文章目录
验证码(CAPTCHA)全称为全自动区分计算机和人类的公开图灵测试(Completely Automated Public Turing test to tell Computersand Humans Apart)。从其全称可以看出,验证码用于测试用户是真实的人类还是计算机机器人。
1.获得验证码图片
每次加载注册网页都会显示不同的验证验图像,为了了解表单需要哪些参数,我们可以复用上一章编写的parse_form()函数。
>>> import cookielib,urllib2,pprint
>>> import form
>>> REGISTER_URL = 'http://127.0.0.1:8000/places/default/user/register'
>>> cj=cookielib.CookieJar()
>>> opener=urllib2.build_opener(urllib2.HTTPCookieProcessor(cj))
>>> html=opener.open(REGISTER_URL).read()
>>> form=form.parse_form(html)
>>> pprint.pprint(form)
{'_formkey': 'a67cbc84-f291-4ecd-9c2c-93937faca2e2',
'_formname': 'register',
'_next': '/places/default/index',
'email': '',
'first_name': '',
'last_name': '',
'password': '',
'password_two': '',
'recaptcha_response_field': None}
>>>
上面recaptcha_response_field
是存储验证码的值,其值可以用Pillow
从验证码图像获取出来。先安装pip install Pillow
,其它安装Pillow的方法可以参考http://pillow.readthedocs.org/installation.html 。Pillow提价了一个便捷的Image类,其中包含了很多用于处理验证码图像的高级方法。下面的函数使用注册页的HTML作为输入参数,返回包含验证码图像的Image对象。
>>> import lxml.html
>>> from io import BytesIO
>>> from PIL import Image
>>> tree=lxml.html.fromstring(html)
>>> print tree
<Element html at 0x7f8b006ba890>
>>> img_data_all=tree.cssselect('div#recaptcha img')[0].get('src')
>>> print img_data_all

...
rkJggg==
>>> img_data=img_data_all.partition(',')[2]
>>> print img_data
iVBORw0KGgoAAAANSUhEUgAAAQAAAABgCAIAAAB9kzvfAACAtklEQVR4nO29Z5gcZ5ku3F2dc865
...
rkJggg==
>>>
>>> binary_img_data=img_data.decode('base64')
>>> file_like=BytesIO(binary_img_data)
>>> print file_like
<_io.BytesIO object at 0x7f8aff6736b0>
>>> img=Image.open(file_like)
>>> print img
<PIL.PngImagePlugin.PngImageFile image mode=RGB size=256x96 at 0x7F8AFF5FAC90>
>>>
在本例中,这是一张进行了Base64编码的PNG图像,这种格式会使用ASCII编码表示二进制数据。我们可以通过在第一个逗号处分割的方法移除该前缀。然后,使用Base64解码图像数据,回到最初的二进制格式。要想加载图像,PIL需要一个类似文件的接口,所以在传给Image类之前,我们以使用了BytesIO对这个二进制数据进行了封装。
完整代码:
# -*- coding: utf-8 -*-form.py
import urllib
import urllib2
import cookielib
from io import BytesIO
import lxml.html
from PIL import Image
REGISTER_URL = 'http://127.0.0.1:8000/places/default/user/register'
#REGISTER_URL = 'http://example.webscraping.com/user/register'
def extract_image(html):
tree = lxml.html.fromstring(html)
img_data = tree.cssselect('div#recaptcha img')[0].get('src')
# remove data:image/png;base64, header
img_data = img_data.partition(',')[-1]
#open('test_.png', 'wb').write(data.decode('base64'))
binary_img_data = img_data.decode('base64')
file_like = BytesIO(binary_img_data)
img = Image.open(file_like)
#img.save('test.png')
return img
def parse_form(html):
"""extract all input properties from the form
"""
tree = lxml.html.fromstring(html)
data = {}
for e in tree.cssselect('form input'):
if e.get('name'):
data[e.get('name')] = e.get('value')
return data
def register(first_name, last_name, email, password, captcha_fn):
cj = cookielib.CookieJar()
opener = urllib2.build_opener(urllib2.HTTPCookieProcessor(cj))
html = opener.open(REGISTER_URL).read()
form = parse_form(html)
form['first_name'] = first_name
form['last_name'] = last_name
form['email'] = email
form['password'] = form['password_two'] = password
