The following are code examples for showing how to use . They are extracted from open source Python projects. You can vote up the examples you like or vote down the exmaples you don’t like. You can also save this page to your account.
Example 1
def deriveKernel(self, params, i): self.checkParamsI(params, i) ell = np.exp(params[0]) p = np.exp(params[1]) #compute d2 if (self.K_sq is None): d2 = sq_dist(self.X_scaled.T / ell) #precompute squared distances else: d2 = self.K_sq / ell**2 #compute dp dp = self.dp/p K = np.exp(-d2 / 2.0) if (i==0): return d2*K*np.cos(2*np.pi*dp) elif (i==1): return 2*np.pi*dp*np.sin(2*np.pi*dp)*K else: raise Exception('invalid parameter index:' + str(i))
Example 2
def gelu(x): return 0.5 * x * (1 + T.tanh(T.sqrt(2 / np.pi) * (x + 0.044715 * T.pow(x, 3))))
Example 3
def get_local_wavenumbermesh(self, scaled=True, broadcast=False, eliminate_highest_freq=False): kx = fftfreq(self.N[0], 1./self.N[0]) ky = rfftfreq(self.N[1], 1./self.N[1]) if eliminate_highest_freq: for i, k in enumerate((kx, ky)): if self.N[i] % 2 == 0: k[self.N[i]//2] = 0 Ks = np.meshgrid(kx, ky[self.rank*self.Np[1]//2:(self.rank*self.Np[1]//2+self.Npf)], indexing='ij', sparse=True) if scaled is True: Lp = 2*np.pi/self.L Ks[0] *= Lp[0] Ks[1] *= Lp[1] K = Ks if broadcast is True: K = [np.broadcast_to(k, self.complex_shape()) for k in Ks] return K
Example 4
def _generate_data(): """ ????? ????u(k-1) ? y(k-1)?????y(k) """ # u = np.random.uniform(-1,1,200) # y=[] # former_y_value = 0 # for i in np.arange(0,200): # y.append(former_y_value) # next_y_value = (29.0 / 40) * np.sin( # (16.0 * u[i] + 8 * former_y_value) / (3.0 + 4.0 * (u[i] ** 2) + 4 * (former_y_value ** 2))) \ # + (2.0 / 10) * u[i] + (2.0 / 10) * former_y_value # former_y_value = next_y_value # return u,y u1 = np.random.uniform(-np.pi,np.pi,200) u2 = np.random.uniform(-1,1,200) y = np.zeros(200) for i in range(200): value = np.sin(u1[i]) + u2[i] y[i] = value return u1, u2, y
Example 5
def ae(x): if nonlinearity_name == 'relu': f = tf.nn.relu elif nonlinearity_name == 'elu': f = tf.nn.elu elif nonlinearity_name == 'gelu': # def gelu(x): # return tf.mul(x, tf.erfc(-x / tf.sqrt(2.)) / 2.) # f = gelu def gelu_fast(_x): return 0.5 * _x * (1 + tf.tanh(tf.sqrt(2 / np.pi) * (_x + 0.044715 * tf.pow(_x, 3)))) f = gelu_fast elif nonlinearity_name == 'silu': def silu(_x): return _x * tf.sigmoid(_x) f = silu # elif nonlinearity_name == 'soi': # def soi_map(x): # u = tf.random_uniform(tf.shape(x)) # mask = tf.to_float(tf.less(u, (1 + tf.erf(x / tf.sqrt(2.))) / 2.)) # return tf.cond(is_training, lambda: tf.mul(mask, x), # lambda: tf.mul(x, tf.erfc(-x / tf.sqrt(2.)) / 2.)) # f = soi_map else: raise NameError("Need 'relu', 'elu', 'gelu', or 'silu' for nonlinearity_name") h1 = f(tf.matmul(x, W['1']) + b['1']) h2 = f(tf.matmul(h1, W['2']) + b['2']) h3 = f(tf.matmul(h2, W['3']) + b['3']) h4 = f(tf.matmul(h3, W['4']) + b['4']) h5 = f(tf.matmul(h4, W['5']) + b['5']) h6 = f(tf.matmul(h5, W['6']) + b['6']) h7 = f(tf.matmul(h6, W['7']) + b['7']) return tf.matmul(h7, W['8']) + b['8']
Example 6
def score_samples(self, X): """Return the log-likelihood of each sample See. "Pattern Recognition and Machine Learning" by C. Bishop, 12.2.1 p. 574 or http://www.miketipping.com/papers/met-mppca.pdf Parameters ---------- X: array, shape(n_samples, n_features) The data. Returns ------- ll: array, shape (n_samples,) Log-likelihood of each sample under the current model """ check_is_fitted(self, 'mean_') X = check_array(X) Xr = X - self.mean_ n_features = X.shape[1] log_like = np.zeros(X.shape[0]) precision = self.get_precision() log_like = -.5 * (Xr * (np.dot(Xr, precision))).sum(axis=1) log_like -= .5 * (n_features * log(2. * np.pi) - fast_logdet(precision)) return log_like
Example 7
def getTrainTestKernel(self, params, Xtest): self.checkParams(params) ell = np.exp(params[0]) p = np.exp(params[1]) Xtest_scaled = Xtest/np.sqrt(Xtest.shape[1]) d2 = sq_dist(self.X_scaled.T/ell, Xtest_scaled.T/ell) #precompute squared distances #compute dp dp = np.zeros(d2.shape) for d in xrange(self.X_scaled.shape[1]): dp += (np.outer(self.X_scaled[:,d], np.ones((1, Xtest_scaled.shape[0]))) - np.outer(np.ones((self.X_scaled.shape[0], 1)), Xtest_scaled[:,d])) dp /= p K = np.exp(-d2 / 2.0) return np.cos(2*np.pi*dp)*K
Example 8
