题目描述:
给定一个长度为n的整数数组Array【】,输出一个等长的数组result【】,这个输出数组,对应位置i是除了Array【i】之外,其他的所有元素的乘积
例如:
given [1,2,3,4], return [24,12,8,6].
时间复杂度是o(n)
Given an array of n integers where n > 1, nums, return an array output such that output[i] is equal to the product of all the elements of nums except nums[i].
Solve it without division and in O(n).
For example, given [1,2,3,4], return [24,12,8,6].
Could you solve it with constant space complexity? (Note: The output array does not count as extra space for the purpose of space complexity analysis.)
- 考虑构造两个数组相乘来解决
例如nums=[a1,a2,a3,a4],构造的数组是:
[1, a1, a1a2, a1a2a3]
[a2a3a4, a3a4, a4, 1]- 上面的数组相乘,得到[a2a3a4, a1a3a4, a1a2a4, a1a2a3]
public class Solution {
public int[] productExceptSelf(int[] nums) {
final int[] result = new int[nums.length];
final int[] left = new int[nums.length];
final int[] right = new int[nums.length];
left[0] = 1;
right[nums.length - 1] = 1;
for (int i = 1; i < nums.length; ++i) {
left[i] = nums[i - 1] * left[i - 1];
}
for (int i = nums.length - 2; i >= 0; --i) {
right[i] = nums[i + 1] * right[i + 1];
}
for (int i = 0; i < nums.length; ++i) {
result[i] = left[i] * right[i];
}
return result;
}
}
- 考虑上面的第二个数组的数据用一个常数代替,然后输出的数组,是不算空间的
public class Solution {
public int[] productExceptSelf(int[] nums) {
final int[] left = new int[nums.length];
left[0] = 1;
for (int i = 1; i < nums.length; ++i) {
left[i] = nums[i - 1] * left[i - 1];
}
int right = 1;
for (int i = nums.length - 1; i >= 0; --i) {
left[i] *= right;
right *= nums[i];
}
return left;
}
}