The following are code examples for showing how to use . They are extracted from open source Python projects. You can vote up the examples you like or vote down the exmaples you don’t like. You can also save this page to your account.
Example 1
def __init__(self, y_coo, num_factor, bias_scale, factor_scale, weight=None): if weight is None: weight = np.ones(y_coo.data.size) self.y_coo = y_coo self.y_csr = scipy.sparse.csr_matrix(y_coo) self.y_csc = scipy.sparse.csc_matrix(y_coo) self.num_factor = num_factor self.prior_param = { 'col_bias_scale': bias_scale, 'row_bias_scale': bias_scale, 'factor_scale': np.tile(factor_scale, self.num_factor), 'weight': weight, 'obs_df': float('inf'), 'param_df': float('inf'), }
Example 2
def EStep(self): P = np.zeros((self.M, self.N)) for i in range(0, self.M): diff = self.X - np.tile(self.TY[i, :], (self.N, 1)) diff = np.multiply(diff, diff) P[i, :] = P[i, :] + np.sum(diff, axis=1) c = (2 * np.pi * self.sigma2) ** (self.D / 2) c = c * self.w / (1 - self.w) c = c * self.M / self.N P = np.exp(-P / (2 * self.sigma2)) den = np.sum(P, axis=0) den = np.tile(den, (self.M, 1)) den[den==0] = np.finfo(float).eps self.P = np.divide(P, den) self.Pt1 = np.sum(self.P, axis=0) self.P1 = np.sum(self.P, axis=1) self.Np = np.sum(self.P1)
Example 3
def im_detect(sess, net, im): blobs, im_scales = _get_blobs(im) assert len(im_scales) == 1, "Only single-image batch implemented" im_blob = blobs['data'] blobs['im_info'] = np.array([im_blob.shape[1], im_blob.shape[2], im_scales[0]], dtype=np.float32) _, scores, bbox_pred, rois = net.test_image(sess, blobs['data'], blobs['im_info']) boxes = rois[:, 1:5] / im_scales[0] scores = np.reshape(scores, [scores.shape[0], -1]) bbox_pred = np.reshape(bbox_pred, [bbox_pred.shape[0], -1]) if cfg.TEST.BBOX_REG: # Apply bounding-box regression deltas box_deltas = bbox_pred pred_boxes = bbox_transform_inv(boxes, box_deltas) pred_boxes = _clip_boxes(pred_boxes, im.shape) else: # Simply repeat the boxes, once for each class pred_boxes = np.tile(boxes, (1, scores.shape[1])) return scores, pred_boxes
Example 4
def get_color_arr(c, n, flip_rb=False): """ Convert string c to carr array (N x 3) format """ carr = None; if isinstance(c, str): # single color carr = np.tile(np.array(colorConverter.to_rgb(c)), [n,1]) elif isinstance(c, float): carr = np.tile(np.array(color_func(c)), [n,1]) else: carr = reshape_arr(c) if flip_rb: b, r = carr[:,0], carr[:,2] carr[:,0], carr[:,2] = r.copy(), b.copy() # return floating point with values in [0,1] return carr.astype(np.float32) / 255.0 if carr.dtype == np.uint8 else carr.astype(np.float32)
Example 5
def draw_bboxes(vis, bboxes, texts=None, ellipse=False, colored=True): if not len(bboxes): return vis if not colored: cols = np.tile([240,240,240], [len(bboxes), 1]) else: N = 20 cwheel = colormap(np.linspace(0, 1, N)) cols = np.vstack([cwheel[idx % N] for idx, _ in enumerate(bboxes)]) texts = [None] * len(bboxes) if texts is None else texts for col, b, t in zip(cols, bboxes, texts): if ellipse: cv2.ellipse(vis, ((b[0]+b[2])/2, (b[1]+b[3])/2), ((b[2]-b[0])/2, (b[3]-b[1])/2), 0, 0, 360, color=tuple(col), thickness=1) else: cv2.rectangle(vis, (b[0], b[1]), (b[2], b[3]), tuple(col), 2) if t: annotate_bbox(vis, b, title=t) return vis
Example 6
def getMedianDistanceBetweenSamples(self, sampleSet=None) : """ Jaakkola's heuristic method for setting the width parameter of the Gaussian radial basis function kernel is to pick a quantile (usually the median) of the distribution of Euclidean distances between points having different labels. Reference: Jaakkola, M. Diekhaus, and D. Haussler. Using the Fisher kernel method to detect remote protein homologies. In T. Lengauer, R. Schneider, P. Bork, D. Brutlad, J. Glasgow, H.- W. Mewes, and R. Zimmer, editors, Proceedings of the Seventh International Conference on Intelligent Systems for Molecular Biology. """ numrows = sampleSet.shape[0] samples = sampleSet G = sum((samples * samples), 1) Q = numpy.tile(G[:, None], (1, numrows)) R = numpy.tile(G, (numrows, 1)) distances = Q + R - 2 * numpy.dot(samples, samples.T) distances = distances - numpy.tril(distances) distances = distances.reshape(numrows**2, 1, order="F").copy() return numpy.sqrt(0.5 * numpy.median(distances[distances > 0]))
