JAVA多线程(三) 线程池和锁的深度化

 github演示代码地址:https://github.com/showkawa/springBoot_2017/tree/master/spb-demo/spb-brian-query-service/src/main/java/com/kawa/thread

1.线程池

 1.1 线程池是什么

Java中的线程池是运用场景最多的并发框架,几乎所有需要异步或并发执行任务的程序都可以使用线程池。在开发过程中,合理地使用线程池能够带来3个好处。
第一:降低资源消耗。通过重复利用已创建的线程降低线程创建和销毁造成的消耗。
第二:提高响应速度。当任务到达时,任务可以不需要等到线程创建就能立即执行。
第三:提高线程的可管理性。线程是稀缺资源,如果无限制地创建,不仅会消耗系统资源,还会降低系统的稳定性,使用线程池可以进行统一分配、调优和监控。

1.2 线程池作用

线程池是为突然大量爆发的线程设计的,通过有限的几个固定线程为大量的操作服务,减少了创建和销毁线程所需的时间,从而提高效率。
如果一个线程的时间非常长,就没必要用线程池了(不是不能作长时间操作,而是不宜),况且我们还不能控制线程池中线程的开始、挂起、和中止。

1.3 线程池的分类

JDK1.5之后加入了java.util.concurrent包,java.util.concurrent包的加入给予开发人员开发并发程序以及解决并发问题很大的帮助。这篇文章主要介绍下并发包下的Executor接口,Executor接口虽然作为一个非常旧的接口(JDK1.5 2004年发布),但是很多程序员对于其中的一些原理还是不熟悉,因此写这篇文章来介绍下Executor接口,同时巩固下自己的知识。

Executor框架的最顶层实现是ThreadPoolExecutor类,Executors工厂类中提供的newScheduledThreadPool、newFixedThreadPool、newCachedThreadPool方法其实也只是ThreadPoolExecutor的构造函数参数不同而已。通过传入不同的参数,就可以构造出适用于不同应用场景下的线程池,那么它的底层原理是怎样实现的呢,这篇就来介绍下ThreadPoolExecutor线程池的运行过程。

corePoolSize: 核心池的大小。 当有任务来之后,就会创建一个线程去执行任务,当线程池中的线程数目达到corePoolSize后,就会把到达的任务放到缓存队列当中
maximumPoolSize: 线程池最大线程数,它表示在线程池中最多能创建多少个线程;
keepAliveTime: 表示线程没有任务执行时最多保持多久时间会终止。
unit: 参数keepAliveTime的时间单位,有7种取值

Java通过Executors(jdk1.5并发包)提供四种线程池,分别为:
newCachedThreadPool创建一个可缓存线程池,如果线程池长度超过处理需要,可灵活回收空闲线程,若无可回收,则新建线程。
案例演示:

newFixedThreadPool 创建一个定长线程池,可控制线程最大并发数,超出的线程会在队列中等待。
newScheduledThreadPool 创建一个定长线程池,支持定时及周期性任务执行。
newSingleThreadExecutor 创建一个单线程化的线程池,它只会用唯一的工作线程来执行任务,保证所有任务按照指定顺序(FIFO, LIFO, 优先级)执行

 

演示代码: https://github.com/showkawa/springBoot_2017/tree/master/spb-demo/spb-brian-query-service/src/main/java/com/kawa/thread/threadpool

1.4 线程池的原理

提交一个任务到线程池中,线程池的处理流程如下:
1、判断线程池里的核心线程是否都在执行任务,如果不是(核心线程空闲或者还有核心线程没有被创建)则创建一个新的工作线程来执行任务。
如果核心线程都在执行任务,则进入下个流程。
2、线程池判断工作队列是否已满,如果工作队列没有满,则将新提交的任务存储在这个工作队列里。如果工作队列满了,则进入下个流程。 3、判断线程池里的线程是否都处于工作状态,如果没有,则创建一个新的工作线程来执行任务。如果已经满了,则交给饱和策略来处理这个任务。

 

 《JAVA多线程(三) 线程池和锁的深度化》

1.5 线程池的合理配置

要想合理的配置线程池,就必须首先分析任务特性,可以从以下几个角度来进行分析:
任务的性质:CPU密集型任务,IO密集型任务和混合型任务。
任务的优先级:高,中和低。
任务的执行时间:长,中和短。
任务的依赖性:是否依赖其他系统资源,如数据库连接。
任务性质不同的任务可以用不同规模的线程池分开处理。CPU密集型任务配置尽可能少的线程数量,如配置Ncpu
+1个线程的线程池。
IO密集型任务则由于需要等待IO操作,线程并不是一直在执行任务,则配置尽可能多的线程,如2*Ncpu。
混合型的任务,如果可以拆分,则将其拆分成一个CPU密集型任务和一个IO密集型任务,只要这两个任务执行的时间相差不是太大,
那么分解后执行的吞吐率要高于串行执行的吞吐率,如果这两个任务执行时间相差太大,则没必要进行分解。
我们可以通过Runtime.getRuntime().availableProcessors()方法获得当前设备的CPU个数。 优先级不同的任务可以使用优先级队列PriorityBlockingQueue来处理。它可以让优先级高的任务先得到执行,需要注意的是如果一直有优先级高的任务提交到队列里,
那么优先级低的任务可能永远不能执行。 执行时间不同的任务可以交给不同规模的线程池来处理,或者也可以使用优先级队列,让执行时间短的任务先执行。 依赖数据库连接池的任务,因为线程提交SQL后需要等待数据库返回结果,如果等待的时间越长CPU空闲时间就越长,那么线程数应该设置越大,这样才能更好的利用CPU。 CPU密集型时,任务可以少配置线程数,大概和机器的cpu核数相当,这样可以使得每个线程都在执行任务 IO密集型时,大部分线程都阻塞,故需要多配置线程数,
2*cpu核数 操作系统之名称解释: 某些进程花费了绝大多数时间在计算上,而其他则在等待I/O上花费了大多是时间, 前者称为计算密集型(CPU密集型)computer-bound,后者称为I/O密集型,I/O-bound。

