Python numpy.pi() 使用实例

The following are code examples for showing how to use . They are extracted from open source Python projects. You can vote up the examples you like or vote down the exmaples you don’t like. You can also save this page to your account.

Example 1

def deriveKernel(self, params, i):
		self.checkParamsI(params, i)
		ell = np.exp(params[0])
		p = np.exp(params[1])
		
		#compute d2
		if (self.K_sq is None): d2 = sq_dist(self.X_scaled.T / ell)	#precompute squared distances
		else: d2 = self.K_sq / ell**2
		
		#compute dp
		dp = self.dp/p
		
		K = np.exp(-d2 / 2.0)
		if (i==0): return d2*K*np.cos(2*np.pi*dp)
		elif (i==1): return 2*np.pi*dp*np.sin(2*np.pi*dp)*K
		else: raise Exception('invalid parameter index:' + str(i)) 

Example 2

def gelu(x):
    return 0.5 * x * (1 + T.tanh(T.sqrt(2 / np.pi) * (x + 0.044715 * T.pow(x, 3)))) 

Example 3

def get_local_wavenumbermesh(self, scaled=True, broadcast=False,
                                 eliminate_highest_freq=False):
        kx = fftfreq(self.N[0], 1./self.N[0])
        ky = rfftfreq(self.N[1], 1./self.N[1])
        if eliminate_highest_freq:
            for i, k in enumerate((kx, ky)):
                if self.N[i] % 2 == 0:
                    k[self.N[i]//2] = 0

        Ks = np.meshgrid(kx, ky[self.rank*self.Np[1]//2:(self.rank*self.Np[1]//2+self.Npf)], indexing='ij', sparse=True)
        if scaled is True:
            Lp = 2*np.pi/self.L
            Ks[0] *= Lp[0]
            Ks[1] *= Lp[1]
        K = Ks
        if broadcast is True:
            K = [np.broadcast_to(k, self.complex_shape()) for k in Ks]
        return K 

Example 4

def _generate_data():
    """
    ?????
    ????u(k-1) ? y(k-1)?????y(k)
    """
    # u = np.random.uniform(-1,1,200)
    # y=[]
    # former_y_value = 0
    # for i in np.arange(0,200):
    #     y.append(former_y_value)
    #     next_y_value = (29.0 / 40) * np.sin(
    #         (16.0 * u[i] + 8 * former_y_value) / (3.0 + 4.0 * (u[i] ** 2) + 4 * (former_y_value ** 2))) \
    #                    + (2.0 / 10) * u[i] + (2.0 / 10) * former_y_value
    #     former_y_value = next_y_value
    # return u,y
    u1 = np.random.uniform(-np.pi,np.pi,200)
    u2 = np.random.uniform(-1,1,200)
    y = np.zeros(200)
    for i in range(200):
        value = np.sin(u1[i]) + u2[i]
        y[i] =  value
    return u1, u2, y 

Example 5

def ae(x):
    if nonlinearity_name == 'relu':
        f = tf.nn.relu
    elif nonlinearity_name == 'elu':
        f = tf.nn.elu
    elif nonlinearity_name == 'gelu':
        # def gelu(x):
        #     return tf.mul(x, tf.erfc(-x / tf.sqrt(2.)) / 2.)
        # f = gelu
        def gelu_fast(_x):
            return 0.5 * _x * (1 + tf.tanh(tf.sqrt(2 / np.pi) * (_x + 0.044715 * tf.pow(_x, 3))))
        f = gelu_fast
    elif nonlinearity_name == 'silu':
        def silu(_x):
            return _x * tf.sigmoid(_x)
        f = silu
    # elif nonlinearity_name == 'soi':
    #     def soi_map(x):
    #         u = tf.random_uniform(tf.shape(x))
    #         mask = tf.to_float(tf.less(u, (1 + tf.erf(x / tf.sqrt(2.))) / 2.))
    #         return tf.cond(is_training, lambda: tf.mul(mask, x),
    #                        lambda: tf.mul(x, tf.erfc(-x / tf.sqrt(2.)) / 2.))
    #     f = soi_map

    else:
        raise NameError("Need 'relu', 'elu', 'gelu', or 'silu' for nonlinearity_name")

    h1 = f(tf.matmul(x, W['1']) + b['1'])
    h2 = f(tf.matmul(h1, W['2']) + b['2'])
    h3 = f(tf.matmul(h2, W['3']) + b['3'])
    h4 = f(tf.matmul(h3, W['4']) + b['4'])
    h5 = f(tf.matmul(h4, W['5']) + b['5'])
    h6 = f(tf.matmul(h5, W['6']) + b['6'])
    h7 = f(tf.matmul(h6, W['7']) + b['7'])
    return tf.matmul(h7, W['8']) + b['8'] 

Example 6

def score_samples(self, X):
        """Return the log-likelihood of each sample
        See. "Pattern Recognition and Machine Learning"
        by C. Bishop, 12.2.1 p. 574
        or http://www.miketipping.com/papers/met-mppca.pdf
        Parameters
        ----------
        X: array, shape(n_samples, n_features)
            The data.
        Returns
        -------
        ll: array, shape (n_samples,)
            Log-likelihood of each sample under the current model
        """
        check_is_fitted(self, 'mean_')

        X = check_array(X)
        Xr = X - self.mean_
        n_features = X.shape[1]
        log_like = np.zeros(X.shape[0])
        precision = self.get_precision()
        log_like = -.5 * (Xr * (np.dot(Xr, precision))).sum(axis=1)
        log_like -= .5 * (n_features * log(2. * np.pi)
                          - fast_logdet(precision))
        return log_like 

Example 7

def getTrainTestKernel(self, params, Xtest):
		self.checkParams(params)
		ell = np.exp(params[0])
		p = np.exp(params[1])
		
		Xtest_scaled = Xtest/np.sqrt(Xtest.shape[1])
		d2 = sq_dist(self.X_scaled.T/ell, Xtest_scaled.T/ell)	#precompute squared distances
		
		#compute dp
		dp = np.zeros(d2.shape)
		for d in xrange(self.X_scaled.shape[1]):
			dp += (np.outer(self.X_scaled[:,d], np.ones((1, Xtest_scaled.shape[0]))) - np.outer(np.ones((self.X_scaled.shape[0], 1)), Xtest_scaled[:,d]))
		dp /= p
				