def reset(self,random_start_state=False, assign_state = False, n=None, k = None, \ perturb_params = False, p_LINK_LENGTH_1 = 0, p_LINK_LENGTH_2 = 0, \ p_LINK_MASS_1 = 0, p_LINK_MASS_2 = 0, **kw): self.t = 0 self.state = np.random.uniform(low=-0.1,high=0.1,size=(4,)) self.LINK_LENGTH_1 = 1. # [m] self.LINK_LENGTH_2 = 1. # [m] self.LINK_MASS_1 = 1. #: [kg] mass of link 1 self.LINK_MASS_2 = 1. if perturb_params: self.LINK_LENGTH_1 += (self.LINK_LENGTH_1 * p_LINK_LENGTH_1) # [m] self.LINK_LENGTH_2 += (self.LINK_LENGTH_2 * p_LINK_LENGTH_2) # [m] self.LINK_MASS_1 += (self.LINK_MASS_1 * p_LINK_MASS_1) #: [kg] mass of link 1 self.LINK_MASS_2 += (self.LINK_MASS_2 * p_LINK_MASS_2) #: [kg] mass of link 2 # The idea here is that we can initialize our batch randomly so that we can get # more variety in the state space that we attempt to fit a policy to. if random_start_state: self.state[:2] = np.random.uniform(-np.pi,np.pi,size=2) if assign_state: self.state[0] = wrap((2*k*np.pi)/(1.0*n),-np.pi,np.pi)
Example 9
def calc_reward(self, action = None, state = None , **kw ): '''Calculates the continuous reward based on the height of the foot (y position) with a penalty applied if the hinge is moving (we want the acrobot to be upright and stationary!), which is then normalized by the combined lengths of the links''' t = self.target if state is None: s = self.state else: s = state # Make sure that input state is clipped/wrapped to the given bounds (not guaranteed when coming from the BNN) s[0] = wrap( s[0] , -np.pi , np.pi ) s[1] = wrap( s[1] , -np.pi , np.pi ) s[2] = bound( s[2] , -self.MAX_VEL_1 , self.MAX_VEL_1 ) s[3] = bound( s[3] , -self.MAX_VEL_1 , self.MAX_VEL_1 ) hinge, foot = self.get_cartesian_points(s) reward = -0.05 * (foot[0] - self.LINK_LENGTH_1)**2 terminal = self.is_terminal(s) return 10 if terminal else reward
Example 10
def EStep(self): P = np.zeros((self.M, self.N)) for i in range(0, self.M): diff = self.X - np.tile(self.TY[i, :], (self.N, 1)) diff = np.multiply(diff, diff) P[i, :] = P[i, :] + np.sum(diff, axis=1) c = (2 * np.pi * self.sigma2) ** (self.D / 2) c = c * self.w / (1 - self.w) c = c * self.M / self.N P = np.exp(-P / (2 * self.sigma2)) den = np.sum(P, axis=0) den = np.tile(den, (self.M, 1)) den[den==0] = np.finfo(float).eps self.P = np.divide(P, den) self.Pt1 = np.sum(self.P, axis=0) self.P1 = np.sum(self.P, axis=1) self.Np = np.sum(self.P1)
Example 11
def create_reference_image(size, x0=10., y0=-3., sigma_x=50., sigma_y=30., dtype='float64', reverse_xaxis=False, correct_axes=True, sizey=None, **kwargs): """ Creates a reference image: a gaussian brightness with elliptical """ inc_cos = np.cos(0./180.*np.pi) delta_x = 1. x = (np.linspace(0., size - 1, size) - size / 2.) * delta_x if sizey: y = (np.linspace(0., sizey-1, sizey) - sizey/2.) * delta_x else: y = x.copy() if reverse_xaxis: xx, yy = np.meshgrid(-x, y/inc_cos) elif correct_axes: xx, yy = np.meshgrid(-x, -y/inc_cos) else: xx, yy = np.meshgrid(x, y/inc_cos) image = np.exp(-(xx-x0)**2./sigma_x - (yy-y0)**2./sigma_y) return image.astype(dtype)
Example 12
def rotate_point_cloud(batch_data): """ Randomly rotate the point clouds to augument the dataset rotation is per shape based along up direction Input: BxNx3 array, original batch of point clouds Return: BxNx3 array, rotated batch of point clouds """ rotated_data = np.zeros(batch_data.shape, dtype=np.float32) for k in range(batch_data.shape[0]): rotation_angle = np.random.uniform() * 2 * np.pi cosval = np.cos(rotation_angle) sinval = np.sin(rotation_angle) rotation_matrix = np.array([[cosval, 0, sinval], [0, 1, 0], [-sinval, 0, cosval]]) shape_pc = batch_data[k, ...] rotated_data[k, ...] = np.dot(shape_pc.reshape((-1, 3)), rotation_matrix) return rotated_data
Example 13
def rotate_point_cloud_by_angle(batch_data, rotation_angle): """ Rotate the point cloud along up direction with certain angle. Input: BxNx3 array, original batch of point clouds Return: BxNx3 array, rotated batch of point clouds """ rotated_data = np.zeros(batch_data.shape, dtype=np.float32) for k in range(batch_data.shape[0]): #rotation_angle = np.random.uniform() * 2 * np.pi cosval = np.cos(rotation_angle) sinval = np.sin(rotation_angle) rotation_matrix = np.array([[cosval, 0, sinval], [0, 1, 0], [-sinval, 0, cosval]]) shape_pc = batch_data[k, ...] rotated_data[k, ...] = np.dot(shape_pc.reshape((-1, 3)), rotation_matrix) return rotated_data
Example 14
def ac_solve(net): """ :param net: :return: """ net.conductance_matrix() net.dynamic_matrix() net.rhs_matrix() # frequency f = float(net.analysis[-1]) # linear system definition net.x = spsolve(net.G + 1j * 2 * np.pi * f* net.C, net.rhs)
