HashMap 源码分析(删除+总结)JDK1.8

文章来源:

1 https://segmentfault.com/a/1190000012926722#articleHeader7
2 https://www.zhihu.com/question/20733617
3 https://tech.meituan.com/java-hashmap.html
4 https://www.zhihu.com/question/57526436/answer/153262129
5 https://segmentfault.com/q/1010000000630486

一 删除

如果大家坚持看完了前面的内容,到本节就可以轻松一下。当然,前提是不去看红黑树的删除操作。不过红黑树并非本文讲解重点,本节中也不会介绍红黑树相关内容,所以大家不用担心。

HashMap 的删除操作并不复杂,仅需三个步骤即可完成。第一步是定位桶位置,第二步遍历链表并找到键值相等的节点,第三步删除节点。相关源码如下:

public V remove(Object key) {
    Node<K,V> e;
    return (e = removeNode(hash(key), key, null, false, true)) == null ?
        null : e.value;
}

final Node<K,V> removeNode(int hash, Object key, Object value,
                           boolean matchValue, boolean movable) {
    Node<K,V>[] tab; Node<K,V> p; int n, index;
    if ((tab = table) != null && (n = tab.length) > 0 &&
        // 1. 定位桶位置
        (p = tab[index = (n - 1) & hash]) != null) {
        Node<K,V> node = null, e; K k; V v;
        // 如果键的值与链表第一个节点相等,则将 node 指向该节点
        if (p.hash == hash &&
            ((k = p.key) == key || (key != null && key.equals(k))))
            node = p;
        else if ((e = p.next) != null) {  
            // 如果是 TreeNode 类型,调用红黑树的查找逻辑定位待删除节点
            if (p instanceof TreeNode)
                node = ((TreeNode<K,V>)p).getTreeNode(hash, key);
            else {
                // 2. 遍历链表,找到待删除节点
                do {
                    if (e.hash == hash &&
                        ((k = e.key) == key ||
                         (key != null && key.equals(k)))) {
                        node = e;
                        break;
                    }
                    p = e;
                } while ((e = e.next) != null);
            }
        }

        // 3. 删除节点,并修复链表或红黑树
        if (node != null && (!matchValue || (v = node.value) == value ||
                             (value != null && value.equals(v)))) {
            if (node instanceof TreeNode)
                ((TreeNode<K,V>)node).removeTreeNode(this, tab, movable);
            else if (node == p)
                tab[index] = node.next;
            else
                p.next = node.next;
            ++modCount;
            --size;
            afterNodeRemoval(node);
            return node;
        }
    }
    return null;
}

删除操作本身并不复杂,有了前面的基础,理解起来也就不难了,这里就不多说了。

二 其他细节

前面的内容分析了 HashMap 的常用操作及相关的源码,本节内容再补充一点其他方面的东西。

被 transient 所修饰 table 变量

如果大家细心阅读 HashMap 的源码,会发现桶数组 table 被申明为 transient。transient 表示易变的意思,在 Java 中,被该关键字修饰的变量不会被默认的序列化机制序列化。我们再回到源码中,考虑一个问题:桶数组 table 是 HashMap 底层重要的数据结构,不序列化的话,别人还怎么还原呢?

这里简单说明一下吧,HashMap 并没有使用默认的序列化机制,而是通过实现readObject/writeObject两个方法自定义了序列化的内容。这样做是有原因的,试问一句,HashMap 中存储的内容是什么?不用说,大家也知道是键值对。所以只要我们把键值对序列化了,我们就可以根据键值对数据重建 HashMap。有的朋友可能会想,序列化 table 不是可以一步到位,后面直接还原不就行了吗?这样一想,倒也是合理。但序列化 talbe 存在着两个问题:

  1. table 多数情况下是无法被存满的,序列化未使用的部分,浪费空间
  2. 同一个键值对在不同 JVM 下,所处的桶位置可能是不同的,在不同的 JVM 下反序列化 table 可能会发生错误。

以上两个问题中,第一个问题比较好理解,第二个问题解释一下。HashMap 的get/put/remove等方法第一步就是根据 hash 找到键所在的桶位置,但如果键没有覆写 hashCode 方法,计算 hash 时最终调用 Object 中的 hashCode 方法。但 Object 中的 hashCode 方法是 native 型的,不同的 JVM 下,可能会有不同的实现,产生的 hash 可能也是不一样的。也就是说同一个键在不同平台下可能会产生不同的 hash,此时再对在同一个 table 继续操作,就会出现问题。

综上所述,大家应该能明白 HashMap 不序列化 table 的原因了。

三 总结

本章对 HashMap 常见操作相关代码进行了详细分析,并在最后补充了一些其他细节。在本章中,插入操作一节的内容说的最多,主要是因为插入操作涉及的点特别多,一环扣一环。包含但不限于“table 初始化、扩容、树化”等,总体来说,插入操作分析起来难度还是很大的。好在,最后分析完了。

本章篇幅虽比较大,但仍未把 HashMap 所有的点都分析到。比如,红黑树的增删查等操作。当然,我个人看来,以上的分析已经够了。毕竟大家是类库的使用者而不是设计者,没必要去弄懂每个细节。所以如果某些细节实在看不懂的话就跳过吧,对我们开发来说,知道 HashMap 大致原理即可。

好了,本章到此结束。

    原文作者:可乐丶
    原文地址: https://blog.csdn.net/u013412772/article/details/80752149
    本文转自网络文章,转载此文章仅为分享知识,如有侵权,请联系博主进行删除。
点赞