Example 7
def load_solar_data(): with open('solar label.csv', 'r') as csvfile: reader = csv.reader(csvfile) rows = [row for row in reader] labels = np.array(rows, dtype=int) print(shape(labels)) with open('solar.csv', 'r') as csvfile: reader = csv.reader(csvfile) rows = [row for row in reader] rows = np.array(rows, dtype=float) rows=rows[:104832,:] print(shape(rows)) trX = np.reshape(rows.T,(-1,576)) print(shape(trX)) m = np.ndarray.max(rows) print("maximum value of solar power", m) trY=np.tile(labels,(32,1)) trX=trX/m return trX,trY
Example 8
def to_rgb(img): """ Converts the given array into a RGB image. If the number of channels is not 3 the array is tiled such that it has 3 channels. Finally, the values are rescaled to [0,255) :param img: the array to convert [nx, ny, channels] :returns img: the rgb image [nx, ny, 3] """ img = np.atleast_3d(img) channels = img.shape[2] if channels < 3: img = np.tile(img, 3) img[np.isnan(img)] = 0 img -= np.amin(img) img /= np.amax(img) img *= 255 return img
Example 9
def test_run_model(self, input_dataset, ds_model_interface): out_ds = ds_model_interface.run_model() expected = input_dataset.copy() del expected.attrs[SimlabAccessor._snapshot_vars_key] del expected.clock.attrs[SimlabAccessor._snapshot_vars_key] del expected.out.attrs[SimlabAccessor._snapshot_vars_key] expected['grid__x'] = ('x', np.arange(10), {'description': ''}) expected['quantity__quantity'] = ( ('clock', 'x'), np.arange(0, 10, 2)[:, None] * np.arange(10) * 1., {'description': 'a quantity'} ) expected['some_process__some_effect'] = ( ('out', 'x'), np.tile(np.arange(2, 12), 3).reshape(3, 10), {'description': ''} ) expected['other_process__other_effect'] = ( ('out', 'x'), np.tile(np.arange(-2, 8), 3).reshape(3, 10), {'description': ''} ) xr.testing.assert_identical(out_ds, expected)
Example 10
def get_image(filepath, image_target, image_size): img = imread(filepath).astype(np.float) h_origin, w_origin = img.shape[:2] if image_target > h_origin or image_target > w_origin: image_target = min(h_origin, w_origin) h_drop = int((h_origin - image_target)/2) w_drop = int((w_origin - image_target)/2) if img.ndim == 2: img = np.tile(img.reshape(h_origin, w_origin, 1), (1,1,3)) img_crop = img[h_drop:h_drop+image_target, w_drop:w_drop+image_target, :] img_resize = imresize(img_crop, [image_size, image_size]) return np.array(img_resize)/127.5 - 1.
Example 11
def fixed_label_diversity(model, config,step=''): sample_dir=make_sample_dir(model) str_step=str(step) or guess_model_step(model) N=64#per image n_combo=5#n label combinations #0,1 label combinations fixed_labels=model.attr.sample(n_combo)[model.cc.node_names] size=infer_grid_image_shape(N) for j, fx_label in enumerate(fixed_labels.values): fx_label=np.reshape(fx_label,[1,-1]) fx_label=np.tile(fx_label,[N,1]) do_dict={model.cc.labels: fx_label} images, feed_dict= sample(model, do_dict=do_dict) fx_file=os.path.join(sample_dir, str_step+'fxlab'+str(j)+'.pdf') save_figure_images(model.model_type,images['G'],fx_file,size=size) #which image is what label fixed_labels=fixed_labels.reset_index(drop=True) fixed_labels.to_csv(os.path.join(sample_dir,str_step+'fxlab'+'.csv'))
Example 12
def _linear_phase(self, n_shift): """ Private: Select the center of FOV """ om = self.st['om'] M = self.st['M'] final_shifts = tuple( numpy.array(n_shift) + numpy.array(self.st['Nd']) / 2) phase = numpy.exp( 1.0j * numpy.sum( om * numpy.tile( final_shifts, (M,1)), 1)) # add-up all the linear phasees in all axes, self.st['p'] = scipy.sparse.diags(phase, 0).dot(self.st['p0'])
Example 13