Example 15
def thinking(self): """Deliberate to avoid obstacles on the path.""" if self.motion.moveIsActive(): # Maneuver occurring. Let's finish it # before taking any other measure. pass elif not self.sensors['proximity'][0].imminent_collision: # Goes back to moving state. self.behavior_ = self.BEHAVIORS.moving elif all(s.imminent_collision for s in self.sensors['proximity']): # There's nothing left to be done, only flag this is a dead-end. self.behavior_ = self.BEHAVIORS.stuck else: peripheral_sensors = self.sensors['proximity'][1:] for maneuver, sensor in zip(range(1, 4), peripheral_sensors): if not sensor.imminent_collision: # A sensor that indicates no obstacles were found. # Move in that direction. self.motion.post.moveTo(0, 0, np.pi / 2) break return self
Example 16
def gaussian_nll(x, mus, sigmas): """ NLL for Multivariate Normal with diagonal covariance matrix See: wikipedia.org/wiki/Multivariate_normal_distribution#Likelihood_function where \Sigma = diag(s_1^2,..., s_n^2). x, mus, sigmas all should have the same shape. sigmas (s_1,..., s_n) should be strictly positive. Results in output shape of similar but without the last dimension. """ nll = lib.floatX(numpy.log(2. * numpy.pi)) nll += 2. * T.log(sigmas) nll += ((x - mus) / sigmas) ** 2. nll = nll.sum(axis=-1) nll *= lib.floatX(0.5) return nll
Example 17
def tsukuba_load_poses(fn): """ Retrieve poses X Y Z R P Y - > X -Y -Z R -P -Y np.deg2rad(p[3]),-np.deg2rad(p[4]),-np.deg2rad(p[5]), p[0]*.01,-p[1]*.01,-p[2]*.01, axes='sxyz') for p in P ] """ P = np.loadtxt(os.path.expanduser(fn), dtype=np.float64, delimiter=',') return [ RigidTransform.from_rpyxyz(np.pi, 0, 0, 0, 0, 0) * \ RigidTransform.from_rpyxyz( np.deg2rad(p[3]),np.deg2rad(p[4]),np.deg2rad(p[5]), p[0]*.01,p[1]*.01,p[2]*.01, axes='sxyz') * \ RigidTransform.from_rpyxyz(np.pi, 0, 0, 0, 0, 0) for p in P ] # return [ RigidTransform.from_rpyxyz( # np.deg2rad(p[3]),-np.deg2rad(p[4]),-np.deg2rad(p[5]), # p[0]*.01,-p[1]*.01,-p[2]*.01, axes='sxyz') for p in P ]
Example 18
def __call__(self, z): z1 = tf.reshape(tf.slice(z, [0, 0], [-1, 1]), [-1]) z2 = tf.reshape(tf.slice(z, [0, 1], [-1, 1]), [-1]) v1 = tf.sqrt((z1 - 5) * (z1 - 5) + z2 * z2) * 2 v2 = tf.sqrt((z1 + 5) * (z1 + 5) + z2 * z2) * 2 v3 = tf.sqrt((z1 - 2.5) * (z1 - 2.5) + (z2 - 2.5 * np.sqrt(3)) * (z2 - 2.5 * np.sqrt(3))) * 2 v4 = tf.sqrt((z1 + 2.5) * (z1 + 2.5) + (z2 + 2.5 * np.sqrt(3)) * (z2 + 2.5 * np.sqrt(3))) * 2 v5 = tf.sqrt((z1 - 2.5) * (z1 - 2.5) + (z2 + 2.5 * np.sqrt(3)) * (z2 + 2.5 * np.sqrt(3))) * 2 v6 = tf.sqrt((z1 + 2.5) * (z1 + 2.5) + (z2 - 2.5 * np.sqrt(3)) * (z2 - 2.5 * np.sqrt(3))) * 2 pdf1 = tf.exp(-0.5 * v1 * v1) / tf.sqrt(2 * np.pi * 0.25) pdf2 = tf.exp(-0.5 * v2 * v2) / tf.sqrt(2 * np.pi * 0.25) pdf3 = tf.exp(-0.5 * v3 * v3) / tf.sqrt(2 * np.pi * 0.25) pdf4 = tf.exp(-0.5 * v4 * v4) / tf.sqrt(2 * np.pi * 0.25) pdf5 = tf.exp(-0.5 * v5 * v5) / tf.sqrt(2 * np.pi * 0.25) pdf6 = tf.exp(-0.5 * v6 * v6) / tf.sqrt(2 * np.pi * 0.25) return -tf.log((pdf1 + pdf2 + pdf3 + pdf4 + pdf5 + pdf6) / 6)
Example 19
def _evalfull(self, x): fadd = self.fopt curshape, dim = self.shape_(x) # it is assumed x are row vectors if self.lastshape != curshape: self.initwithsize(curshape, dim) # BOUNDARY HANDLING # TRANSFORMATION IN SEARCH SPACE x = x - self.arrxopt x = monotoneTFosc(x) idx = (x > 0) x[idx] = x[idx] ** (1 + self.arrexpo[idx] * np.sqrt(x[idx])) x = self.arrscales * x # COMPUTATION core ftrue = 10 * (self.dim - np.sum(np.cos(2 * np.pi * x), -1)) + np.sum(x ** 2, -1) fval = self.noise(ftrue) # without noise # FINALIZE ftrue += fadd fval += fadd return fval, ftrue
Example 20
def initwithsize(self, curshape, dim): # DIM-dependent initialization if self.dim != dim: if self.zerox: self.xopt = zeros(dim) else: self.xopt = compute_xopt(self.rseed, dim) self.rotation = compute_rotation(self.rseed + 1e6, dim) self.scales = (1. / self.condition ** .5) ** linspace(0, 1, dim) # CAVE? self.linearTF = dot(compute_rotation(self.rseed, dim), diag(self.scales)) # decouple scaling from function definition self.linearTF = dot(self.linearTF, self.rotation) K = np.arange(0, 12) self.aK = np.reshape(0.5 ** K, (1, 12)) self.bK = np.reshape(3. ** K, (1, 12)) self.f0 = np.sum(self.aK * np.cos(2 * np.pi * self.bK * 0.5)) # optimal value # DIM- and POPSI-dependent initialisations of DIM*POPSI matrices if self.lastshape != curshape: self.dim = dim self.lastshape = curshape self.arrxopt = resize(self.xopt, curshape)
