A very hard mathematic problem
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 964 Accepted Submission(s): 279
Problem Description Haoren is very good at solving mathematic problems. Today he is working a problem like this:
Find three positive integers X, Y and Z (X < Y, Z > 1) that holds
X^Z + Y^Z + XYZ = K
where K is another given integer.
Here the operator “^” means power, e.g., 2^3 = 2 * 2 * 2.
Finding a solution is quite easy to Haoren. Now he wants to challenge more: What’s the total number of different solutions?
Surprisingly, he is unable to solve this one. It seems that it’s really a very hard mathematic problem.
Now, it’s your turn.
Input There are multiple test cases.
For each case, there is only one integer K (0 < K < 2^31) in a line.
K = 0 implies the end of input.
Output Output the total number of solutions in a line for each test case.
Sample Input 9 53 6 0
Sample Output 1 1 0
Hint 9 = 1^2 + 2^2 + 1 * 2 * 2 53 = 2^3 + 3^3 + 2 * 3 * 3
Source
2012 ACM/ICPC Asia Regional Tianjin Online
Recommend liuyiding 暴力枚举z就可以了。z肯定比较小的。 当z等于2时就是平方和公式。
#include<stdio.h> #include<math.h> #include<string.h> #include<algorithm> #include<iostream> using namespace std; long long pow(long long a,int n) { long long ret=1; long long temp=a; while(n) { if(n&1)ret*=temp; temp*=temp; n>>=1; } return ret; } int main() { long long K; long long ans; while(scanf("%I64d",&K),K) { ans=0; long long temp=(long long)sqrt(K); if(temp*temp==K)ans+=(temp-1)/2; for(int z=3;z<31;z++) { for(long long x=1;;x++) { long long u=pow(x,z); if(u*2>=K)break; for(long long y=x+1;;y++) { long long v=pow(y,z); if(u+v+x*y*z>K)break; if(u+v+x*y*z==K)ans++; } } } printf("%I64d\n",ans); } return 0; }