		K = np.exp(-d2 / 2.0)
		return np.cos(2*np.pi*dp)*K 

Example 8

def reset(self,random_start_state=False, assign_state = False, n=None, k = None, \
		perturb_params = False, p_LINK_LENGTH_1 = 0, p_LINK_LENGTH_2 = 0, \
		p_LINK_MASS_1 = 0, p_LINK_MASS_2 = 0, **kw):
		self.t = 0
		self.state = np.random.uniform(low=-0.1,high=0.1,size=(4,))

		self.LINK_LENGTH_1 = 1.  # [m]
		self.LINK_LENGTH_2 = 1.  # [m]
		self.LINK_MASS_1 = 1.  #: [kg] mass of link 1
		self.LINK_MASS_2 = 1.

		if perturb_params:
			self.LINK_LENGTH_1 += (self.LINK_LENGTH_1 * p_LINK_LENGTH_1)  # [m]
			self.LINK_LENGTH_2 += (self.LINK_LENGTH_2 * p_LINK_LENGTH_2)  # [m]
			self.LINK_MASS_1 += (self.LINK_MASS_1 * p_LINK_MASS_1)  #: [kg] mass of link 1
			self.LINK_MASS_2 += (self.LINK_MASS_2 * p_LINK_MASS_2)  #: [kg] mass of link 2
		
		# The idea here is that we can initialize our batch randomly so that we can get
		# more variety in the state space that we attempt to fit a policy to.
		if random_start_state:
			self.state[:2] = np.random.uniform(-np.pi,np.pi,size=2)

		if assign_state:
			self.state[0] = wrap((2*k*np.pi)/(1.0*n),-np.pi,np.pi) 

Example 9

def calc_reward(self, action = None, state = None , **kw ):
		'''Calculates the continuous reward based on the height of the foot (y position) 
		with a penalty applied if the hinge is moving (we want the acrobot to be upright
		and stationary!), which is then normalized by the combined lengths of the links'''
		t = self.target
		if state is None:
			s = self.state
		else:
			s = state
			# Make sure that input state is clipped/wrapped to the given bounds (not guaranteed when coming from the BNN)
			s[0] = wrap( s[0] , -np.pi , np.pi )
			s[1] = wrap( s[1] , -np.pi , np.pi )
			s[2] = bound( s[2] , -self.MAX_VEL_1 , self.MAX_VEL_1 )
			s[3] = bound( s[3] , -self.MAX_VEL_1 , self.MAX_VEL_1 )
		
		hinge, foot = self.get_cartesian_points(s)
		reward = -0.05 * (foot[0] - self.LINK_LENGTH_1)**2

		terminal = self.is_terminal(s)
		return 10 if terminal else reward 

Example 10

def EStep(self):
    P = np.zeros((self.M, self.N))

    for i in range(0, self.M):
      diff     = self.X - np.tile(self.TY[i, :], (self.N, 1))
      diff    = np.multiply(diff, diff)
      P[i, :] = P[i, :] + np.sum(diff, axis=1)

    c = (2 * np.pi * self.sigma2) ** (self.D / 2)
    c = c * self.w / (1 - self.w)
    c = c * self.M / self.N

    P = np.exp(-P / (2 * self.sigma2))
    den = np.sum(P, axis=0)
    den = np.tile(den, (self.M, 1))
    den[den==0] = np.finfo(float).eps

    self.P   = np.divide(P, den)
    self.Pt1 = np.sum(self.P, axis=0)
    self.P1  = np.sum(self.P, axis=1)
    self.Np  = np.sum(self.P1) 

Example 11

def create_reference_image(size, x0=10., y0=-3., sigma_x=50., sigma_y=30., dtype='float64',
                           reverse_xaxis=False, correct_axes=True, sizey=None, **kwargs):
    """
    Creates a reference image: a gaussian brightness with elliptical
    """
    inc_cos = np.cos(0./180.*np.pi)

    delta_x = 1.
    x = (np.linspace(0., size - 1, size) - size / 2.) * delta_x

    if sizey:
        y = (np.linspace(0., sizey-1, sizey) - sizey/2.) * delta_x
    else:
        y = x.copy()

    if reverse_xaxis:
        xx, yy = np.meshgrid(-x, y/inc_cos)
    elif correct_axes:
        xx, yy = np.meshgrid(-x, -y/inc_cos)
    else:
        xx, yy = np.meshgrid(x, y/inc_cos)

    image = np.exp(-(xx-x0)**2./sigma_x - (yy-y0)**2./sigma_y)

    return image.astype(dtype) 

Example 12

def rotate_point_cloud(batch_data):
    """ Randomly rotate the point clouds to augument the dataset
        rotation is per shape based along up direction
        Input:
          BxNx3 array, original batch of point clouds
        Return:
          BxNx3 array, rotated batch of point clouds
    """
    rotated_data = np.zeros(batch_data.shape, dtype=np.float32)
    for k in range(batch_data.shape[0]):
        rotation_angle = np.random.uniform() * 2 * np.pi
        cosval = np.cos(rotation_angle)
        sinval = np.sin(rotation_angle)
        rotation_matrix = np.array([[cosval, 0, sinval],
                                    [0, 1, 0],
                                    [-sinval, 0, cosval]])
        shape_pc = batch_data[k, ...]
        rotated_data[k, ...] = np.dot(shape_pc.reshape((-1, 3)), rotation_matrix)
    return rotated_data 

Example 13

def rotate_point_cloud_by_angle(batch_data, rotation_angle):
    """ Rotate the point cloud along up direction with certain angle.
        Input:
          BxNx3 array, original batch of point clouds
        Return:
          BxNx3 array, rotated batch of point clouds
    """
    rotated_data = np.zeros(batch_data.shape, dtype=np.float32)
    for k in range(batch_data.shape[0]):
        #rotation_angle = np.random.uniform() * 2 * np.pi
        cosval = np.cos(rotation_angle)
        sinval = np.sin(rotation_angle)
        rotation_matrix = np.array([[cosval, 0, sinval],
                                    [0, 1, 0],
                                    [-sinval, 0, cosval]])
        shape_pc = batch_data[k, ...]
        rotated_data[k, ...] = np.dot(shape_pc.reshape((-1, 3)), rotation_matrix)
    return rotated_data 

