Android的Handler消息处理机制

实现android的消息机制在应用层会设置 Handler, Message ,MessageQueue ,Looper 四个类

仔细的分析一下他们的与源码就会理解很多道理

Looper

正常的初始化一个线程,运行完之后就会立刻退出,但是有时候我们不想让线程退出,因为可能我们还有消息需要这个线程处理,
因此,Looper就应运而生了。

看下Looper的核心代码

    //构造函数初始化MessageQueue
    private Looper(boolean quitAllowed) {
            mQueue = new MessageQueue(quitAllowed);
            mThread = Thread.currentThread();
       }
       
    public static void loop() {
            final Looper me = myLooper();
            if (me == null) {
                throw new RuntimeException("No Looper; Looper.prepare() wasn't called on this thread.");
            }
            final MessageQueue queue = me.mQueue;
    
            // Make sure the identity of this thread is that of the local process,
            // and keep track of what that identity token actually is.
            Binder.clearCallingIdentity();
            final long ident = Binder.clearCallingIdentity();
    
            for (;;) {
                Message msg = queue.next(); // might block
                if (msg == null) {
                    // No message indicates that the message queue is quitting.
                    return;
                }
    
                // This must be in a local variable, in case a UI event sets the logger
                final Printer logging = me.mLogging;
                if (logging != null) {
                    logging.println(">>>>> Dispatching to " + msg.target + " " +
                            msg.callback + ": " + msg.what);
                }
    
                final long traceTag = me.mTraceTag;
                if (traceTag != 0 && Trace.isTagEnabled(traceTag)) {
                    Trace.traceBegin(traceTag, msg.target.getTraceName(msg));
                }
                try {
                    msg.target.dispatchMessage(msg);
                } finally {
                    if (traceTag != 0) {
                        Trace.traceEnd(traceTag);
                    }
                }
    
                if (logging != null) {
                    logging.println("<<<<< Finished to " + msg.target + " " + msg.callback);
                }
    
                // Make sure that during the course of dispatching the
                // identity of the thread wasn't corrupted.
                final long newIdent = Binder.clearCallingIdentity();
                if (ident != newIdent) {
                    Log.wtf(TAG, "Thread identity changed from 0x"
                            + Long.toHexString(ident) + " to 0x"
                            + Long.toHexString(newIdent) + " while dispatching to "
                            + msg.target.getClass().getName() + " "
                            + msg.callback + " what=" + msg.what);
                }
    
                msg.recycleUnchecked();
            }
        }
        
    public static @Nullable Looper myLooper() {
            return sThreadLocal.get();
        }
        
    private static void prepare(boolean quitAllowed) {
            if (sThreadLocal.get() != null) {
                throw new RuntimeException("Only one Looper may be created per thread");
            }
            sThreadLocal.set(new Looper(quitAllowed));
        }

这里先帖一下ActivityThread的main方法中有关Looper的片段

    public static void main(String[] args) {
        ....
    
        Looper.prepareMainLooper();
    
        ActivityThread thread = new ActivityThread();
        thread.attach(false);
    
        if (sMainThreadHandler == null) {
            sMainThreadHandler = thread.getHandler();
        }
    
        if (false) {
            Looper.myLooper().setMessageLogging(new
                    LogPrinter(Log.DEBUG, "ActivityThread"));
        }
    
        // End of event ActivityThreadMain.
        Trace.traceEnd(Trace.TRACE_TAG_ACTIVITY_MANAGER);
        Looper.loop();
        
        ....
        
        }

Looper这个类比较简单,主要就是着三个方法,
prepare()方法初始化Looper,并将Looper放到ThreadLocal保存起来,prepare()方法只能调用一次,执行业务代码,最后执行loop()进入循环。
在ActivityThread的main方法中也是这样的。

这个ThreadLocal很关键,不太明白可以查一下

主要看loop方法都做了啥?