Example 21
def pan(self, dx, dy, dz, relative=False): """ Moves the center (look-at) position while holding the camera in place. If relative=True, then the coordinates are interpreted such that x if in the global xy plane and points to the right side of the view, y is in the global xy plane and orthogonal to x, and z points in the global z direction. Distances are scaled roughly such that a value of 1.0 moves by one pixel on screen. """ if not relative: self.camera_center += QtGui.QVector3D(dx, dy, dz) else: cPos = self.cameraPosition() cVec = self.camera_center - cPos dist = cVec.length() ## distance from camera to center xDist = dist * 2. * np.tan(0.5 * self.camera_fov * np.pi / 180.) ## approx. width of view at distance of center point xScale = xDist / self.width() zVec = QtGui.QVector3D(0,0,1) xVec = QtGui.QVector3D.crossProduct(zVec, cVec).normalized() yVec = QtGui.QVector3D.crossProduct(xVec, zVec).normalized() self.camera_center = self.camera_center + xVec * xScale * dx + yVec * xScale * dy + zVec * xScale * dz self.update()
Example 22
def test_pitch_estimation(self): """ test pitch estimation algo with contrived small example if pitch is within 5 Hz, then say its good (for this small example, since the algorithm wasn't made for this type of synthesized signal) """ cfg = ExperimentConfig(pitch_strength_thresh=-np.inf) # the next 3 variables are in Hz tolerance = 5 fs = 48000 f = 150 # create a sine wave of f Hz freq sampled at fs Hz x = np.sin(2*np.pi * f/fs * np.arange(2**10)) # estimate the pitch, it should be close to f p, t, s = pest.pitch_estimation(x, fs, cfg) self.assertTrue(np.all(np.abs(p - f) < tolerance))
Example 23
def setFromQTransform(self, tr): p1 = Point(tr.map(0., 0.)) p2 = Point(tr.map(1., 0.)) p3 = Point(tr.map(0., 1.)) dp2 = Point(p2-p1) dp3 = Point(p3-p1) ## detect flipped axes if dp2.angle(dp3) > 0: #da = 180 da = 0 sy = -1.0 else: da = 0 sy = 1.0 self._state = { 'pos': Point(p1), 'scale': Point(dp2.length(), dp3.length() * sy), 'angle': (np.arctan2(dp2[1], dp2[0]) * 180. / np.pi) + da } self.update()
Example 24
def projectionMatrix(self, region=None): # Xw = (Xnd + 1) * width/2 + X if region is None: region = (0, 0, self.width(), self.height()) x0, y0, w, h = self.getViewport() dist = self.opts['distance'] fov = self.opts['fov'] nearClip = dist * 0.001 farClip = dist * 1000. r = nearClip * np.tan(fov * 0.5 * np.pi / 180.) t = r * h / w # convert screen coordinates (region) to normalized device coordinates # Xnd = (Xw - X0) * 2/width - 1 ## Note that X0 and width in these equations must be the values used in viewport left = r * ((region[0]-x0) * (2.0/w) - 1) right = r * ((region[0]+region[2]-x0) * (2.0/w) - 1) bottom = t * ((region[1]-y0) * (2.0/h) - 1) top = t * ((region[1]+region[3]-y0) * (2.0/h) - 1) tr = QtGui.QMatrix4x4() tr.frustum(left, right, bottom, top, nearClip, farClip) return tr
Example 25
def pan(self, dx, dy, dz, relative=False): """ Moves the center (look-at) position while holding the camera in place. If relative=True, then the coordinates are interpreted such that x if in the global xy plane and points to the right side of the view, y is in the global xy plane and orthogonal to x, and z points in the global z direction. Distances are scaled roughly such that a value of 1.0 moves by one pixel on screen. """ if not relative: self.opts['center'] += QtGui.QVector3D(dx, dy, dz) else: cPos = self.cameraPosition() cVec = self.opts['center'] - cPos dist = cVec.length() ## distance from camera to center xDist = dist * 2. * np.tan(0.5 * self.opts['fov'] * np.pi / 180.) ## approx. width of view at distance of center point xScale = xDist / self.width() zVec = QtGui.QVector3D(0,0,1) xVec = QtGui.QVector3D.crossProduct(zVec, cVec).normalized() yVec = QtGui.QVector3D.crossProduct(xVec, zVec).normalized() self.opts['center'] = self.opts['center'] + xVec * xScale * dx + yVec * xScale * dy + zVec * xScale * dz self.update()
Example 26