def linear_phase(self, n_shift): ''' Select the center of FOV ''' om = self.st['om'] M = self.st['M'] final_shifts = tuple( numpy.array(n_shift) + numpy.array(self.st['Nd']) / 2) phase = numpy.exp( 1.0j * numpy.sum( om * numpy.tile( final_shifts, (M,1)), 1)) # add-up all the linear phasees in all axes, self.st['p'] = scipy.sparse.diags(phase, 0).dot(self.st['p0']) # multiply the diagonal, linear phase before the gridding matrix
Example 14
def _linear_phase(self, n_shift): """ Private: Select the center of FOV """ om = self.st['om'] M = self.st['M'] final_shifts = tuple( numpy.array(n_shift) + numpy.array( self.Nd) / 2) phase = numpy.exp( 1.0j * numpy.sum( om * numpy.tile( final_shifts, (M, 1)), 1)) # add-up all the linear phasees in all axes, self.st['p'] = scipy.sparse.diags(phase, 0).dot(self.st['p0']) return 0 # shifted sparse matrix
Example 15
def _linear_phase(self, n_shift): """ Private: Select the center of FOV """ om = self.st['om'] M = self.st['M'] final_shifts = tuple( numpy.array(n_shift) + numpy.array(self.st['Nd']) / 2) phase = numpy.exp( 1.0j * numpy.sum( om * numpy.tile( final_shifts, (M,1)), 1)) # add-up all the linear phasees in all axes, self.st['p'] = scipy.sparse.diags(phase, 0).dot(self.st['p0'])
Example 16
def test_point_cloud_transformation(self, num_points=10): R_a_b = RigidTransform.random_rotation() t_a_b = RigidTransform.random_translation() T_a_b = RigidTransform(R_a_b, t_a_b, 'a', 'b') x_a = np.random.rand(3, num_points) pc_a = PointCloud(x_a, 'a') # multiply with numpy arrays x_b = R_a_b.dot(x_a) + np.tile(t_a_b.reshape(3,1), [1, num_points]) # use multiplication operator pc_b = T_a_b * pc_a self.assertTrue(np.sum(np.abs(pc_b.data - x_b)) < 1e-5, msg='Point cloud transformation incorrect:\n Expected:\n {}\n Got:\n {}'.format(x_b, pc_b.data)) # check frames self.assertEqual(pc_b.frame, 'b', msg='Transformed point cloud has incorrect frame')
Example 17
def initializeAllParameters(self): self.phi = (1.0 / self.K) * np.ones((self.n_tasks,self.K)) self.theta = np.tile(self.mu, (self.K, 1)) self.gamma = [self.sigma for i in range(self.K)] self.xi = [[0]* len(self.task_dict[i]['Y']) for i in range(self.n_tasks)] self.computeXi() self.tau1 = self.tau10 self.tau2 = self.tau20 self.computeSmallPhis() self.computeTaus() self.s = np.zeros((self.n_tasks,self.K)) self.computeTaskVectors() self.xi_convergence_list = [] self.phi_convergence_list = [] self.s_convergence_list = [] self.gamma_convergence_list = [] self.theta_convergence_list = [] if self.debug: print "initial phi", self.phi print "initial small phi1", self.small_phi1 print "initial small phi2", self.small_phi2 print "initial tau1", self.tau1, "tau2", self.tau2
Example 18
def do_checkpoint(prefix): """Callback to checkpoint the model to prefix every epoch. Parameters ---------- prefix : str The file prefix to checkpoint to Returns ------- callback : function The callback function that can be passed as iter_end_callback to fit. """ def _callback(iter_no, sym, arg, aux): #if config.TRAIN.BBOX_NORMALIZATION_PRECOMPUTED: # print "save model with mean/std" # num_classes = len(arg['bbox_pred_bias'].asnumpy()) / 4 # means = np.tile(np.array(config.TRAIN.BBOX_MEANS), (1, num_classes)) # stds = np.tile(np.array(config.TRAIN.BBOX_STDS), (1, num_classes)) # arg['bbox_pred_weight'] = (arg['bbox_pred_weight'].T * mx.nd.array(stds)).T # arg['bbox_pred_bias'] = arg['bbox_pred_bias'] * mx.nd.array(np.squeeze(stds)) + \ # mx.nd.array(np.squeeze(means)) """The checkpoint function.""" save_checkpoint(prefix, iter_no + 1, sym, arg, aux) return _callback
Example 19
def get_image(filepath, image_target, image_size): img = imread(filepath).astype(np.float) h_origin, w_origin = img.shape[:2] if image_target > h_origin or image_target > w_origin: image_target = min(h_origin, w_origin) h_drop = int((h_origin - image_target)/2) w_drop = int((w_origin - image_target)/2) if img.ndim == 2: img = np.tile(img.reshape(h_origin, w_origin, 1), (1,1,3)) img_crop = img[h_drop:h_drop+image_target, w_drop:w_drop+image_target, :] img_resize = imresize(img_crop, [image_size, image_size]) return np.array(img_resize)/127.5 - 1.