  • 首先从myLooper()方法得到ThreadLocal中存储的Looper实例,这个Looper的实例就是ActivityThread的main函数中初始化的。

  • 在通过looper得到MessageQueue,这个MessageQueue是在Looper的构造函数中初始化的,MessageQueue暂时认为它就是一个数组,里面有很多Message,
    还有一个next()方法返回下一个Message,所以就一这样理解了,for 循环就是不停的在区数组中的下一个元素

  • 如果消息部位null,就会调用msg.target.dispatchMessage(msg); 这个target就是你用你发送消息的handler,最后消息会调用handler.handleMessage()

以上是假设handler在Ui线程创建的,如果Handler在子线程创建,消息不会发到UI线程的。至于为什么就必须看Handler的源码了

Handler

要明白上一个问题就要看一下Handler的构造函数了

    public Handler() {
        this(null, false);
    }
    
    public Handler(Callback callback) {
            this(callback, false);
        }
        
    public Handler(Looper looper) {
            this(looper, null, false);
        }
    public Handler(Looper looper, Callback callback) {
            this(looper, callback, false);
        }
    public Handler(boolean async) {
            this(null, async);
        }
    public Handler(Callback callback, boolean async) {
            if (FIND_POTENTIAL_LEAKS) {
                final Class<? extends Handler> klass = getClass();
                if ((klass.isAnonymousClass() || klass.isMemberClass() || klass.isLocalClass()) &&
                        (klass.getModifiers() & Modifier.STATIC) == 0) {
                    Log.w(TAG, "The following Handler class should be static or leaks might occur: " +
                        klass.getCanonicalName());
                }
            }
    
            mLooper = Looper.myLooper();
            if (mLooper == null) {
                throw new RuntimeException(
                    "Can't create handler inside thread that has not called Looper.prepare()");
            }
            mQueue = mLooper.mQueue;
            mCallback = callback;
            mAsynchronous = async;
        }
    public Handler(Looper looper, Callback callback, boolean async) {
            mLooper = looper;
            mQueue = looper.mQueue;
            mCallback = callback;
            mAsynchronous = async;
        }

    

可以看出构造函数有两类,一类是含Looper的,一类是不含Looper的,如果不含Looper最终都会调用Handler(Callback callback, boolean async)
这里给Looper和MessageQueue赋值,Looper的赋值调用Looper.myLooper()。如果返回是null的话,只能是在非UI线程中初始化Handler,且之前还没有
调用Looper的prepare()方法,这时,程序一般会crash,但是7.0中不会,这个我也不知道,断点调试发现,在线程中初始化Handler,初始化之前调用
Looper.myLooper()为null,但是初始化之后有值了,但是和UI线程的是两个不同的实例。

如果含Looper会将这个Looper赋给Handler的Looper,MessageQueue也从这个Looper中得到。

所以可以看出Handler和Looper是绑定的,Handler跟Activity或者线程是没有关系的,
Handler发送的消息最终会发给初始化Handler时的Looper的实例的loop(),也就是Handler的mLooper变量所指向的Looper

在看handler的发送消息,直接看enqueueMessage()这个方法,因为最终都会调用这个方法

private boolean enqueueMessage(MessageQueue queue, Message msg, long uptimeMillis) {
        msg.target = this;
        if (mAsynchronous) {
            msg.setAsynchronous(true);
        }
        return queue.enqueueMessage(msg, uptimeMillis);
    }

这个方法其实就是调用Message的enqueueMessage(msg, uptimeMillis)方法

MessageQueue

这个类的代码可以说是他们四个最复杂的了,大概有900行,我们了解一下主要就可以了,太细节的我也无法理解
重要的两个方法enqueueMessage(Message msg, long when) 和 next()这两个方法需要理解

enqueueMessage
    boolean enqueueMessage(Message msg, long when) {
        if (msg.target == null) {
            throw new IllegalArgumentException("Message must have a target.");
        }
        if (msg.isInUse()) {
            throw new IllegalStateException(msg + " This message is already in use.");
        }

        synchronized (this) {
            if (mQuitting) {
                IllegalStateException e = new IllegalStateException(
                        msg.target + " sending message to a Handler on a dead thread");
                Log.w(TAG, e.getMessage(), e);
                msg.recycle();
                return false;
            }