def makeArrowPath(headLen=20, tipAngle=20, tailLen=20, tailWidth=3, baseAngle=0): """ Construct a path outlining an arrow with the given dimensions. The arrow points in the -x direction with tip positioned at 0,0. If *tipAngle* is supplied (in degrees), it overrides *headWidth*. If *tailLen* is None, no tail will be drawn. """ headWidth = headLen * np.tan(tipAngle * 0.5 * np.pi/180.) path = QtGui.QPainterPath() path.moveTo(0,0) path.lineTo(headLen, -headWidth) if tailLen is None: innerY = headLen - headWidth * np.tan(baseAngle*np.pi/180.) path.lineTo(innerY, 0) else: tailWidth *= 0.5 innerY = headLen - (headWidth-tailWidth) * np.tan(baseAngle*np.pi/180.) path.lineTo(innerY, -tailWidth) path.lineTo(headLen + tailLen, -tailWidth) path.lineTo(headLen + tailLen, tailWidth) path.lineTo(innerY, tailWidth) path.lineTo(headLen, headWidth) path.lineTo(0,0) return path
Example 27
def setFromQTransform(self, tr): p1 = Point(tr.map(0., 0.)) p2 = Point(tr.map(1., 0.)) p3 = Point(tr.map(0., 1.)) dp2 = Point(p2-p1) dp3 = Point(p3-p1) ## detect flipped axes if dp2.angle(dp3) > 0: #da = 180 da = 0 sy = -1.0 else: da = 0 sy = 1.0 self._state = { 'pos': Point(p1), 'scale': Point(dp2.length(), dp3.length() * sy), 'angle': (np.arctan2(dp2[1], dp2[0]) * 180. / np.pi) + da } self.update()
Example 28
def projectionMatrix(self, region=None): # Xw = (Xnd + 1) * width/2 + X if region is None: region = (0, 0, self.width(), self.height()) x0, y0, w, h = self.getViewport() dist = self.opts['distance'] fov = self.opts['fov'] nearClip = dist * 0.001 farClip = dist * 1000. r = nearClip * np.tan(fov * 0.5 * np.pi / 180.) t = r * h / w # convert screen coordinates (region) to normalized device coordinates # Xnd = (Xw - X0) * 2/width - 1 ## Note that X0 and width in these equations must be the values used in viewport left = r * ((region[0]-x0) * (2.0/w) - 1) right = r * ((region[0]+region[2]-x0) * (2.0/w) - 1) bottom = t * ((region[1]-y0) * (2.0/h) - 1) top = t * ((region[1]+region[3]-y0) * (2.0/h) - 1) tr = QtGui.QMatrix4x4() tr.frustum(left, right, bottom, top, nearClip, farClip) return tr
Example 29
def pan(self, dx, dy, dz, relative=False): """ Moves the center (look-at) position while holding the camera in place. If relative=True, then the coordinates are interpreted such that x if in the global xy plane and points to the right side of the view, y is in the global xy plane and orthogonal to x, and z points in the global z direction. Distances are scaled roughly such that a value of 1.0 moves by one pixel on screen. """ if not relative: self.opts['center'] += QtGui.QVector3D(dx, dy, dz) else: cPos = self.cameraPosition() cVec = self.opts['center'] - cPos dist = cVec.length() ## distance from camera to center xDist = dist * 2. * np.tan(0.5 * self.opts['fov'] * np.pi / 180.) ## approx. width of view at distance of center point xScale = xDist / self.width() zVec = QtGui.QVector3D(0,0,1) xVec = QtGui.QVector3D.crossProduct(zVec, cVec).normalized() yVec = QtGui.QVector3D.crossProduct(xVec, zVec).normalized() self.opts['center'] = self.opts['center'] + xVec * xScale * dx + yVec * xScale * dy + zVec * xScale * dz self.update()
Example 30
def make_wafer(self,wafer_r,frame,label,labelloc,labelwidth): """ Generate wafer with primary flat on the left. From https://coresix.com/products/wafers/ I estimated that the angle defining the wafer flat to arctan(flat/2 / radius) """ angled = 18 angle = angled*np.pi/180 circ = cad.shapes.Circle((0,0), wafer_r, width=self.boxwidth, initial_angle=180+angled, final_angle=360+180-angled, layer=self.layer_box) flat = cad.core.Path([(-wafer_r*np.cos(angle),wafer_r*np.sin(angle)),(-wafer_r*np.cos(angle),-wafer_r*np.sin(angle))], width=self.boxwidth, layer=self.layer_box) date = time.strftime("%d/%m/%Y") if labelloc==(0,0): labelloc=(-2e3,wafer_r-1e3) # The label is added 100 um on top of the main cell label_grid_chip = cad.shapes.LineLabel( self.name + " " +\ date,500,position=labelloc, line_width=labelwidth, layer=self.layer_label) if frame==True: self.add(circ) self.add(flat) if label==True: self.add(label_grid_chip)
Example 31
def evaluation(self, X_test, y_test): # normalization X_test = self.normalization(X_test) # average over the output pred_y_test = np.zeros([self.M, len(y_test)]) prob = np.zeros([self.M, len(y_test)]) ''' Since we have M particles, we use a Bayesian view to calculate rmse and log-likelihood ''' for i in range(self.M): w1, b1, w2, b2, loggamma, loglambda = self.unpack_weights(self.theta[i, :]) pred_y_test[i, :] = self.nn_predict(X_test, w1, b1, w2, b2) * self.std_y_train + self.mean_y_train prob[i, :] = np.sqrt(np.exp(loggamma)) /np.sqrt(2*np.pi) * np.exp( -1 * (np.power(pred_y_test[i, :] - y_test, 2) / 2) * np.exp(loggamma) ) pred = np.mean(pred_y_test, axis=0) # evaluation svgd_rmse = np.sqrt(np.mean((pred - y_test)**2)) svgd_ll = np.mean(np.log(np.mean(prob, axis = 0))) return (svgd_rmse, svgd_ll)