Example 20
def test_f_init_dims(self): """ Best I can tell, f_init is only ever given one sentence, but it appears to be written to process multiple sentences. """ self.logger.info("========================================================================================") self.logger.info("Starting the f_init_dims test to determine that x_f_init acts as expected.") self.logger.info("========================================================================================") x0_state0, x0_ctx0 = self.remote_interface.x_f_init(x0) # (1, 1024) (31, 1, 2048) # If tile input, state/context should be tiled too xx0_state0, xx0_ctx0 = self.remote_interface.x_f_init(xx0) # (2, 1024) (31, 2, 2048) self.assertTrue(np.allclose(np.tile(x0_state0, [2, 1]), xx0_state0)) self.assertTrue(np.allclose(np.tile(x0_ctx0, [1, 2, 1]), xx0_ctx0)) # Different inputs should create different state x1_state0, x1_ctx0 = self.remote_interface.x_f_init(x1) self.assertFalse(np.allclose(x0_state0, x1_state0)) # Different inputs (of same length) should create different state and context x1_2_state0, x1_2_ctx0 = self.remote_interface.x_f_init(x1 * 2) self.assertFalse(np.allclose(x1_state0, x1_2_state0)) self.assertFalse(np.allclose(x1_ctx0, x1_2_ctx0))
Example 21
def toa_normalize(x0, y0): xdim = x0.shape[0] m = x0.shape[1] n = x0.shape[1] t = -x0[:, 1] x = x0 + np.tile(t, (1, m)) y = y0 + np.tile(t, (1, n)) qr_a = x[:, 2:(1 + xdim)] q, r = scipy.linalg.qr(qr_a) x = (q.conj().T) * x y = (q.conj().T) * y M = np.diag(sign(np.diag(qr_a))) x1 = M * x y1 = M * y return x1, y1
Example 22
def update_per_row(self, y_i, phi_i, J, mu0, c, v, r_prev_i, u_prev_i, phi_r_i, phi_u): # Params: # J - column indices nnz_i = len(J) residual_i = y_i - mu0 - c[J] prior_Phi = np.diag(np.concatenate(([phi_r_i], phi_u))) v_T = np.hstack((np.ones((nnz_i, 1)), v[J, :])) post_Phi_i = prior_Phi + \ np.dot(v_T.T, np.tile(phi_i[:, np.newaxis], (1, 1 + self.num_factor)) * v_T) # Weighted sum of v_j * v_j.T post_mean_i = np.squeeze(np.dot(phi_i * residual_i, v_T)) C, lower = scipy.linalg.cho_factor(post_Phi_i) post_mean_i = scipy.linalg.cho_solve((C, lower), post_mean_i) # Generate Gaussian, recycling the Cholesky factorization from the posterior mean computation. ru_i = math.sqrt(1 - self.relaxation ** 2) * scipy.linalg.solve_triangular(C, np.random.randn(len(post_mean_i)), lower=lower) ru_i += post_mean_i + self.relaxation * (post_mean_i - np.concatenate(([r_prev_i], u_prev_i))) r_i = ru_i[0] u_i = ru_i[1:] return r_i, u_i
Example 23
def update_per_col(self, y_j, phi_j, I, mu0, r, u, c_prev_j, v_prev_j, phi_c_j, phi_v): prior_Phi = np.diag(np.concatenate(([phi_c_j], phi_v))) nnz_j = len(I) residual_j = y_j - mu0 - r[I] u_T = np.hstack((np.ones((nnz_j, 1)), u[I, :])) post_Phi_j = prior_Phi + \ np.dot(u_T.T, np.tile(phi_j[:, np.newaxis], (1, 1 + self.num_factor)) * u_T) # Weighted sum of u_i * u_i.T post_mean_j = np.squeeze(np.dot(phi_j * residual_j, u_T)) C, lower = scipy.linalg.cho_factor(post_Phi_j) post_mean_j = scipy.linalg.cho_solve((C, lower), post_mean_j) # Generate Gaussian, recycling the Cholesky factorization from the posterior mean computation. cv_j = math.sqrt(1 - self.relaxation ** 2) * scipy.linalg.solve_triangular(C, np.random.randn(len(post_mean_j)), lower=lower) cv_j += post_mean_j + self.relaxation * (post_mean_j - np.concatenate(([c_prev_j], v_prev_j))) c_j = cv_j[0] v_j = cv_j[1:] return c_j, v_j
Example 24
def frame_blocking(signal, framerate, sampletime=0.025, overlap=0.5): """ ?? ?N???????????????????????N???256?512??????? ?20~30ms?? :param framerate:??? :param signal:???? :param sampletime:?????? :param overlap:???????????? :return: ???????? """ samplenum = len(signal) # ?????? framesize = int(framerate * sampletime) # ????? step = int(framesize * overlap) # ????? framenum = 1 + math.ceil((samplenum - framesize) / step) # ?????? padnum = (framenum - 1) * step + framesize zeros = np.zeros((padnum - samplenum,)) padsignal = np.concatenate((signal, zeros)) indices = np.tile(np.arange(0, framesize), (framenum, 1)) + np.tile(np.arange(0, framenum * step, step), (framesize, 1)).T indices = np.array(indices, dtype=np.int32) frames = padsignal[indices] return frames