Example 14

def ac_solve(net):
    """

    :param net:
    :return:
    """

    net.conductance_matrix()
    net.dynamic_matrix()
    net.rhs_matrix()

    # frequency
    f = float(net.analysis[-1])

    # linear system definition
    net.x = spsolve(net.G + 1j * 2 * np.pi * f* net.C, net.rhs) 

Example 15

def thinking(self):
        """Deliberate to avoid obstacles on the path."""
        if self.motion.moveIsActive():
            # Maneuver occurring. Let's finish it
            # before taking any other measure.
            pass

        elif not self.sensors['proximity'][0].imminent_collision:
            # Goes back to moving state.
            self.behavior_ = self.BEHAVIORS.moving

        elif all(s.imminent_collision for s in self.sensors['proximity']):
            # There's nothing left to be done, only flag this is a dead-end.
            self.behavior_ = self.BEHAVIORS.stuck

        else:
            peripheral_sensors = self.sensors['proximity'][1:]
            for maneuver, sensor in zip(range(1, 4), peripheral_sensors):
                if not sensor.imminent_collision:
                    # A sensor that indicates no obstacles were found.
                    # Move in that direction.
                    self.motion.post.moveTo(0, 0, np.pi / 2)
                    break

        return self 

Example 16

def gaussian_nll(x, mus, sigmas):
    """
    NLL for Multivariate Normal with diagonal covariance matrix
    See:
        wikipedia.org/wiki/Multivariate_normal_distribution#Likelihood_function
    where \Sigma = diag(s_1^2,..., s_n^2).

    x, mus, sigmas all should have the same shape.
    sigmas (s_1,..., s_n) should be strictly positive.
    Results in output shape of similar but without the last dimension.
    """
    nll = lib.floatX(numpy.log(2. * numpy.pi))
    nll += 2. * T.log(sigmas)
    nll += ((x - mus) / sigmas) ** 2.
    nll = nll.sum(axis=-1)
    nll *= lib.floatX(0.5)
    return nll 

Example 17

def tsukuba_load_poses(fn): 
    """ 
    Retrieve poses
    X Y Z R P Y - > X -Y -Z R -P -Y
    
    np.deg2rad(p[3]),-np.deg2rad(p[4]),-np.deg2rad(p[5]),
        p[0]*.01,-p[1]*.01,-p[2]*.01, axes='sxyz') for p in P ]

    """ 
    P = np.loadtxt(os.path.expanduser(fn), dtype=np.float64, delimiter=',')
    return [ RigidTransform.from_rpyxyz(np.pi, 0, 0, 0, 0, 0) * \
             RigidTransform.from_rpyxyz(
                 np.deg2rad(p[3]),np.deg2rad(p[4]),np.deg2rad(p[5]),
                 p[0]*.01,p[1]*.01,p[2]*.01, axes='sxyz') * \
             RigidTransform.from_rpyxyz(np.pi, 0, 0, 0, 0, 0) for p in P ]
    
    # return [ RigidTransform.from_rpyxyz(
    #     np.deg2rad(p[3]),-np.deg2rad(p[4]),-np.deg2rad(p[5]),
    #     p[0]*.01,-p[1]*.01,-p[2]*.01, axes='sxyz') for p in P ] 

Example 18

def __call__(self, z):
        z1 = tf.reshape(tf.slice(z, [0, 0], [-1, 1]), [-1])
        z2 = tf.reshape(tf.slice(z, [0, 1], [-1, 1]), [-1])
        v1 = tf.sqrt((z1 - 5) * (z1 - 5) + z2 * z2) * 2
        v2 = tf.sqrt((z1 + 5) * (z1 + 5) + z2 * z2) * 2
        v3 = tf.sqrt((z1 - 2.5) * (z1 - 2.5) + (z2 - 2.5 * np.sqrt(3)) * (z2 - 2.5 * np.sqrt(3))) * 2
        v4 = tf.sqrt((z1 + 2.5) * (z1 + 2.5) + (z2 + 2.5 * np.sqrt(3)) * (z2 + 2.5 * np.sqrt(3))) * 2
        v5 = tf.sqrt((z1 - 2.5) * (z1 - 2.5) + (z2 + 2.5 * np.sqrt(3)) * (z2 + 2.5 * np.sqrt(3))) * 2
        v6 = tf.sqrt((z1 + 2.5) * (z1 + 2.5) + (z2 - 2.5 * np.sqrt(3)) * (z2 - 2.5 * np.sqrt(3))) * 2
        pdf1 = tf.exp(-0.5 * v1 * v1) / tf.sqrt(2 * np.pi * 0.25)
        pdf2 = tf.exp(-0.5 * v2 * v2) / tf.sqrt(2 * np.pi * 0.25)
        pdf3 = tf.exp(-0.5 * v3 * v3) / tf.sqrt(2 * np.pi * 0.25)
        pdf4 = tf.exp(-0.5 * v4 * v4) / tf.sqrt(2 * np.pi * 0.25)
        pdf5 = tf.exp(-0.5 * v5 * v5) / tf.sqrt(2 * np.pi * 0.25)
        pdf6 = tf.exp(-0.5 * v6 * v6) / tf.sqrt(2 * np.pi * 0.25)
        return -tf.log((pdf1 + pdf2 + pdf3 + pdf4 + pdf5 + pdf6) / 6) 

Example 19

def _evalfull(self, x):
        fadd = self.fopt
        curshape, dim = self.shape_(x)
        # it is assumed x are row vectors

        if self.lastshape != curshape:
            self.initwithsize(curshape, dim)

        # BOUNDARY HANDLING

        # TRANSFORMATION IN SEARCH SPACE
        x = x - self.arrxopt
        x = monotoneTFosc(x)
        idx = (x > 0)
        x[idx] = x[idx] ** (1 + self.arrexpo[idx] * np.sqrt(x[idx]))
        x = self.arrscales * x

        # COMPUTATION core
        ftrue = 10 * (self.dim - np.sum(np.cos(2 * np.pi * x), -1)) + np.sum(x ** 2, -1)
        fval = self.noise(ftrue) # without noise

