for (int j = 0; j < oldCap; ++j) { Node
e; if ((e = oldTab[j]) != null) { oldTab[j] = null; if (e.next == null) newTab[e.hash & (newCap - 1)] = e; else if (e instanceof TreeNode) ((TreeNode
)e).split(this, newTab, j, oldCap); else { Node
loHead = null, loTail = null; Node
hiHead = null, hiTail = null; Node
next; do { next = e.next; // 原索引 if ((e.hash & oldCap) == 0) { if (loTail == null) loHead = e; else loTail.next = e; loTail = e; } // 原索引+oldCap else { if (hiTail == null) hiHead = e; else hiTail.next = e; hiTail = e; } } while ((e = next) != null); // 原索引放到bucket里 if (loTail != null) { loTail.next = null; newTab[j] = loHead; } // 原索引+oldCap放到bucket里 if (hiTail != null) { hiTail.next = null; newTab[j + oldCap] = hiHead; } } } } } return newTab; }
总结
- HHashMap有三种数据结构,数组,链表,红黑树。
- 如果冲突节点到8时,就把链表转换成红黑树;
- 如果bucket满了(超过load factor*current capacity),就要resize。
- 在resize的过程,就是把bucket扩充为2倍,之后重新计算index,把节点再放到新的bucket中。
- get()如果有冲突,则通过key.equals(k)去查找对应的entry
若为树,则在树中通过key.equals(k)查找,O(logn);
若为链表,则在链表中通过key.equals(k)查找,O(n)。