Chessboard
Time Limit: 2000MS | Memory Limit: 65536K | |
Total Submissions: 10743 | Accepted: 3338 |
Description
Alice and Bob often play games on chessboard. One day, Alice draws a board with size M * N. She wants Bob to use a lot of cards with size 1 * 2 to cover the board. However, she thinks it too easy to bob, so she makes some holes on the board (as shown in the figure below). We call a grid, which doesn’t contain a hole, a normal grid. Bob has to follow the rules below: 1. Any normal grid should be covered with exactly one card. 2. One card should cover exactly 2 normal adjacent grids.
Some examples are given in the figures below: A VALID solution. An invalid solution, because the hole of red color is covered with a card. An invalid solution, because there exists a grid, which is not covered. Your task is to help Bob to decide whether or not the chessboard can be covered according to the rules above.
Input
There are 3 integers in the first line: m, n, k (0 < m, n <= 32, 0 <= K < m * n), the number of rows, column and holes. In the next k lines, there is a pair of integers (x, y) in each line, which represents a hole in the y-th row, the x-th column.
Output
If the board can be covered, output “YES”. Otherwise, output “NO”.
Sample Input
4 3 2 2 1 3 3
Sample Output
YES
Hint
A possible solution for the sample input.
Source
POJ Monthly,charlescpp
简单的而二分图的模板题。
建图方法好像不唯一。
我是把每个空格子当成一个点。
然后对于每个格子如果可以往上、下、左、右去找可以建立的边。
然后求最大匹配,如果最大匹配数刚好等于空格子数,输出YES,否则NO。
#include<stdio.h> #include<string.h> #include<algorithm> #include<iostream> using namespace std; /* ************************************************************************** //二分图匹配(匈牙利算法的DFS实现) //初始化:g[][]两边顶点的划分情况 //建立g[i][j]表示i->j的有向边就可以了,是左边向右边的匹配 //g没有边相连则初始化为0 //uN是匹配左边的顶点数,vN是匹配右边的顶点数 //调用:res=hungary();输出最大匹配数 //优点:适用于稠密图,DFS找增广路,实现简洁易于理解 //时间复杂度:O(VE) //***************************************************************************/ //顶点编号从0开始的 const int MAXN=1610; int uN,vN;//u,v数目 int g[MAXN][MAXN]; int linker[MAXN]; bool used[MAXN]; bool dfs(int u)//从左边开始找增广路径 { int v; for(v=0;v<vN;v++)//这个顶点编号从0开始,若要从1开始需要修改 if(g[u][v]&&!used[v]) { used[v]=true; if(linker[v]==-1||dfs(linker[v])) {//找增广路,反向 linker[v]=u; return true; } } return false;//这个不要忘了,经常忘记这句 } int hungary() { int res=0; int u; memset(linker,-1,sizeof(linker)); for(u=0;u<uN;u++) { memset(used,0,sizeof(used)); if(dfs(u)) res++; } return res; } bool graph[50][50]; int num[50][50]; int main() { int n,m,k; int x,y; while(scanf("%d%d%d",&n,&m,&k)==3) { memset(g,0,sizeof(g)); memset(graph,false,sizeof(graph)); while(k--) { scanf("%d%d",&x,&y); x--; y--; graph[y][x]=true; } int tol=0; for(int i=0;i<n;i++) for(int j=0;j<m;j++) { if(graph[i][j]==false) num[i][j]=tol++; } uN=vN=tol; for(int i=0;i<n;i++) for(int j=0;j<m;j++) if(!graph[i][j]) { int u=num[i][j]; if(i>0 && !graph[i-1][j])g[u][num[i-1][j]]=1; if(j>0 && !graph[i][j-1])g[u][num[i][j-1]]=1; if(i<n-1 && !graph[i+1][j])g[u][num[i+1][j]]=1; if(j<m-1 && !graph[i][j+1])g[u][num[i][j+1]]=1; } if(hungary()==tol)printf("YES\n"); else printf("NO\n"); } return 0; }