        # FINALIZE
        ftrue += fadd
        fval += fadd
        return fval, ftrue 

Example 20

def initwithsize(self, curshape, dim):
        # DIM-dependent initialization
        if self.dim != dim:
            if self.zerox:
                self.xopt = zeros(dim)
            else:
                self.xopt = compute_xopt(self.rseed, dim)
            self.rotation = compute_rotation(self.rseed + 1e6, dim)
            self.scales = (1. / self.condition ** .5) ** linspace(0, 1, dim) # CAVE?
            self.linearTF = dot(compute_rotation(self.rseed, dim), diag(self.scales))
            # decouple scaling from function definition
            self.linearTF = dot(self.linearTF, self.rotation)
            K = np.arange(0, 12)
            self.aK = np.reshape(0.5 ** K, (1, 12))
            self.bK = np.reshape(3. ** K, (1, 12))
            self.f0 = np.sum(self.aK * np.cos(2 * np.pi * self.bK * 0.5)) # optimal value

        # DIM- and POPSI-dependent initialisations of DIM*POPSI matrices
        if self.lastshape != curshape:
            self.dim = dim
            self.lastshape = curshape
            self.arrxopt = resize(self.xopt, curshape) 

Example 21

def pan(self, dx, dy, dz, relative=False):
        """
        Moves the center (look-at) position while holding the camera in place. 
        
        If relative=True, then the coordinates are interpreted such that x
        if in the global xy plane and points to the right side of the view, y is
        in the global xy plane and orthogonal to x, and z points in the global z
        direction. Distances are scaled roughly such that a value of 1.0 moves
        by one pixel on screen.
        
        """
        if not relative:
            self.camera_center += QtGui.QVector3D(dx, dy, dz)
        else:
            cPos = self.cameraPosition()
            cVec = self.camera_center - cPos
            dist = cVec.length()  ## distance from camera to center
            xDist = dist * 2. * np.tan(0.5 * self.camera_fov * np.pi / 180.)  ## approx. width of view at distance of center point
            xScale = xDist / self.width()
            zVec = QtGui.QVector3D(0,0,1)
            xVec = QtGui.QVector3D.crossProduct(zVec, cVec).normalized()
            yVec = QtGui.QVector3D.crossProduct(xVec, zVec).normalized()
            self.camera_center = self.camera_center + xVec * xScale * dx + yVec * xScale * dy + zVec * xScale * dz
        self.update() 

Example 22

def test_pitch_estimation(self):
        """
        test pitch estimation algo with contrived small example
        if pitch is within 5 Hz, then say its good (for this small example,
        since the algorithm wasn't made for this type of synthesized signal)
        """
        cfg = ExperimentConfig(pitch_strength_thresh=-np.inf)
        # the next 3 variables are in Hz
        tolerance = 5
        fs = 48000
        f = 150
        # create a sine wave of f Hz freq sampled at fs Hz
        x = np.sin(2*np.pi * f/fs * np.arange(2**10))
        # estimate the pitch, it should be close to f
        p, t, s = pest.pitch_estimation(x, fs, cfg)
        self.assertTrue(np.all(np.abs(p - f) < tolerance)) 

Example 23

def setFromQTransform(self, tr):
        p1 = Point(tr.map(0., 0.))
        p2 = Point(tr.map(1., 0.))
        p3 = Point(tr.map(0., 1.))
        
        dp2 = Point(p2-p1)
        dp3 = Point(p3-p1)
        
        ## detect flipped axes
        if dp2.angle(dp3) > 0:
            #da = 180
            da = 0
            sy = -1.0
        else:
            da = 0
            sy = 1.0
            
        self._state = {
            'pos': Point(p1),
            'scale': Point(dp2.length(), dp3.length() * sy),
            'angle': (np.arctan2(dp2[1], dp2[0]) * 180. / np.pi) + da
        }
        self.update() 

Example 24

def projectionMatrix(self, region=None):
        # Xw = (Xnd + 1) * width/2 + X
        if region is None:
            region = (0, 0, self.width(), self.height())
        
        x0, y0, w, h = self.getViewport()
        dist = self.opts['distance']
        fov = self.opts['fov']
        nearClip = dist * 0.001
        farClip = dist * 1000.

        r = nearClip * np.tan(fov * 0.5 * np.pi / 180.)
        t = r * h / w

        # convert screen coordinates (region) to normalized device coordinates
        # Xnd = (Xw - X0) * 2/width - 1
        ## Note that X0 and width in these equations must be the values used in viewport
        left  = r * ((region[0]-x0) * (2.0/w) - 1)
        right = r * ((region[0]+region[2]-x0) * (2.0/w) - 1)
        bottom = t * ((region[1]-y0) * (2.0/h) - 1)
        top    = t * ((region[1]+region[3]-y0) * (2.0/h) - 1)

        tr = QtGui.QMatrix4x4()
        tr.frustum(left, right, bottom, top, nearClip, farClip)
        return tr 

Example 25

def pan(self, dx, dy, dz, relative=False):
        """
        Moves the center (look-at) position while holding the camera in place. 
        
        If relative=True, then the coordinates are interpreted such that x
        if in the global xy plane and points to the right side of the view, y is
        in the global xy plane and orthogonal to x, and z points in the global z
        direction. Distances are scaled roughly such that a value of 1.0 moves
        by one pixel on screen.
        