img = extract_image(html)#
captcha = captcha_fn(img)#
form['recaptcha_response_field'] = captcha
encoded_data = urllib.urlencode(form)
request = urllib2.Request(REGISTER_URL, encoded_data)
response = opener.open(request)
success = '/user/register' not in response.geturl()
#success = '/places/default/user/register' not in response.geturl()
return success
2.光学字符识别验证码
**光学字符识别(Optical Character Recognition, OCR)**用于图像中抽取文本。本节中,我们将使用开源的Tesseract OCR引擎,该引擎最初由惠普公司开发的,目前由Google主导。Tesseract的安装说明可以从http://code.google.com/p/tesseract-ocr/wiki/ReadMe 获取。然后可以使用pip安装其Python封装版本pytesseractpip install pytesseract
。
下面我们用光学字符识别图像验证码:
>>> import pytesseract
>>> import form
>>> img=form.extract_image(html)
>>> pytesseract.image_to_string(img)
''
>>>
如果直接把验证码原始图像传给pytesseract,一般不能解析出来。这是因为Tesseract是抽取更加典型的文本,比如背景统一的书页。下面我们进行去除背景噪音,只保留文本部分。验证码文本一般都是黑色的,背景则会更加明亮,所以我们可以通过检查是否为黑色将文本分离出来,该处理过程又被称为阈值化。
>>>
>>> img.save('2captcha_1original.png')
>>> gray=img.convert('L')
>>> gray.save('2captcha_2gray.png')
>>> bw=gray.point(lambda x:0 if x<1 else 255,'1')
>>> bw.save('2captcha_3thresholded.png')
>>>
这里只有阈值小于1的像素(全黑)都会保留下来,分别得到三张图像:原始验证码图像、转换后的灰度图和阈值化处理后的黑白图像。最后我们将阈值化处理后黑白图像再进行Tesseract处理,验证码中的文字已经被成功抽取出来了。
>>> pytesseract.image_to_string(bw)
'language'
>>>
>>> import Image,pytesseract
>>> img=Image.open('2captcha_3thresholded.png')
>>> pytesseract.image_to_string(img)
'language'
>>>
我们通过示例样本测试,100张验证码能正确识别出90张。
>>> import ocr
>>> ocr.test_samples()
Accuracy: 90/100
>>>
下面是注册账号完整代码:
# -*- coding: utf-8 -*-
import csv
import string
from PIL import Image
import pytesseract
from form import register
def main():
print register('Wu1', 'Being1', 'Wu_Being001@qq.com', 'example', ocr)
def ocr(img):
# threshold the image to ignore background and keep text
gray = img.convert('L')
#gray.save('captcha_greyscale.png')
bw = gray.point(lambda x: 0 if x < 1 else 255, '1')
#bw.save('captcha_threshold.png')
word = pytesseract.image_to_string(bw)
ascii_word = ''.join(c for c in word if c in string.letters).lower()
return ascii_word
if __name__ == '__main__':
main()
我们可以进一步改善OCR性能:
- 实验不同阈值
- 腐蚀阈值文本,突出字符形状
- 调整图像大小
- 根据验证码字体训练ORC工具
- 限制结果为字典单词
3.用API处理复杂验证码
为了处理更加复杂的图像,我们将使用验证处理服务,也叫打码平台。
3.1 9kw打码平台
- 先到9kw打码平台注册一个个人账号https://www.9kw.eu/register.html
- 登录后,定位到https://www.9kw.eu/usercaptcha.html 手工处理其他用户验证码获得积分
- 创建API key https://www.9kw.eu/index.cgi?action=userapinew&source=api
3.1.1 提交验证码
提交验证码参数:
- URL: https://www.9kw.eu/index.cgi(POST)
- action:POST必须设为:‘usercaptchaupload’
- apikey:个人的API key
- file-upload-01:需要处理的图像(文件、url 或字符串)
- base64:如果输入的是Base64编码,则设为“1”
- maxtimeout:等待处理的最长时间(60~3999)
- selfsolve:如果自己处理该验证码,则设为“1”
返回值:
- 该验证码的ID
API_URL: https://www.9kw.eu/index.cgi
def send(self, img_data):
"""Send CAPTCHA for solving
"""
print 'Submitting CAPTCHA'
data = {
'action': 'usercaptchaupload',
'apikey': self.api_key,
'file-upload-01': img_data.encode('base64'),
'base64': '1',
'selfsolve': '1',
'maxtimeout': str(self.timeout)
}
encoded_data = urllib.urlencode(data)
request = urllib2.Request(API_URL, encoded_data)
response = urllib2.urlopen(request)
