Calculation 2
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 1264 Accepted Submission(s): 530
Problem Description Given a positive integer N, your task is to calculate the sum of the positive integers less than N which are not coprime to N. A is said to be coprime to B if A, B share no common positive divisors except 1.
Input For each test case, there is a line containing a positive integer N(1 ≤ N ≤ 1000000000). A line containing a single 0 follows the last test case.
Output For each test case, you should print the sum module 1000000007 in a line.
Sample Input 3 4 0
Sample Output 0 2
Author GTmac
Source
2010 ACM-ICPC Multi-University Training Contest(7)——Host by HIT
Recommend zhouzeyong 其实就是一个欧拉函数的推广。 小于等于n,与n互质的数的个数是phi(n) 叫欧拉函数 小于等于n,与n互质的数的和是 phi(n)*n/2; 所以总和减掉就是答案了。
/* HDU 3501 求小于N与N不互质的数的和 欧拉公式的引伸:小于或等于n的数中,与n互质的数的总和为:φ(x) * x / 2。(n>1) */ #include<stdio.h> #include<iostream> #include<string.h> #include<algorithm> using namespace std; const int MOD=1000000007; //求欧拉函数 long long eular(long long n) { long long ret=n; long long i; for(i=2;i*i<=n;i++) { if(n%i==0) { ret-=ret/i; while(n%i==0)n/=i; if(n==1)break; } } if(n>1)ret-=ret/n; return ret; } int main() { long long n; while(scanf("%I64d",&n),n) { long long ans=(n*(n-1)/2%MOD-eular(n)*n/2%MOD+MOD)%MOD; printf("%I64d\n",ans); } return 0; }