Example 25
def add_missing_facets(data, layout, vars, facet_vals): # When in a dataframe some layer does not have all # the facet variables, add the missing facet variables # and create new data where the points(duplicates) are # present in all the facets missing_facets = set(vars) - set(facet_vals) if missing_facets: to_add = layout.loc[:, missing_facets].drop_duplicates() to_add.reset_index(drop=True, inplace=True) # a point for each facet, [0, 1, ..., n-1, 0, 1, ..., n-1, ...] data_rep = np.tile(np.arange(len(data)), len(to_add)) # a facet for each point, [0, 0, 0, 1, 1, 1, ... n-1, n-1, n-1] facet_rep = np.repeat(np.arange(len(to_add)), len(data)) data = data.iloc[data_rep, :].reset_index(drop=True) facet_vals = facet_vals.iloc[data_rep, :].reset_index(drop=True) to_add = to_add.iloc[facet_rep, :].reset_index(drop=True) facet_vals = pd.concat([facet_vals, to_add], axis=1, ignore_index=False) return data, facet_vals
Example 26
def __init__(self, nrBasis=11, sigma=0.05, num_samples=100): self.x = np.linspace(0, 1, num_samples) self.nrSamples = len(self.x) self.nrBasis = nrBasis self.sigma = sigma self.sigmaSignal = float('inf') # Noise of signal (float) self.C = np.arange(0,nrBasis)/(nrBasis-1.0) self.Phi = np.exp(-.5 * (np.array(map(lambda x: x - self.C, np.tile(self.x, (self.nrBasis, 1)).T)).T ** 2 / (self.sigma ** 2))) self.Phi /= sum(self.Phi) self.viapoints = [] self.W = np.array([]) self.nrTraj = 0 self.meanW = None self.sigmaW = None self.Y = np.empty((0, self.nrSamples), float)
Example 27
def generate_trajectory(self, randomness=1e-10): """ Outputs a trajectory :param randomness: float between 0. (output will be the mean of gaussians) and 1. (fully randomized inside the variance) :return: a 1-D vector of the generated points """ newMu = self.meanW newSigma = self.sigmaW for viapoint in self.viapoints: PhiT = np.exp(-.5 * (np.array(map(lambda x: x - self.C, np.tile(viapoint['t'], (11, 1)).T)).T ** 2 / (self.sigma ** 2))) PhiT = PhiT / sum(PhiT) # basis functions at observed time points # Conditioning aux = viapoint['sigmay'] + np.dot(np.dot(PhiT.T, newSigma), PhiT) newMu = newMu + np.dot(np.dot(newSigma, PhiT) * 1 / aux, (viapoint['obsy'] - np.dot(PhiT.T, newMu))) # new weight mean conditioned on observations newSigma = newSigma - np.dot(np.dot(newSigma, PhiT) * 1 / aux, np.dot(PhiT.T, newSigma)) sampW = np.random.multivariate_normal(newMu, randomness*newSigma, 1).T return np.dot(self.Phi.T, sampW)
Example 28
def test_link_matrix(self): b, n = 2, 5 write_weighting = np.random.rand(b, n) precedence_weighting = np.random.rand(b, n) # precedence weighting from previous time step link_matrix_old = np.random.rand(b, n, n) * ( 1 - np.tile(np.eye(5), [b, 1, 1])) # random link matrix with diagonals zero link_matrix_correct = np.zeros((b, n, n)) for k in range(b): for i in range(n): for j in range(n): if i != j: link_matrix_correct[k, i, j] = (1 - write_weighting[k, i] - write_weighting[k, j]) * \ link_matrix_old[k, i, j] + \ write_weighting[k, i] * precedence_weighting[k, j] with self.test_session(): tf.global_variables_initializer().run() Memory.batch_size = b Memory.memory_size = n new_link_matrix = Memory.update_link_matrix(Memory, tf.constant(link_matrix_old, dtype=tf.float32), tf.constant(precedence_weighting, dtype=tf.float32), tf.constant(write_weighting, dtype=tf.float32)) self.assertAllClose(link_matrix_correct, new_link_matrix.eval())
Example 29
def create_test_input(batch_size, height, width, channels): """Create test input tensor. Args: batch_size: The number of images per batch or `None` if unknown. height: The height of each image or `None` if unknown. width: The width of each image or `None` if unknown. channels: The number of channels per image or `None` if unknown. Returns: Either a placeholder `Tensor` of dimension [batch_size, height, width, channels] if any of the inputs are `None` or a constant `Tensor` with the mesh grid values along the spatial dimensions. """ if None in [batch_size, height, width, channels]: return tf.placeholder(tf.float32, (batch_size, height, width, channels)) else: return tf.to_float( np.tile( np.reshape( np.reshape(np.arange(height), [height, 1]) + np.reshape(np.arange(width), [1, width]), [1, height, width, 1]), [batch_size, 1, 1, channels]))