            msg.markInUse();
            msg.when = when;
            Message p = mMessages;
            boolean needWake;
            if (p == null || when == 0 || when < p.when) {
                // New head, wake up the event queue if blocked.
                msg.next = p;
                mMessages = msg;
                needWake = mBlocked;
            } else {
                // Inserted within the middle of the queue.  Usually we don't have to wake
                // up the event queue unless there is a barrier at the head of the queue
                // and the message is the earliest asynchronous message in the queue.
                needWake = mBlocked && p.target == null && msg.isAsynchronous();
                Message prev;
                for (;;) {
                    prev = p;
                    p = p.next;
                    if (p == null || when < p.when) {
                        break;
                    }
                    if (needWake && p.isAsynchronous()) {
                        needWake = false;
                    }
                }
                msg.next = p; // invariant: p == prev.next
                prev.next = msg;
            }

            // We can assume mPtr != 0 because mQuitting is false.
            if (needWake) {
                nativeWake(mPtr);
            }
        }
        return true;
    }

这个方法的主要功能是将消息放到队列中。忽略掉异常处理和进程处理后本质就是一个普通的入队列算法,分析一下入队怎么实现的?

   Message p = mMessages

开始,mMessages是MessageQueue的成员变量,找一个临时变量p指向mMessages。

1.如果p=null;即队列中的以一个元素,直接将传入的msg赋值给mMessages,因为第一个嘛,所以msg的next肯定是null

2.如果mMessages不为null,即对列中有元素,假如我们认为已经有3个元素。按照队列先进先出的原则,这个三个元素结构应该是
《Android的Handler消息处理机制》 Snip20171101_1.png

新msg肯定是要赋值给最后边的Msg的next的。for循环是找到队列中的元素的next为空的那个,其实就是队列的最后一个,然后break跳出循环

msg.next = p 这个p其实就是null,不是bull的话不可能走到这行代码,prev就是next为null,队列的最后一个元素。
prev.next = msg 将新元素放到队列尾部
3.入队完成

next()
Message next() {
       // Return here if the message loop has already quit and been disposed.
       // This can happen if the application tries to restart a looper after quit
       // which is not supported.
       final long ptr = mPtr;
       if (ptr == 0) {
           return null;
       }

       int pendingIdleHandlerCount = -1; // -1 only during first iteration
       int nextPollTimeoutMillis = 0;
       for (;;) {
           if (nextPollTimeoutMillis != 0) {
               Binder.flushPendingCommands();
           }

           nativePollOnce(ptr, nextPollTimeoutMillis);

           synchronized (this) {
               // Try to retrieve the next message.  Return if found.
               final long now = SystemClock.uptimeMillis();
               Message prevMsg = null;
               Message msg = mMessages;
               if (msg != null && msg.target == null) {
                   // Stalled by a barrier.  Find the next asynchronous message in the queue.
                   do {
                       prevMsg = msg;
                       msg = msg.next;
                   } while (msg != null && !msg.isAsynchronous());
               }
               if (msg != null) {
                   if (now < msg.when) {
                       // Next message is not ready.  Set a timeout to wake up when it is ready.
                       nextPollTimeoutMillis = (int) Math.min(msg.when - now, Integer.MAX_VALUE);
                   } else {
                       // Got a message.
                       mBlocked = false;
                       if (prevMsg != null) {
                           prevMsg.next = msg.next;
                       } else {
                           mMessages = msg.next;
                       }
                       msg.next = null;
                       if (DEBUG) Log.v(TAG, "Returning message: " + msg);
                       msg.markInUse();
                       return msg;
                   }
               } else {
                   // No more messages.
                   nextPollTimeoutMillis = -1;
               }

               // Process the quit message now that all pending messages have been handled.
               if (mQuitting) {
                   dispose();
                   return null;
               }