Example 32
def nufft_scale1(N, K, alpha, beta, Nmid): ''' calculate image space scaling factor ''' # import types # if alpha is types.ComplexType: alpha = numpy.real(alpha) # print('complex alpha may not work, but I just let it as') L = len(alpha) - 1 if L > 0: sn = numpy.zeros((N, 1)) n = numpy.arange(0, N).reshape((N, 1), order='F') i_gam_n_n0 = 1j * (2 * numpy.pi / K) * (n - Nmid) * beta for l1 in range(-L, L + 1): alf = alpha[abs(l1)] if l1 < 0: alf = numpy.conj(alf) sn = sn + alf * numpy.exp(i_gam_n_n0 * l1) else: sn = numpy.dot(alpha, numpy.ones((N, 1), dtype=numpy.float32)) return sn
Example 33
def nufft_r(om, N, J, K, alpha, beta): ''' equation (30) of Fessler's paper ''' M = numpy.size(om) # 1D size gam = 2.0 * numpy.pi / (K * 1.0) nufft_offset0 = nufft_offset(om, J, K) # om/gam - nufft_offset , [M,1] dk = 1.0 * om / gam - nufft_offset0 # om/gam - nufft_offset , [M,1] arg = outer_sum(-numpy.arange(1, J + 1) * 1.0, dk) L = numpy.size(alpha) - 1 # print('alpha',alpha) rr = numpy.zeros((J, M), dtype=numpy.float32) rr = iterate_l1(L, alpha, arg, beta, K, N, rr) return (rr, arg)
Example 34
def kaiser_bessel_ft(u, J, alpha, kb_m, d): ''' Interpolation weight for given J/alpha/kb-m ''' u = u * (1.0 + 0.0j) import scipy.special z = numpy.sqrt((2 * numpy.pi * (J / 2) * u) ** 2.0 - alpha ** 2.0) nu = d / 2 + kb_m y = ((2 * numpy.pi) ** (d / 2)) * ((J / 2) ** d) * (alpha ** kb_m) / \ scipy.special.iv(kb_m, alpha) * scipy.special.jv(nu, z) / (z ** nu) y = numpy.real(y) return y
Example 35
def nufft_scale1(N, K, alpha, beta, Nmid): ''' Calculate image space scaling factor ''' # import types # if alpha is types.ComplexType: alpha = numpy.real(alpha) # print('complex alpha may not work, but I just let it as') L = len(alpha) - 1 if L > 0: sn = numpy.zeros((N, 1)) n = numpy.arange(0, N).reshape((N, 1), order='F') i_gam_n_n0 = 1j * (2 * numpy.pi / K) * (n - Nmid) * beta for l1 in range(-L, L + 1): alf = alpha[abs(l1)] if l1 < 0: alf = numpy.conj(alf) sn = sn + alf * numpy.exp(i_gam_n_n0 * l1) else: sn = numpy.dot(alpha, numpy.ones((N, 1))) return sn
Example 36
def __init__(self): # Angle at which to fail the episode self.theta_threshold_radians = 12 * 2 * math.pi / 360 self.x_threshold = 2.4 # Initializing Course : predfined Oval Course # ToDo: ???????????? Rad = 190.0 Poly = 16 self.Course = Walls(240, 50, 640-(50+Rad),50) for i in range(1, Poly): self.Course.addPoint(Rad*math.cos(-np.pi/2.0 + np.pi*i/Poly)+640-(50+Rad), Rad*math.sin(-np.pi/2.0 + np.pi*i/Poly)+50+Rad) self.Course.addPoint(240, 50+Rad*2) for i in range(1, Poly): self.Course.addPoint(Rad*math.cos(np.pi/2.0 + np.pi*i/Poly)+(50+Rad), Rad*math.sin(np.pi/2.0 + np.pi*i/Poly)+50+Rad) self.Course.addPoint(240,50) # Outr Boundary Box self.BBox = Walls(640, 479, 0, 479) self.BBox.addPoint(0,0) self.BBox.addPoint(640,0) self.BBox.addPoint(640,479) # Mono Sensor Line Follower self.A = Agent((640, 480), 240, 49) # Action Space : left wheel speed, right wheel speed # Observation Space : Detect Line (True, False) self.action_space = spaces.Box( np.array([-1.,-1.]), np.array([+1.,+1.])) self.observation_space = spaces.Discrete(1) self._seed() self.reset() self.viewer = None self.steps_beyond_done = None self._configure()
Example 37
def planetary_radius(mass, radius): """Calculate planetary radius if not given assuming a density dependent on mass""" if not isinstance(mass, (int, float)): if isinstance(radius, (int, float)): return radius else: return '...' if mass < 0: raise ValueError('Only positive planetary masses allowed.') Mj = c.M_jup Rj = c.R_jup if radius == '...' and isinstance(mass, (int, float)): if mass < 0.01: # Earth density rho = 5.51 elif 0.01 <= mass <= 0.5: rho = 1.64 # Neptune density else: rho = Mj/(4./3*np.pi*Rj**3) # Jupiter density R = ((mass*Mj)/(4./3*np.pi*rho))**(1./3) # Neptune density R /= Rj else: return radius return R.value
Example 38
def test_kbd(): M = 100 w = mdct.windows.kaiser_derived(M, beta=4.) assert numpy.allclose(w[:M//2] ** 2 + w[-M//2:] ** 2, 1.) with pytest.raises(ValueError): mdct.windows.kaiser_derived(M + 1, beta=4.) assert numpy.allclose( mdct.windows.kaiser_derived(2, beta=numpy.pi/2)[:1], [numpy.sqrt(2)/2]) assert numpy.allclose( mdct.windows.kaiser_derived(4, beta=numpy.pi/2)[:2], [0.518562710536, 0.855039598640]) assert numpy.allclose( mdct.windows.kaiser_derived(6, beta=numpy.pi/2)[:3], [0.436168993154, 0.707106781187, 0.899864772847])