Example 30
def closestPoints(mesh, pts, gridLoc='CC'): """Move a list of points to the closest points on a grid. :param BaseMesh mesh: The mesh :param numpy.ndarray pts: Points to move :param string gridLoc: ['CC', 'N', 'Fx', 'Fy', 'Fz', 'Ex', 'Ex', 'Ey', 'Ez'] :rtype: numpy.ndarray :return: nodeInds """ pts = asArray_N_x_Dim(pts, mesh.dim) grid = getattr(mesh, 'grid' + gridLoc) nodeInds = np.empty(pts.shape[0], dtype=int) for i, pt in enumerate(pts): if mesh.dim == 1: nodeInds[i] = ((pt - grid)**2).argmin() else: nodeInds[i] = ((np.tile(pt, (grid.shape[0], 1)) - grid)**2).sum(axis=1).argmin() return nodeInds
Example 31
def get_im2col_indices(x_shape, field_height, field_width, padding=1, stride=1): # First figure out what the size of the output should be N, C, H, W = x_shape assert (H + 2 * padding - field_height) % stride == 0 assert (W + 2 * padding - field_height) % stride == 0 out_height = (H + 2 * padding - field_height) / stride + 1 out_width = (W + 2 * padding - field_width) / stride + 1 i0 = np.repeat(np.arange(field_height), field_width) i0 = np.tile(i0, C) i1 = stride * np.repeat(np.arange(out_height), out_width) j0 = np.tile(np.arange(field_width), field_height * C) j1 = stride * np.tile(np.arange(out_width), out_height) i = i0.reshape(-1, 1) + i1.reshape(1, -1) j = j0.reshape(-1, 1) + j1.reshape(1, -1) k = np.repeat(np.arange(C), field_height * field_width).reshape(-1, 1) return (k, i, j)
Example 32
def test_big_binary(self): """Test workarounds for 32-bit limited fwrite, fseek, and ftell calls in windows. These normally would hang doing something like this. See http://projects.scipy.org/numpy/ticket/1660""" if sys.platform != 'win32': return try: # before workarounds, only up to 2**32-1 worked fourgbplus = 2**32 + 2**16 testbytes = np.arange(8, dtype=np.int8) n = len(testbytes) flike = tempfile.NamedTemporaryFile() f = flike.file np.tile(testbytes, fourgbplus // testbytes.nbytes).tofile(f) flike.seek(0) a = np.fromfile(f, dtype=np.int8) flike.close() assert_(len(a) == fourgbplus) # check only start and end for speed: assert_((a[:n] == testbytes).all()) assert_((a[-n:] == testbytes).all()) except (MemoryError, ValueError): pass
Example 33
def test_two_keys_two_vars(self): a = np.array(list(zip(np.tile([10, 11], 5), np.repeat(np.arange(5), 2), np.arange(50, 60), np.arange(10, 20))), dtype=[('k', int), ('a', int), ('b', int), ('c', int)]) b = np.array(list(zip(np.tile([10, 11], 5), np.repeat(np.arange(5), 2), np.arange(65, 75), np.arange(0, 10))), dtype=[('k', int), ('a', int), ('b', int), ('c', int)]) control = np.array([(10, 0, 50, 65, 10, 0), (11, 0, 51, 66, 11, 1), (10, 1, 52, 67, 12, 2), (11, 1, 53, 68, 13, 3), (10, 2, 54, 69, 14, 4), (11, 2, 55, 70, 15, 5), (10, 3, 56, 71, 16, 6), (11, 3, 57, 72, 17, 7), (10, 4, 58, 73, 18, 8), (11, 4, 59, 74, 19, 9)], dtype=[('k', int), ('a', int), ('b1', int), ('b2', int), ('c1', int), ('c2', int)]) test = join_by( ['a', 'k'], a, b, r1postfix='1', r2postfix='2', jointype='inner') assert_equal(test.dtype, control.dtype) assert_equal(test, control)
Example 34
def dist_info_sym(self, obs_var, latent_var=None): # this is ment to be for one path! # now this is not doing anything! And for computing the dist_info_vars of npo_snn_rewardMI it doesn't work if latent_var is None: latent_var1 = theano.shared(np.expand_dims(self.latent_fix, axis=0)) # new fix to avoid putting the latent as an input: just take the one fixed! latent_var = TT.tile(latent_var1, [obs_var.shape[0], 1]) # generate the generalized input (append latents to obs.) if self.bilinear_integration: extended_obs_var = TT.concatenate([obs_var, latent_var, TT.flatten(obs_var[:, :, np.newaxis] * latent_var[:, np.newaxis, :], outdim=2)] , axis=1) else: extended_obs_var = TT.concatenate([obs_var, latent_var], axis=1) mean_var, log_std_var = L.get_output([self._l_mean, self._l_log_std], extended_obs_var) if self.min_std is not None: log_std_var = TT.maximum(log_std_var, np.log(self.min_std)) return dict(mean=mean_var, log_std=log_std_var)