return response.read()
API文档地址https://www.9kw.eu/api.html#apisubmit-tab
3.1.2 请求已提交验证码结果
请求结果的参数:
- URL: https://www.9kw.eu/index.cgi(GET)
- action:GET必须设为:‘usercaptchacorrectdata’
- apikey:个人的API key
- id:要检查的验证码ID
- info:若设为“1”,没有得到结果时返回“NO DATA”(默认返回空)
返回值:
- 要处理的验证码文本或错误码
错误码:
- 0001:API key不存在
- 0002:没有找到API key
- 0003:没有找到激活的API key
… - 0031:账号被系统禁用24小时
- 0032:账号没有足够的权限
- 0033:需要升级插件
def get(self, captcha_id):
"""Get result of solved CAPTCHA
"""
data = {
'action': 'usercaptchacorrectdata',
'id': captcha_id,
'apikey': self.api_key,
'info': '1'
}
encoded_data = urllib.urlencode(data)
response = urllib2.urlopen(self.url + '?' + encoded_data)
return response.read()
3.1.2与注册功能集成
# -*- coding: utf-8 -*-
import sys
import re
import urllib2
import urllib
import time
from io import BytesIO
from PIL import Image
from form import register
def main(api_key, filename):
captcha = CaptchaAPI(api_key)
print register('wu101', 'being101', 'wu_being101@qq.com', 'password.com', captcha.solve)
class CaptchaError(Exception):
pass
class CaptchaAPI:
def __init__(self, api_key, timeout=60):
self.api_key = api_key
self.timeout = timeout
self.url = 'https://www.9kw.eu/index.cgi'
def solve(self, img):
"""Submit CAPTCHA and return result when ready
"""
img_buffer = BytesIO()
img.save(img_buffer, format="PNG")
img_data = img_buffer.getvalue()
captcha_id = self.send(img_data)
start_time = time.time()
while time.time() < start_time + self.timeout:
try:
text = self.get(captcha_id)
except CaptchaError:
pass # CAPTCHA still not ready
else:
if text != 'NO DATA':
if text == 'ERROR NO USER':
raise CaptchaError('Error: no user available to solve CAPTCHA')
else:
print 'CAPTCHA solved!'
return text
print 'Waiting for CAPTCHA ...'
raise CaptchaError('Error: API timeout')
def send(self, img_data):
"""Send CAPTCHA for solving
"""
print 'Submitting CAPTCHA'
data = {
'action': 'usercaptchaupload',
'apikey': self.api_key,
'file-upload-01': img_data.encode('base64'),
'base64': '1',
'selfsolve': '1',
'maxtimeout': str(self.timeout)
}
encoded_data = urllib.urlencode(data)
request = urllib2.Request(self.url, encoded_data)
response = urllib2.urlopen(request)
result = response.read()
self.check(result)
return result
def get(self, captcha_id):
"""Get result of solved CAPTCHA
"""
data = {
'action': 'usercaptchacorrectdata',
'id': captcha_id,
'apikey': self.api_key,
'info': '1'
}
encoded_data = urllib.urlencode(data)
response = urllib2.urlopen(self.url + '?' + encoded_data)
result = response.read()
self.check(result)
return result
def check(self, result):
"""Check result of API and raise error if error code detected
"""
if re.match('00\d\d \w+', result):
raise CaptchaError('API error: ' + result)
if __name__ == '__main__':
try:
api_key = sys.argv[1]
filename = sys.argv[2]
except IndexError:
print 'Usage: %s <API key> <Image filename>' % sys.argv[0]
else:
main(api_key, filename)
Wu_Being 博客声明:本人博客欢迎转载,请标明博客原文和原链接!谢谢!
【Python爬虫系列】《【Python爬虫7】验证码处理》http://blog.csdn.net/u014134180/article/details/55508229
Python爬虫系列的GitHub代码文件:https://github.com/1040003585/WebScrapingWithPython