Example 39
def gaussian_kernel(kernel_shape, sigma=None): """ Get 2D Gaussian kernel :param kernel_shape: kernel size :param sigma: sigma of Gaussian distribution :return: 2D Gaussian kernel """ kern = numpy.zeros((kernel_shape, kernel_shape), dtype='float32') # get sigma from kernel size if sigma is None: sigma = 0.3*((kernel_shape-1.)*0.5 - 1.) + 0.8 def gauss(x, y, s): Z = 2. * numpy.pi * s ** 2. return 1. / Z * numpy.exp(-(x ** 2. + y ** 2.) / (2. * s ** 2.)) mid = numpy.floor(kernel_shape / 2.) for i in xrange(0, kernel_shape): for j in xrange(0, kernel_shape): kern[i, j] = gauss(i - mid, j - mid, sigma) return kern / kern.sum()
Example 40
def is_grid(self, grid, image): """ Checks the "gridness" by analyzing the results of a hough transform. :param grid: binary image :return: wheter the object in the image might be a grid or not """ # - Distance resolution = 1 pixel # - Angle resolution = 1° degree for high line density # - Threshold = 144 hough intersections # 8px digit + 3*2px white + 2*1px border = 16px per cell # => 144x144 grid # 144 - minimum number of points on the same line # (but due to imperfections in the binarized image it's highly # improbable to detect a 144x144 grid) lines = cv2.HoughLines(grid, 1, np.pi / 180, 144) if lines is not None and np.size(lines) >= 20: lines = lines.reshape((lines.size / 2), 2) # theta in [0, pi] (theta > pi => rho < 0) # normalise theta in [-pi, pi] and negatives rho lines[lines[:, 0] < 0, 1] -= np.pi lines[lines[:, 0] < 0, 0] *= -1 criteria = (cv2.TERM_CRITERIA_EPS, 0, 0.01) # split lines into 2 groups to check whether they're perpendicular if cv2.__version__[0] == '2': density, clmap, centers = cv2.kmeans( lines[:, 1], 2, criteria, 5, cv2.KMEANS_RANDOM_CENTERS) else: density, clmap, centers = cv2.kmeans( lines[:, 1], 2, None, criteria, 5, cv2.KMEANS_RANDOM_CENTERS) if self.debug: self.save_hough(lines, clmap) # Overall variance from respective centers var = density / np.size(clmap) sin = abs(np.sin(centers[0] - centers[1])) # It is probably a grid only if: # - centroids difference is almost a 90° angle (+-15° limit) # - variance is less than 5° (keeping in mind surface distortions) return sin > 0.99 and var <= (5*np.pi / 180) ** 2 else: return False
Example 41
def save_hough(self, lines, clmap): """ :param lines: (rho, theta) pairs :param clmap: clusters assigned to lines :return: None """ height, width = self.image.shape ratio = 600. * (self.step+1) / min(height, width) temp = cv2.resize(self.image, None, fx=ratio, fy=ratio, interpolation=cv2.INTER_CUBIC) temp = cv2.cvtColor(temp, cv2.COLOR_GRAY2BGR) colors = [(0, 127, 255), (255, 0, 127)] for i in range(0, np.size(lines) / 2): rho = lines[i, 0] theta = lines[i, 1] color = colors[clmap[i, 0]] if theta < np.pi / 4 or theta > 3 * np.pi / 4: pt1 = (rho / np.cos(theta), 0) pt2 = (rho - height * np.sin(theta) / np.cos(theta), height) else: pt1 = (0, rho / np.sin(theta)) pt2 = (width, (rho - width * np.cos(theta)) / np.sin(theta)) pt1 = (int(pt1[0]), int(pt1[1])) pt2 = (int(pt2[0]), int(pt2[1])) cv2.line(temp, pt1, pt2, color, 5) self.save2image(temp)
Example 42
def is_grid(self, grid, image): """ Checks the "gridness" by analyzing the results of a hough transform. :param grid: binary image :return: wheter the object in the image might be a grid or not """ # - Distance resolution = 1 pixel # - Angle resolution = 1° degree for high line density # - Threshold = 144 hough intersections # 8px digit + 3*2px white + 2*1px border = 16px per cell # => 144x144 grid # 144 - minimum number of points on the same line # (but due to imperfections in the binarized image it's highly # improbable to detect a 144x144 grid) lines = cv2.HoughLines(grid, 1, np.pi / 180, 144) if lines is not None and np.size(lines) >= 20: lines = lines.reshape((lines.size/2), 2) # theta in [0, pi] (theta > pi => rho < 0) # normalise theta in [-pi, pi] and negatives rho lines[lines[:, 0] < 0, 1] -= np.pi lines[lines[:, 0] < 0, 0] *= -1 criteria = (cv2.TERM_CRITERIA_EPS, 0, 0.01) # split lines into 2 groups to check whether they're perpendicular if cv2.__version__[0] == '2': density, clmap, centers = cv2.kmeans( lines[:, 1], 2, criteria, 5, cv2.KMEANS_RANDOM_CENTERS) else: density, clmap, centers = cv2.kmeans( lines[:, 1], 2, None, criteria, 5, cv2.KMEANS_RANDOM_CENTERS) # Overall variance from respective centers var = density / np.size(clmap) sin = abs(np.sin(centers[0] - centers[1])) # It is probably a grid only if: # - centroids difference is almost a 90° angle (+-15° limit) # - variance is less than 5° (keeping in mind surface distortions) return sin > 0.99 and var <= (5*np.pi / 180) ** 2 else: return False