Example 35
def train(self, tran, selected): self.targetNet.blobs['frames'].data[...] \ = tran.frames[selected + 1].copy() netOut = self.targetNet.forward() target = np.tile(tran.reward[selected] + pms.discount * tran.n_last[selected] * np.resize(netOut['value_q'].max(1), (pms.batchSize, 1)), (pms.actionSize,) ) * tran.action[selected] self.solver.net.blobs['target'].data[...] = target self.solver.net.blobs['frames'].data[...] = tran.frames[selected].copy() self.solver.net.blobs['filter'].data[...] = tran.action[selected].copy() self.solver.step(1)
Example 36
def knn_masked_data(trX,trY,missing_data_dir, input_shape, k): raw_im_data = np.loadtxt(join(script_dir,missing_data_dir,'index.txt'),delimiter=' ',dtype=str) raw_mask_data = np.loadtxt(join(script_dir,missing_data_dir,'index_mask.txt'),delimiter=' ',dtype=str) # Using 'brute' method since we only want to do one query per classifier # so this will be quicker as it avoids overhead of creating a search tree knn_m = KNeighborsClassifier(algorithm='brute',n_neighbors=k) prob_Y_hat = np.zeros((raw_im_data.shape[0],int(np.max(trY)+1))) total_images = raw_im_data.shape[0] pbar = progressbar.ProgressBar(widgets=[progressbar.FormatLabel('\rProcessed %(value)d of %(max)d Images '), progressbar.Bar()], maxval=total_images, term_width=50).start() for i in range(total_images): mask_im=load_image(join(script_dir,missing_data_dir,raw_mask_data[i][0]), input_shape,1).reshape(np.prod(input_shape)) mask = np.logical_not(mask_im > eps) # since mask is 1 at missing locations v_im=load_image(join(script_dir,missing_data_dir,raw_im_data[i][0]), input_shape, 255).reshape(np.prod(input_shape)) rep_mask = np.tile(mask,(trX.shape[0],1)) # Corrupt whole training set according to the current mask corr_trX = np.multiply(trX, rep_mask) knn_m.fit(corr_trX, trY) prob_Y_hat[i,:] = knn_m.predict_proba(v_im.reshape(1,-1)) pbar.update(i) pbar.finish() return prob_Y_hat
Example 37
def get_im2col_indices(x_shape, field_height, field_width, padding=1, stride=1): # First figure out what the size of the output should be C, H, W = x_shape assert (H + 2 * padding - field_height) % stride == 0 assert (W + 2 * padding - field_height) % stride == 0 out_height = (H + 2 * padding - field_height) / stride + 1 out_width = (W + 2 * padding - field_width) / stride + 1 i0 = np.repeat(np.arange(field_height), field_width) i0 = np.tile(i0, C) i1 = stride * np.repeat(np.arange(out_height), out_width) j0 = np.tile(np.arange(field_width), field_height * C) j1 = stride * np.tile(np.arange(out_width), out_height) i = i0.reshape(-1, 1) + i1.reshape(1, -1) j = j0.reshape(-1, 1) + j1.reshape(1, -1) k = np.repeat(np.arange(C), field_height * field_width).reshape(-1, 1) return (k, i, j)
Example 38
def __init__(self, directory, num_act, mean_path, num_threads=1, capacity=1e5, batch_size=32, scale=(1.0/255.0), s_t_shape=[84, 84, 4], x_t_1_shape=[84, 84, 1], colorspace='gray'): self.scale = scale self.s_t_shape = s_t_shape self.x_t_1_shape = x_t_1_shape # Load image mean mean = np.load(os.path.join(mean_path)) # Prepare data flow s_t, a_t, x_t_1 = _read_and_decode(directory, s_t_shape=s_t_shape, num_act=num_act, x_t_1_shape=x_t_1_shape) self.mean = mean self.s_t_batch, self.a_t_batch, self.x_t_1_batch = tf.train.shuffle_batch([s_t, a_t, x_t_1], batch_size=batch_size, capacity=capacity, min_after_dequeue=int(capacity*0.25), num_threads=num_threads) # Subtract image mean (according to J Oh design) self.mean_const = tf.constant(mean, dtype=tf.float32) print(self.mean_const.get_shape()) self.s_t_batch = (self.s_t_batch - tf.tile(self.mean_const, [1, 1, 4])) * scale self.x_t_1_batch = (self.x_t_1_batch - self.mean_const) * scale
Example 39