        """
        if not relative:
            self.opts['center'] += QtGui.QVector3D(dx, dy, dz)
        else:
            cPos = self.cameraPosition()
            cVec = self.opts['center'] - cPos
            dist = cVec.length()  ## distance from camera to center
            xDist = dist * 2. * np.tan(0.5 * self.opts['fov'] * np.pi / 180.)  ## approx. width of view at distance of center point
            xScale = xDist / self.width()
            zVec = QtGui.QVector3D(0,0,1)
            xVec = QtGui.QVector3D.crossProduct(zVec, cVec).normalized()
            yVec = QtGui.QVector3D.crossProduct(xVec, zVec).normalized()
            self.opts['center'] = self.opts['center'] + xVec * xScale * dx + yVec * xScale * dy + zVec * xScale * dz
        self.update() 

Example 26

def makeArrowPath(headLen=20, tipAngle=20, tailLen=20, tailWidth=3, baseAngle=0):
    """
    Construct a path outlining an arrow with the given dimensions.
    The arrow points in the -x direction with tip positioned at 0,0.
    If *tipAngle* is supplied (in degrees), it overrides *headWidth*.
    If *tailLen* is None, no tail will be drawn.
    """
    headWidth = headLen * np.tan(tipAngle * 0.5 * np.pi/180.)
    path = QtGui.QPainterPath()
    path.moveTo(0,0)
    path.lineTo(headLen, -headWidth)
    if tailLen is None:
        innerY = headLen - headWidth * np.tan(baseAngle*np.pi/180.)
        path.lineTo(innerY, 0)
    else:
        tailWidth *= 0.5
        innerY = headLen - (headWidth-tailWidth) * np.tan(baseAngle*np.pi/180.)
        path.lineTo(innerY, -tailWidth)
        path.lineTo(headLen + tailLen, -tailWidth)
        path.lineTo(headLen + tailLen, tailWidth)
        path.lineTo(innerY, tailWidth)
    path.lineTo(headLen, headWidth)
    path.lineTo(0,0)
    return path 

Example 27

def setFromQTransform(self, tr):
        p1 = Point(tr.map(0., 0.))
        p2 = Point(tr.map(1., 0.))
        p3 = Point(tr.map(0., 1.))
        
        dp2 = Point(p2-p1)
        dp3 = Point(p3-p1)
        
        ## detect flipped axes
        if dp2.angle(dp3) > 0:
            #da = 180
            da = 0
            sy = -1.0
        else:
            da = 0
            sy = 1.0
            
        self._state = {
            'pos': Point(p1),
            'scale': Point(dp2.length(), dp3.length() * sy),
            'angle': (np.arctan2(dp2[1], dp2[0]) * 180. / np.pi) + da
        }
        self.update() 

Example 28

def projectionMatrix(self, region=None):
        # Xw = (Xnd + 1) * width/2 + X
        if region is None:
            region = (0, 0, self.width(), self.height())
        
        x0, y0, w, h = self.getViewport()
        dist = self.opts['distance']
        fov = self.opts['fov']
        nearClip = dist * 0.001
        farClip = dist * 1000.

        r = nearClip * np.tan(fov * 0.5 * np.pi / 180.)
        t = r * h / w

        # convert screen coordinates (region) to normalized device coordinates
        # Xnd = (Xw - X0) * 2/width - 1
        ## Note that X0 and width in these equations must be the values used in viewport
        left  = r * ((region[0]-x0) * (2.0/w) - 1)
        right = r * ((region[0]+region[2]-x0) * (2.0/w) - 1)
        bottom = t * ((region[1]-y0) * (2.0/h) - 1)
        top    = t * ((region[1]+region[3]-y0) * (2.0/h) - 1)

        tr = QtGui.QMatrix4x4()
        tr.frustum(left, right, bottom, top, nearClip, farClip)
        return tr 

Example 29

def pan(self, dx, dy, dz, relative=False):
        """
        Moves the center (look-at) position while holding the camera in place. 
        
        If relative=True, then the coordinates are interpreted such that x
        if in the global xy plane and points to the right side of the view, y is
        in the global xy plane and orthogonal to x, and z points in the global z
        direction. Distances are scaled roughly such that a value of 1.0 moves
        by one pixel on screen.
        
        """
        if not relative:
            self.opts['center'] += QtGui.QVector3D(dx, dy, dz)
        else:
            cPos = self.cameraPosition()
            cVec = self.opts['center'] - cPos
            dist = cVec.length()  ## distance from camera to center
            xDist = dist * 2. * np.tan(0.5 * self.opts['fov'] * np.pi / 180.)  ## approx. width of view at distance of center point
            xScale = xDist / self.width()
            zVec = QtGui.QVector3D(0,0,1)
            xVec = QtGui.QVector3D.crossProduct(zVec, cVec).normalized()
            yVec = QtGui.QVector3D.crossProduct(xVec, zVec).normalized()
            self.opts['center'] = self.opts['center'] + xVec * xScale * dx + yVec * xScale * dy + zVec * xScale * dz
        self.update() 

Example 30

def make_wafer(self,wafer_r,frame,label,labelloc,labelwidth):
        """
        Generate wafer with primary flat on the left. From https://coresix.com/products/wafers/ I estimated that the angle defining the wafer flat to arctan(flat/2 / radius)
        """
        angled = 18
        angle = angled*np.pi/180
        circ = cad.shapes.Circle((0,0), wafer_r, width=self.boxwidth, initial_angle=180+angled, final_angle=360+180-angled, layer=self.layer_box)
        flat = cad.core.Path([(-wafer_r*np.cos(angle),wafer_r*np.sin(angle)),(-wafer_r*np.cos(angle),-wafer_r*np.sin(angle))], width=self.boxwidth, layer=self.layer_box)

        date = time.strftime("%d/%m/%Y")
        if labelloc==(0,0):
                    labelloc=(-2e3,wafer_r-1e3)
        # The label is added 100 um on top of the main cell
        label_grid_chip = cad.shapes.LineLabel( self.name + "  " +\
                                         date,500,position=labelloc,
                                         line_width=labelwidth,
                                         layer=self.layer_label)


        if frame==True:
            self.add(circ)
            self.add(flat)
        if label==True:
            self.add(label_grid_chip) 

Example 31

def evaluation(self, X_test, y_test):
        # normalization
        X_test = self.normalization(X_test)
        
        # average over the output
        pred_y_test = np.zeros([self.M, len(y_test)])
        prob = np.zeros([self.M, len(y_test)])
        
        '''
            Since we have M particles, we use a Bayesian view to calculate rmse and log-likelihood
        '''
        for i in range(self.M):
            w1, b1, w2, b2, loggamma, loglambda = self.unpack_weights(self.theta[i, :])
            pred_y_test[i, :] = self.nn_predict(X_test, w1, b1, w2, b2) * self.std_y_train + self.mean_y_train
            prob[i, :] = np.sqrt(np.exp(loggamma)) /np.sqrt(2*np.pi) * np.exp( -1 * (np.power(pred_y_test[i, :] - y_test, 2) / 2) * np.exp(loggamma) )
        pred = np.mean(pred_y_test, axis=0)
        