Example 43
def build_2D_cov_matrix(sigmax,sigmay,angle,verbose=True): """ Build a covariance matrix for a 2D multivariate Gaussian --- INPUT --- sigmax Standard deviation of the x-compoent of the multivariate Gaussian sigmay Standard deviation of the y-compoent of the multivariate Gaussian angle Angle to rotate matrix by in degrees (clockwise) to populate covariance cross terms verbose Toggle verbosity --- EXAMPLE OF USE --- import tdose_utilities as tu covmatrix = tu.build_2D_cov_matrix(3,1,35) """ if verbose: print ' - Build 2D covariance matrix with varinaces (x,y)=('+str(sigmax)+','+str(sigmay)+\ ') and then rotated '+str(angle)+' degrees' cov_orig = np.zeros([2,2]) cov_orig[0,0] = sigmay**2.0 cov_orig[1,1] = sigmax**2.0 angle_rad = (180.0-angle) * np.pi/180.0 # The (90-angle) makes sure the same convention as DS9 is used c, s = np.cos(angle_rad), np.sin(angle_rad) rotmatrix = np.matrix([[c, -s], [s, c]]) cov_rot = np.dot(np.dot(rotmatrix,cov_orig),np.transpose(rotmatrix)) # performing rot * cov * rot^T return cov_rot # = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
Example 44
def normalize_2D_cov_matrix(covmatrix,verbose=True): """ Calculate the normalization foctor for a multivariate gaussian from it's covariance matrix However, not that gaussian returned by tu.gen_2Dgauss() is normalized for scale=1 --- INPUT --- covmatrix covariance matrix to normaliz verbose Toggle verbosity """ detcov = np.linalg.det(covmatrix) normfac = 1.0 / (2.0 * np.pi * np.sqrt(detcov) ) return normfac # = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
Example 45
def f(r,theta): out = np.sin(theta)*np.cos(K*2*np.pi*(1./r))/r out[-1] = 0 return out
Example 46
def dfdr(r,theta): out = (2*K*np.pi*np.sin(2*np.pi*K/r) -r*np.cos(2*np.pi*K/r))*np.sin(theta)/(r**3) out[-1] = 0 return out
Example 47
def dfdrdtheta(r,theta): out = (2*K*np.pi*np.sin(2*np.pi*K/r) -r*np.cos(2*np.pi*K/r))*np.cos(theta)/(r**3) out[-1] = 0 return out
Example 48
def __init__(self, order_X,r_h, order_theta, theta_min = 0, theta_max = np.pi, L=1): """Constructor. Parameters ---------- order_X -- polynomial order in X direction r_h -- physical minimum radius (uncompactified coordinates) order_theta -- polynomial order in theta direction theta_min -- minimum longitudinal value. Should be no less than 0. theta_max -- maximum longitudinal value. Should be no greater than pi. L -- Characteristic length scale of problem. Needed for compactification """ self.order_X = order_X self.order_theta = order_theta self.r_h = r_h self.theta_min = theta_min self.theta_max = theta_max self.L = L super(PyballdDiscretization,self).__init__(order_X, self.X_min,self.X_max, order_theta, theta_min,theta_max) self.r = self.get_r_from_X(self.x) self.R = self.get_r_from_X(self.X) self.dRdX = self.get_drdX(self.X) self.drdX = self.get_drdX(self.x) self.dXdR = self.get_dXdr(self.X) self.dXdr = self.get_dXdr(self.x) self.d2XdR2 = self.get_d2Xdr2(self.X) self.d2Xdr2 = self.get_d2Xdr2(self.x) self.d2RdX2 = self.get_d2rdX2(self.X) self.d2rdX2 = self.get_d2rdX2(self.x) self.theta = self.y self.THETA = self.Y
Example 49
def get_integration_weights(order,nodes=None): """ Returns the integration weights for Gauss-Lobatto quadrature as a function of the order of the polynomial we want to represent. See: https://en.wikipedia.org/wiki/Gaussian_quadrature See: arXive:gr-qc/0609020v1 """ if np.all(nodes == False): nodes=get_quadrature_points(order) if poly == polynomial.chebyshev.Chebyshev: weights = np.empty((order+1)) weights[1:-1] = np.pi/order weights[0] = np.pi/(2*order) weights[-1] = weights[0] return weights elif poly == polynomial.legendre.Legendre: interior_weights = 2/((order+1)*order*poly.basis(order)(nodes[1:-1])**2) boundary_weights = np.array([1-0.5*np.sum(interior_weights)]) weights = np.concatenate((boundary_weights, interior_weights, boundary_weights)) return weights else: raise ValueError("Not a known polynomial type.") return False
Example 50
def gelu_fast(_x): return 0.5 * _x * (1 + tf.tanh(tf.sqrt(2 / np.pi) * (_x + 0.044715 * tf.pow(_x, 3))))