library(org.Hs.eg.db)
library(clusterProfiler)
library(ggplot2)
setwd("C:/Users/lenovo/Desktop")
a=read.table("testgeneid.txt",header = FALSE) # 读取输入文件gene symbol
gene=as.character(a[,1]) # 转换为字符
geneid= bitr(gene, fromType="SYMBOL", toType="ENTREZID", OrgDb="org.Hs.eg.db") # 将symbol转换为entrzid
ego <- enrichGO(gene=gene,OrgDb='org.Hs.eg.db',keyType='SYMBOL',ont= "BP",pAdjustMethod="BH",pvalueCutoff = 0.01,qvalueCutoff = 0.05)
dim(ego)
[1] 369 9
ego2 <- simplify(ego,cutoff=0.7,by="p.adjust",select_fun=min) #去除冗余,可以调整cutoff值。
> dim(ego2)
[1] 115 9
barplot(ego, showCategory=20,title="EnrichmentGO")
barplot(ego2, showCategory=20,title="EnrichmentGO")
#KEGG富集分析
kk <- enrichKEGG(geneid$ENTREZID, organism="hsa",keyType = "kegg",pvalueCutoff=0.01,pAdjustMethod="BH",qvalueCutoff=0.05)
barplot(kk, showCategory=20,title="Enrichment KEGG")
#DO富集分析
do <- enrichDO(gene = geneid$ENTREZID,ont = "DO",pvalueCutoff = 0.01,pAdjustMethod = "BH",minGSSize = 5,maxGSSize = 500,qvalueCutoff = 0.05,readable = FALSE)
barplot(do, showCategory=20,title="Enrichment DO")
#Ractome
x <- enrichPathway(gene=geneid$ENTREZID,organism = "human",pvalueCutoff=0.05,pAdjustMethod = "BH",qvalueCutoff = 0.05, readable=FALSE)