        # evaluation
        svgd_rmse = np.sqrt(np.mean((pred - y_test)**2))
        svgd_ll = np.mean(np.log(np.mean(prob, axis = 0)))
        
        return (svgd_rmse, svgd_ll) 

Example 32

def nufft_scale1(N, K, alpha, beta, Nmid):
    '''
    calculate image space scaling factor
    '''
#     import types
#     if alpha is types.ComplexType:
    alpha = numpy.real(alpha)
#         print('complex alpha may not work, but I just let it as')

    L = len(alpha) - 1
    if L > 0:
        sn = numpy.zeros((N, 1))
        n = numpy.arange(0, N).reshape((N, 1), order='F')
        i_gam_n_n0 = 1j * (2 * numpy.pi / K) * (n - Nmid) * beta
        for l1 in range(-L, L + 1):
            alf = alpha[abs(l1)]
            if l1 < 0:
                alf = numpy.conj(alf)
            sn = sn + alf * numpy.exp(i_gam_n_n0 * l1)
    else:
        sn = numpy.dot(alpha, numpy.ones((N, 1), dtype=numpy.float32))
    return sn 

Example 33

def nufft_r(om, N, J, K, alpha, beta):
    '''
    equation (30) of Fessler's paper

    '''

    M = numpy.size(om)  # 1D size
    gam = 2.0 * numpy.pi / (K * 1.0)
    nufft_offset0 = nufft_offset(om, J, K)  # om/gam -  nufft_offset , [M,1]
    dk = 1.0 * om / gam - nufft_offset0  # om/gam -  nufft_offset , [M,1]
    arg = outer_sum(-numpy.arange(1, J + 1) * 1.0, dk)
    L = numpy.size(alpha) - 1
#     print('alpha',alpha)
    rr = numpy.zeros((J, M), dtype=numpy.float32)
    rr = iterate_l1(L, alpha, arg, beta, K, N, rr)
    return (rr, arg) 

Example 34

def kaiser_bessel_ft(u, J, alpha, kb_m, d):
    '''
    Interpolation weight for given J/alpha/kb-m
    '''

    u = u * (1.0 + 0.0j)
    import scipy.special
    z = numpy.sqrt((2 * numpy.pi * (J / 2) * u) ** 2.0 - alpha ** 2.0)
    nu = d / 2 + kb_m
    y = ((2 * numpy.pi) ** (d / 2)) * ((J / 2) ** d) * (alpha ** kb_m) / \
        scipy.special.iv(kb_m, alpha) * scipy.special.jv(nu, z) / (z ** nu)
    y = numpy.real(y)
    return y 

Example 35

def nufft_scale1(N, K, alpha, beta, Nmid):
    '''
    Calculate image space scaling factor
    '''
#     import types
#     if alpha is types.ComplexType:
    alpha = numpy.real(alpha)
#         print('complex alpha may not work, but I just let it as')

    L = len(alpha) - 1
    if L > 0:
        sn = numpy.zeros((N, 1))
        n = numpy.arange(0, N).reshape((N, 1), order='F')
        i_gam_n_n0 = 1j * (2 * numpy.pi / K) * (n - Nmid) * beta
        for l1 in range(-L, L + 1):
            alf = alpha[abs(l1)]
            if l1 < 0:
                alf = numpy.conj(alf)
            sn = sn + alf * numpy.exp(i_gam_n_n0 * l1)
    else:
        sn = numpy.dot(alpha, numpy.ones((N, 1)))
    return sn 

Example 36

def __init__(self):
        # Angle at which to fail the episode
        self.theta_threshold_radians = 12 * 2 * math.pi / 360
        self.x_threshold = 2.4

        # Initializing Course : predfined Oval Course
        # ToDo: ????????????
        Rad = 190.0
        Poly = 16
        self.Course = Walls(240, 50, 640-(50+Rad),50)
        for i in range(1, Poly):
            self.Course.addPoint(Rad*math.cos(-np.pi/2.0 + np.pi*i/Poly)+640-(50+Rad), 
                                Rad*math.sin(-np.pi/2.0 + np.pi*i/Poly)+50+Rad)
        self.Course.addPoint(240, 50+Rad*2)
        for i in range(1, Poly):
            self.Course.addPoint(Rad*math.cos(np.pi/2.0 + np.pi*i/Poly)+(50+Rad), 
                                Rad*math.sin(np.pi/2.0 + np.pi*i/Poly)+50+Rad)
        self.Course.addPoint(240,50)
        
        # Outr Boundary Box
        self.BBox = Walls(640, 479, 0, 479)
        self.BBox.addPoint(0,0)
        self.BBox.addPoint(640,0)
        self.BBox.addPoint(640,479)
        
        # Mono Sensor Line Follower 
        self.A = Agent((640, 480), 240, 49)

        # Action Space : left wheel speed, right wheel speed
        # Observation Space : Detect Line (True, False)
        self.action_space = spaces.Box( np.array([-1.,-1.]), np.array([+1.,+1.])) 
        self.observation_space = spaces.Discrete(1)

        self._seed()
        self.reset()
        self.viewer = None

        self.steps_beyond_done = None

        self._configure() 

Example 37

def planetary_radius(mass, radius):
    """Calculate planetary radius if not given assuming a density dependent on
    mass"""
    if not isinstance(mass, (int, float)):
        if isinstance(radius, (int, float)):
            return radius
        else:
            return '...'
    if mass < 0:
        raise ValueError('Only positive planetary masses allowed.')