 

2.锁的深度化

2.1 悲观锁,乐观锁

悲观锁:悲观锁悲观的认为每一次操作都会造成更新丢失问题,在每次查询时加上排他锁。
每次去拿数据的时候都认为别人会修改,所以每次在拿数据的时候都会上锁,这样别人想拿这个数据就会block直到它拿到锁。
传统的关系型数据库里边就用到了很多这种锁机制,比如行锁,表锁等,读锁,写锁等,都是在做操作之前先上锁。 Select
* from xxx for update; 乐观锁:乐观锁会乐观的认为每次查询都不会造成更新丢失,利用版本字段控制

2.2 重入锁

锁作为并发共享数据,保证一致性的工具,在JAVA平台有多种实现(如 synchronized 和 ReentrantLock等等 ) 。这些已经写好提供的锁为我们开发提供了便利。
重入锁,也叫做递归锁,指的是同一线程 外层函数获得锁之后 ,内层递归函数仍然有获取该锁的代码,但不受影响。
在JAVA环境下 ReentrantLock 和synchronized 都是 可重入锁

 演示代码:https://github.com/showkawa/springBoot_2017/blob/master/spb-demo/spb-brian-query-service/src/main/java/com/kawa/thread/lock/ReentrantLockThread.java

2.3 读写锁

相比Java中的锁(Locks in Java)里Lock实现,读写锁更复杂一些。假设你的程序中涉及到对一些共享资源的读和写操作,且写操作没有读操作那么频繁。
在没有写操作的时候,两个线程同时读一个资源没有任何问题,所以应该允许多个线程能在同时读取共享资源。
但是如果有一个线程想去写这些共享资源,就不应该再有其它线程对该资源进行读或写(也就是说:读-读能共存,读-写不能共存,写-写不能共存)。
这就需要一个读/写锁来解决这个问题。Java5在java.util.concurrent包中已经包含了读写锁。

 演示代码:https://github.com/showkawa/springBoot_2017/blob/master/spb-demo/spb-brian-query-service/src/main/java/com/kawa/thread/lock/WriteReadLockThread.java

2.4 CAS无锁机制

 

(1)与锁相比,使用比较交换(下文简称CAS)会使程序看起来更加复杂一些。但由于其非阻塞性,它对死锁问题天生免疫,并且,线程间的相互影响也远远比基于锁的方式要小。
更为重要的是,使用无锁的方式完全没有锁竞争带来的系统开销,也没有线程间频繁调度带来的开销,因此,它要比基于锁的方式拥有更优越的性能。 (
2)无锁的好处: 第一,在高并发的情况下,它比有锁的程序拥有更好的性能; 第二,它天生就是死锁免疫的。 就凭借这两个优势,就值得我们冒险尝试使用无锁的并发。 (3)CAS算法的过程是这样:它包含三个参数CAS(V,E,N): V表示要更新的变量,E表示预期值,N表示新值。仅当V值等于E值时,才会将V的值设为N,如果V值和E值不同,
则说明已经有其他线程做了更新,则当前线程什么都不做。最后,CAS返回当前V的真实值。 (
4)CAS操作是抱着乐观的态度进行的,它总是认为自己可以成功完成操作。当多个线程同时使用CAS操作一个变量时,只有一个会胜出,并成功更新,其余均会失败。
失败的线程不会被挂起,仅是被告知失败,并且允许再次尝试,当然也允许失败的线程放弃操作。基于这样的原理,CAS操作即使没有锁,也可以发现其他线程对当前线程的干扰,
并进行恰当的处理。

 

2.5 自旋锁

自旋锁是采用让当前线程不停地的在循环体内执行实现的,当循环的条件被其他线程改变时 才能进入临界区。

 

public class Test implements Runnable {
    static int sum;
    private SpinLock lock;

    public Test(SpinLock lock) {
        this.lock = lock;
    }

    /**
     * @param args
     * @throws InterruptedException
     */
    public static void main(String[] args) throws InterruptedException {
        SpinLock lock = new SpinLock();
        for (int i = 0; i < 100; i++) {
            Test test = new Test(lock);
            Thread t = new Thread(test);
            t.start();
        }

        Thread.currentThread().sleep(1000);
        System.out.println(sum);
    }

    @Override
    public void run() {
        this.lock.lock();

           this.lock.lock();

           sum++;

           this.lock.unlock();

           this.lock.unlock();

     }

}

当一个线程 调用这个不可重入的自旋锁去加锁的时候没问题,当再次调用lock()的时候,因为自旋锁的持有引用已经不为空了,该线程对象会误认为是别人的线程持有了自旋锁

使用了CAS原子操作,lock函数将owner设置为当前线程,并且预测原来的值为空。unlock函数将owner设置为null,并且预测值为当前线程。

当有第二个线程调用lock操作时由于owner值不为空,导致循环一直被执行,直至第一个线程调用unlock函数将owner设置为null,第二个线程才能进入临界区。

由于自旋锁只是将当前线程不停地执行循环体,不进行线程状态的改变,所以响应速度更快。但当线程数不停增加时,性能下降明显,因为每个线程都需要执行,占用CPU时间。如果线程竞争不激烈,并且保持锁的时间段。适合使用自旋锁。

    原文作者:Brian_Huang
    原文地址: https://www.cnblogs.com/hlkawa/p/9872136.html
    本文转自网络文章,转载此文章仅为分享知识,如有侵权,请联系博主进行删除。
点赞