               // If first time idle, then get the number of idlers to run.
               // Idle handles only run if the queue is empty or if the first message
               // in the queue (possibly a barrier) is due to be handled in the future.
               if (pendingIdleHandlerCount < 0
                       && (mMessages == null || now < mMessages.when)) {
                   pendingIdleHandlerCount = mIdleHandlers.size();
               }
               if (pendingIdleHandlerCount <= 0) {
                   // No idle handlers to run.  Loop and wait some more.
                   mBlocked = true;
                   continue;
               }

               if (mPendingIdleHandlers == null) {
                   mPendingIdleHandlers = new IdleHandler[Math.max(pendingIdleHandlerCount, 4)];
               }
               mPendingIdleHandlers = mIdleHandlers.toArray(mPendingIdleHandlers);
           }

           // Run the idle handlers.
           // We only ever reach this code block during the first iteration.
           for (int i = 0; i < pendingIdleHandlerCount; i++) {
               final IdleHandler idler = mPendingIdleHandlers[i];
               mPendingIdleHandlers[i] = null; // release the reference to the handler

               boolean keep = false;
               try {
                   keep = idler.queueIdle();
               } catch (Throwable t) {
                   Log.wtf(TAG, "IdleHandler threw exception", t);
               }

               if (!keep) {
                   synchronized (this) {
                       mIdleHandlers.remove(idler);
                   }
               }
           }

           // Reset the idle handler count to 0 so we do not run them again.
           pendingIdleHandlerCount = 0;

           // While calling an idle handler, a new message could have been delivered
           // so go back and look again for a pending message without waiting.
           nextPollTimeoutMillis = 0;
       }
   }

next的代码比较复杂,假如我们不考虑异常,并发和多进程的的因素,主要代码就在for循环中的synchronized当中。

1.如果msg不为null,最终会执行return返回Msg终止循环,这个返回就会让Looper.loop()中的queue.next()得到下一个消息,从而将消息交给Handler处理
2.如果为空,就不会return 就会一直循环下去
这里就有一个问题了,即使没有消息,我们没有看到wait()语句,意味着for循环在高速的运转着,这样就会一直占用着cup。而事实上,我们把手机放那cup的使用率一般都在0%
仔细看代码之后会发现,MessageQueue 有一个mBlocked 变量,
3.这个变量有一段注释

   Indicates whether next() is blocked waiting in pollOnce() with a non-zero timeout.

大概意思就是说这个变量控制next() 是否被block,我猜具体的实现挂起应该是在

private native void nativePollOnce(long ptr, int timeoutMillis); 

这是一个native方法中了。

Message

Message可以说简单也可以说很复杂,因为涉及到进程通信,线程之间的并发,消息复用的问题就很复杂了。但是我们可以先忽略掉这些,一下子就非常简单了,
这样我们完全可以把Message当作一个Bean来看待了。

根据以上的假设来总结一下一个Message的生命周期

现在再来理解一下Android的消息处理机制,我们来举个例子来追踪一下一个Message的生命周期。

   场景是这样的:
   假如现在android不再发消息,消息队列中也是空的,我们在一个线程中,利用handler发送一个消息,这个消息会怎么处理呢?

Handler肯定是在UI线程中创建的,原因在Handler的部分已经说过了。
1.创建一个消息Message

2.Handler调用send发送消息,最终会调用enqueueMessage(msg),将消息交给了MessageQueue

3.在MessageQueue进行入队操作,消息被MessageQueue存着。

4.Looper在main函数的时候启动,一直在循环着,假设loop()方法刚好执行到了

Message msg = queue.next();

那么刚才入队的msg又要被拿出来了,这是loop()方法就有了msg,接着找到msg的target,调用dispatchMessage

5.handler的dispatchMessage方法将消息交给了handleMessage方法

6.handleMessage 处理Message后消息就被销毁了 END

其实不存在这样一个Message不存在这样一个生命周期的,因为android还考虑到Message的复用,进程通信等,这只是一个理想环境下的生命周期。

简化版的消息处理实现

    原文作者:shawn_yy
    原文地址: https://www.jianshu.com/p/9300832dd6ad
    本文转自网络文章,转载此文章仅为分享知识,如有侵权,请联系博主进行删除。
点赞