    Mj = c.M_jup
    Rj = c.R_jup
    if radius == '...' and isinstance(mass, (int, float)):
        if mass < 0.01:  # Earth density
            rho = 5.51
        elif 0.01 <= mass <= 0.5:
            rho = 1.64  # Neptune density
        else:
            rho = Mj/(4./3*np.pi*Rj**3)  # Jupiter density
        R = ((mass*Mj)/(4./3*np.pi*rho))**(1./3)  # Neptune density
        R /= Rj
    else:
        return radius
    return R.value 

Example 38

def test_kbd():
    M = 100
    w = mdct.windows.kaiser_derived(M, beta=4.)

    assert numpy.allclose(w[:M//2] ** 2 + w[-M//2:] ** 2, 1.)

    with pytest.raises(ValueError):
        mdct.windows.kaiser_derived(M + 1, beta=4.)

    assert numpy.allclose(
        mdct.windows.kaiser_derived(2, beta=numpy.pi/2)[:1],
        [numpy.sqrt(2)/2])

    assert numpy.allclose(
        mdct.windows.kaiser_derived(4, beta=numpy.pi/2)[:2],
        [0.518562710536, 0.855039598640])

    assert numpy.allclose(
        mdct.windows.kaiser_derived(6, beta=numpy.pi/2)[:3],
        [0.436168993154, 0.707106781187, 0.899864772847]) 

Example 39

def gaussian_kernel(kernel_shape, sigma=None):
    """
    Get 2D Gaussian kernel
    :param kernel_shape: kernel size
    :param sigma: sigma of Gaussian distribution
    :return: 2D Gaussian kernel
    """
    kern = numpy.zeros((kernel_shape, kernel_shape), dtype='float32')

    # get sigma from kernel size
    if sigma is None:
        sigma = 0.3*((kernel_shape-1.)*0.5 - 1.) + 0.8

    def gauss(x, y, s):
        Z = 2. * numpy.pi * s ** 2.
        return 1. / Z * numpy.exp(-(x ** 2. + y ** 2.) / (2. * s ** 2.))

    mid = numpy.floor(kernel_shape / 2.)
    for i in xrange(0, kernel_shape):
        for j in xrange(0, kernel_shape):
            kern[i, j] = gauss(i - mid, j - mid, sigma)

    return kern / kern.sum() 

Example 40

def is_grid(self, grid, image):
        """
        Checks the "gridness" by analyzing the results of a hough transform.
        :param grid: binary image
        :return: wheter the object in the image might be a grid or not
        """
        #   - Distance resolution = 1 pixel
        #   - Angle resolution = 1° degree for high line density
        #   - Threshold = 144 hough intersections
        #        8px digit + 3*2px white + 2*1px border = 16px per cell
        #           => 144x144 grid
        #        144 - minimum number of points on the same line
        #       (but due to imperfections in the binarized image it's highly
        #        improbable to detect a 144x144 grid)
        lines = cv2.HoughLines(grid, 1, np.pi / 180, 144)

        if lines is not None and np.size(lines) >= 20:
            lines = lines.reshape((lines.size / 2), 2)
            # theta in [0, pi] (theta > pi => rho < 0)
            # normalise theta in [-pi, pi] and negatives rho
            lines[lines[:, 0] < 0, 1] -= np.pi
            lines[lines[:, 0] < 0, 0] *= -1

            criteria = (cv2.TERM_CRITERIA_EPS, 0, 0.01)
            # split lines into 2 groups to check whether they're perpendicular
            if cv2.__version__[0] == '2':
                density, clmap, centers = cv2.kmeans(
                    lines[:, 1], 2, criteria, 5, cv2.KMEANS_RANDOM_CENTERS)
            else:
                density, clmap, centers = cv2.kmeans(
                    lines[:, 1], 2, None, criteria,
                    5, cv2.KMEANS_RANDOM_CENTERS)

            if self.debug:
                self.save_hough(lines, clmap)

            # Overall variance from respective centers
            var = density / np.size(clmap)
            sin = abs(np.sin(centers[0] - centers[1]))
            # It is probably a grid only if:
            #   - centroids difference is almost a 90° angle (+-15° limit)
            #   - variance is less than 5° (keeping in mind surface distortions)
            return sin > 0.99 and var <= (5*np.pi / 180) ** 2
        else:
            return False 

Example 41

def save_hough(self, lines, clmap):
        """
        :param lines: (rho, theta) pairs
        :param clmap: clusters assigned to lines
        :return: None
        """
        height, width = self.image.shape
        ratio = 600. * (self.step+1) / min(height, width)
        temp = cv2.resize(self.image, None, fx=ratio, fy=ratio,
                          interpolation=cv2.INTER_CUBIC)
        temp = cv2.cvtColor(temp, cv2.COLOR_GRAY2BGR)
        colors = [(0, 127, 255), (255, 0, 127)]

        for i in range(0, np.size(lines) / 2):
            rho = lines[i, 0]
            theta = lines[i, 1]
            color = colors[clmap[i, 0]]
            if theta < np.pi / 4 or theta > 3 * np.pi / 4:
                pt1 = (rho / np.cos(theta), 0)
                pt2 = (rho - height * np.sin(theta) / np.cos(theta), height)
            else:
                pt1 = (0, rho / np.sin(theta))
                pt2 = (width, (rho - width * np.cos(theta)) / np.sin(theta))
            pt1 = (int(pt1[0]), int(pt1[1]))
            pt2 = (int(pt2[0]), int(pt2[1]))
            cv2.line(temp, pt1, pt2, color, 5)

        self.save2image(temp) 

Example 42

def is_grid(self, grid, image):
        """
        Checks the "gridness" by analyzing the results of a hough transform.
        :param grid: binary image
        :return: wheter the object in the image might be a grid or not
        """
        #   - Distance resolution = 1 pixel
        #   - Angle resolution = 1° degree for high line density
        #   - Threshold = 144 hough intersections
        #        8px digit + 3*2px white + 2*1px border = 16px per cell
        #           => 144x144 grid
        #        144 - minimum number of points on the same line
        #       (but due to imperfections in the binarized image it's highly
        #        improbable to detect a 144x144 grid)

        lines = cv2.HoughLines(grid, 1, np.pi / 180, 144)

        if lines is not None and np.size(lines) >= 20:
            lines = lines.reshape((lines.size/2), 2)
            # theta in [0, pi] (theta > pi => rho < 0)
            # normalise theta in [-pi, pi] and negatives rho
            lines[lines[:, 0] < 0, 1] -= np.pi
            lines[lines[:, 0] < 0, 0] *= -1

            criteria = (cv2.TERM_CRITERIA_EPS, 0, 0.01)
            # split lines into 2 groups to check whether they're perpendicular
            if cv2.__version__[0] == '2':
                density, clmap, centers = cv2.kmeans(
                    lines[:, 1], 2, criteria,
                    5, cv2.KMEANS_RANDOM_CENTERS)
            else:
                density, clmap, centers = cv2.kmeans(
                    lines[:, 1], 2, None, criteria,
                    5, cv2.KMEANS_RANDOM_CENTERS)

