参考
http://docs.oracle.com/javase/tutorial/essential/concurrency/highlevel.html
http://ifeve.com/high-level-concurrency-objects-full/
Lock Object
Executors
current包定义了三个executor接口
Executor, a simple interface that supports launching new tasks.
ExecutorService, a subinterface of Executor, which adds features that help manage the lifecycle, both of the individual tasks and of the executor itself.
ScheduledExecutorService, a subinterface of ExecutorService, supports future and/or periodic execution of tasks.
Executor接口
Executor只有一个execute方法,可以用
e.execute(r);
代替
(new Thread(r)).start();
ExecutorService
ExecutorService增加了submit和stop等方法
ScheduledExecutorService
ScheduledExecutorService增加了schedule方法
Thread Pools
创建线程池Executors里提供了一些列方法
newFixedThreadPool
newCachedThreadPool
newSingleThreadExecutor
还可以用newSingleThreadExecutor,ScheduledThreadPoolExecutor
Fork/Join
Fork/Join框架的核心是ForkJoinPool,它继承了AbstractExecutorService类,实现了工作窃取算法,执行ForkJoinTask任务
pseudocode:
if (my portion of the work is small enough) do the work directly else split my work into two pieces invoke the two pieces and wait for the results
package java8.lambdaexpressions; import java.awt.image.BufferedImage; import java.io.File; import java.util.concurrent.ForkJoinPool; import java.util.concurrent.RecursiveAction; import javax.imageio.ImageIO; /** * ForkBlur implements a simple horizontal image blur. It averages pixels in the * source array and writes them to a destination array. The sThreshold value * determines whether the blurring will be performed directly or split into two * tasks. * * This is not the recommended way to blur images; it is only intended to * illustrate the use of the Fork/Join framework. */ public class ForkBlur extends RecursiveAction { private int[] mSource; private int mStart; private int mLength; private int[] mDestination; private int mBlurWidth = 15; // Processing window size, should be odd. public ForkBlur(int[] src, int start, int length, int[] dst) { mSource = src; mStart = start; mLength = length; mDestination = dst; } // Average pixels from source, write results into destination. protected void computeDirectly() { int sidePixels = (mBlurWidth - 1) / 2; for (int index = mStart; index < mStart + mLength; index++) { // Calculate average. float rt = 0, gt = 0, bt = 0; for (int mi = -sidePixels; mi <= sidePixels; mi++) { int mindex = Math.min(Math.max(mi + index, 0), mSource.length - 1); int pixel = mSource[mindex]; rt += (float) ((pixel & 0x00ff0000) >> 16) / mBlurWidth; gt += (float) ((pixel & 0x0000ff00) >> 8) / mBlurWidth; bt += (float) ((pixel & 0x000000ff) >> 0) / mBlurWidth; } // Re-assemble destination pixel. int dpixel = (0xff000000) | (((int) rt) << 16) | (((int) gt) << 8) | (((int) bt) << 0); mDestination[index] = dpixel; } } protected static int sThreshold = 10000; @Override protected void compute() { if (mLength < sThreshold) { computeDirectly(); return; } int split = mLength / 2; invokeAll(new ForkBlur(mSource, mStart, split, mDestination), new ForkBlur(mSource, mStart + split, mLength - split, mDestination)); } // Plumbing follows. public static void main(String[] args) throws Exception { String srcName = "red-tulips.jpg"; File srcFile = new File(srcName); BufferedImage image = ImageIO.read(srcFile); System.out.println("Source image: " + srcName); BufferedImage blurredImage = blur(image); String dstName = "blurred-tulips.jpg"; File dstFile = new File(dstName); ImageIO.write(blurredImage, "jpg", dstFile); System.out.println("Output image: " + dstName); } public static BufferedImage blur(BufferedImage srcImage) { int w = srcImage.getWidth(); int h = srcImage.getHeight(); int[] src = srcImage.getRGB(0, 0, w, h, null, 0, w); int[] dst = new int[src.length]; System.out.println("Array size is " + src.length); System.out.println("Threshold is " + sThreshold); int processors = Runtime.getRuntime().availableProcessors(); System.out.println(Integer.toString(processors) + " processor" + (processors != 1 ? "s are " : " is ") + "available"); ForkBlur fb = new ForkBlur(src, 0, src.length, dst); ForkJoinPool pool = new ForkJoinPool(); long startTime = System.currentTimeMillis(); pool.invoke(fb); long endTime = System.currentTimeMillis(); System.out.println("Image blur took " + (endTime - startTime) + " milliseconds."); BufferedImage dstImage = new BufferedImage(w, h, BufferedImage.TYPE_INT_ARGB); dstImage.setRGB(0, 0, w, h, dst, 0, w); return dstImage; } }
Concurrent Collections
BlockingQueue
ConcurrentMap
ConcurrentNavigableMap
Atomic Variables
在java.util.concurrent.atomic 包里定义了对单个变量原子操作的类,如AtomicInteger
Concurrent Random Numbers
在jdk1.7的java.util.concurrent包里提供了一个ThreadLocalRandom类,在多线程中使用随机数