            # Overall variance from respective centers
            var = density / np.size(clmap)
            sin = abs(np.sin(centers[0] - centers[1]))
            # It is probably a grid only if:
            #   - centroids difference is almost a 90° angle (+-15° limit)
            #   - variance is less than 5° (keeping in mind surface distortions)
            return sin > 0.99 and var <= (5*np.pi / 180) ** 2
        else:
            return False 

Example 43

def build_2D_cov_matrix(sigmax,sigmay,angle,verbose=True):
    """
    Build a covariance matrix for a 2D multivariate Gaussian

    --- INPUT ---
    sigmax          Standard deviation of the x-compoent of the multivariate Gaussian
    sigmay          Standard deviation of the y-compoent of the multivariate Gaussian
    angle           Angle to rotate matrix by in degrees (clockwise) to populate covariance cross terms
    verbose         Toggle verbosity
    --- EXAMPLE OF USE ---
    import tdose_utilities as tu
    covmatrix = tu.build_2D_cov_matrix(3,1,35)

    """
    if verbose: print ' - Build 2D covariance matrix with varinaces (x,y)=('+str(sigmax)+','+str(sigmay)+\
                      ') and then rotated '+str(angle)+' degrees'
    cov_orig      = np.zeros([2,2])
    cov_orig[0,0] = sigmay**2.0
    cov_orig[1,1] = sigmax**2.0

    angle_rad     = (180.0-angle) * np.pi/180.0 # The (90-angle) makes sure the same convention as DS9 is used
    c, s          = np.cos(angle_rad), np.sin(angle_rad)
    rotmatrix     = np.matrix([[c, -s], [s, c]])

    cov_rot       = np.dot(np.dot(rotmatrix,cov_orig),np.transpose(rotmatrix))  # performing rot * cov * rot^T

    return cov_rot
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = 

Example 44

def normalize_2D_cov_matrix(covmatrix,verbose=True):
    """
    Calculate the normalization foctor for a multivariate gaussian from it's covariance matrix
    However, not that gaussian returned by tu.gen_2Dgauss() is normalized for scale=1

    --- INPUT ---
    covmatrix       covariance matrix to normaliz
    verbose         Toggle verbosity

    """
    detcov  = np.linalg.det(covmatrix)
    normfac = 1.0 / (2.0 * np.pi * np.sqrt(detcov) )

    return normfac
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = 

Example 45

def f(r,theta):
    out = np.sin(theta)*np.cos(K*2*np.pi*(1./r))/r
    out[-1] = 0
    return out 

Example 46

def dfdr(r,theta):
    out = (2*K*np.pi*np.sin(2*np.pi*K/r)
           -r*np.cos(2*np.pi*K/r))*np.sin(theta)/(r**3)
    out[-1] = 0
    return out 

Example 47

def dfdrdtheta(r,theta):
    out = (2*K*np.pi*np.sin(2*np.pi*K/r)
           -r*np.cos(2*np.pi*K/r))*np.cos(theta)/(r**3)
    out[-1] = 0
    return out 

Example 48

def __init__(self,
                 order_X,r_h,
                 order_theta,
                 theta_min = 0,
                 theta_max = np.pi,
                 L=1):
        """Constructor.

        Parameters
        ----------
        order_X     -- polynomial order in X direction
        r_h         -- physical minimum radius (uncompactified coordinates)
        order_theta -- polynomial order in theta direction
        theta_min   -- minimum longitudinal value. Should be no less than 0.
        theta_max   -- maximum longitudinal value. Should be no greater than pi.
        L           -- Characteristic length scale of problem.
                       Needed for compactification
        """
        self.order_X = order_X
        self.order_theta = order_theta
        self.r_h = r_h
        self.theta_min = theta_min
        self.theta_max = theta_max
        self.L = L
        super(PyballdDiscretization,self).__init__(order_X,
                                            self.X_min,self.X_max,
                                            order_theta,
                                            theta_min,theta_max)
        self.r = self.get_r_from_X(self.x)
        self.R = self.get_r_from_X(self.X)
        self.dRdX = self.get_drdX(self.X)
        self.drdX = self.get_drdX(self.x)
        self.dXdR = self.get_dXdr(self.X)
        self.dXdr = self.get_dXdr(self.x)
        self.d2XdR2 = self.get_d2Xdr2(self.X)
        self.d2Xdr2 = self.get_d2Xdr2(self.x)
        self.d2RdX2 = self.get_d2rdX2(self.X)
        self.d2rdX2 = self.get_d2rdX2(self.x)
        self.theta = self.y
        self.THETA = self.Y 

Example 49

def get_integration_weights(order,nodes=None):
    """
    Returns the integration weights for Gauss-Lobatto quadrature
    as a function of the order of the polynomial we want to
    represent.
    See: https://en.wikipedia.org/wiki/Gaussian_quadrature
    See: arXive:gr-qc/0609020v1
    """
    if np.all(nodes == False):
        nodes=get_quadrature_points(order)
    if poly == polynomial.chebyshev.Chebyshev:
        weights = np.empty((order+1))
        weights[1:-1] = np.pi/order
        weights[0] = np.pi/(2*order)
        weights[-1] = weights[0]
        return weights
    elif poly == polynomial.legendre.Legendre:
        interior_weights = 2/((order+1)*order*poly.basis(order)(nodes[1:-1])**2)
        boundary_weights = np.array([1-0.5*np.sum(interior_weights)])
        weights = np.concatenate((boundary_weights,
                                  interior_weights,
                                  boundary_weights))
        return weights
    else:
        raise ValueError("Not a known polynomial type.")
        return False 

Example 50

def gelu_fast(_x):
            return 0.5 * _x * (1 + tf.tanh(tf.sqrt(2 / np.pi) * (_x + 0.044715 * tf.pow(_x, 3)))) 
点赞