def create_test_input(batch_size, height, width, channels): """Create test input tensor. Args: batch_size: The number of images per batch or `None` if unknown. height: The height of each image or `None` if unknown. width: The width of each image or `None` if unknown. channels: The number of channels per image or `None` if unknown. Returns: Either a placeholder `Tensor` of dimension [batch_size, height, width, channels] if any of the inputs are `None` or a constant `Tensor` with the mesh grid values along the spatial dimensions. """ if None in [batch_size, height, width, channels]: return tf.placeholder(tf.float32, (batch_size, height, width, channels)) else: return tf.to_float( np.tile( np.reshape( np.reshape(np.arange(height), [height, 1]) + np.reshape(np.arange(width), [1, width]), [1, height, width, 1]), [batch_size, 1, 1, channels]))
Example 40
def create_test_input(batch_size, height, width, channels): """Create test input tensor. Args: batch_size: The number of images per batch or `None` if unknown. height: The height of each image or `None` if unknown. width: The width of each image or `None` if unknown. channels: The number of channels per image or `None` if unknown. Returns: Either a placeholder `Tensor` of dimension [batch_size, height, width, channels] if any of the inputs are `None` or a constant `Tensor` with the mesh grid values along the spatial dimensions. """ if None in [batch_size, height, width, channels]: return tf.placeholder(tf.float32, (batch_size, height, width, channels)) else: return tf.to_float( np.tile( np.reshape( np.reshape(np.arange(height), [height, 1]) + np.reshape(np.arange(width), [1, width]), [1, height, width, 1]), [batch_size, 1, 1, channels]))
Example 41
def get_op(self): """Returns all symmetry operations (including inversions and subtranslations), but unlike get_symop(), they are returned as two ndarrays.""" if self.centrosymmetric: rot = np.tile(np.vstack((self.rotations, -self.rotations)), (self.nsubtrans, 1, 1)) trans = np.tile(np.vstack((self.translations, -self.translations)), (self.nsubtrans, 1)) trans += np.repeat(self.subtrans, 2 * len(self.rotations), axis=0) trans = np.mod(trans, 1) else: rot = np.tile(self.rotations, (self.nsubtrans, 1, 1)) trans = np.tile(self.translations, (self.nsubtrans, 1)) trans += np.repeat(self.subtrans, len(self.rotations), axis=0) trans = np.mod(trans, 1) return rot, trans
Example 42
def get_feed_dic_obs(self, obs): # needing to create all the nessisary feeds obs_x = [] obs_y = [] obs_tf = [] for _ in range(OBS_SIZE): obs_x.append(np.zeros([N_BATCH,L])) obs_y.append(np.zeros([N_BATCH,L])) obs_tf.append(np.zeros([N_BATCH,2])) num_obs = len(obs) for ob_idx in range(num_obs): ob_coord, ob_lab = obs[ob_idx] ob_x, ob_y = vectorize(ob_coord) obs_x[ob_idx] = np.tile(ob_x, [50,1]) obs_y[ob_idx] = np.tile(ob_y, [50,1]) obs_tf[ob_idx] = np.tile(ob_lab, [50,1]) feed_dic = dict(zip(self.ph_obs_x + self.ph_obs_y + self.ph_obs_tf, obs_x + obs_y + obs_tf)) return feed_dic
Example 43
def get_feed_dic_obs(self, obs): # needing to create all the nessisary feeds obs_x = [] obs_y = [] obs_tf = [] for _ in range(OBS_SIZE): obs_x.append(np.zeros([N_BATCH,L])) obs_y.append(np.zeros([N_BATCH,L])) obs_tf.append(np.zeros([N_BATCH,2])) num_obs = len(obs) for ob_idx in range(num_obs): ob_coord, ob_lab = obs[ob_idx] ob_x, ob_y = vectorize(ob_coord) obs_x[ob_idx] = np.tile(ob_x, [50,1]) obs_y[ob_idx] = np.tile(ob_y, [50,1]) obs_tf[ob_idx] = np.tile(ob_lab, [50,1]) feed_dic = dict(zip(self.ph_obs_x + self.ph_obs_y + self.ph_obs_tf, obs_x + obs_y + obs_tf)) return feed_dic
Example 44
def collect_trajs_for_cost(self, n_trajs, pol, env, dom, cls): paths = [] #print(n_trajs) for iter_step in range(0, n_trajs): paths.append(self.cyberpunk_rollout(agent=pol, env=env, max_path_length=self.horizon, reward_extractor=None)) data_matrix = tensor_utils.stack_tensor_list([p['im_observations'] for p in paths]) class_matrix = np.tile(cls, (n_trajs, self.horizon, 1)) dom_matrix = np.tile(dom, (n_trajs, self.horizon, 1)) #data_matrix = np.zeros(shape=(n_trajs, self.horizon, self.im_height, self.im_width, self.im_channels)) #class_matrix = np.zeros(shape=(n_trajs, self.horizon, 2)) #dom_matrix = np.zeros(shape=(n_trajs, self.horizon, 2)) #for path, path_step in zip(paths, range(0, len(paths))): # for sub_path, time_step in zip(path['im_observations'], range(0, self.horizon)): # data_matrix[path_step, time_step, :, :, :] = sub_path # class_matrix[path_step, time_step, :] = path['class'] # dom_matrix[path_step, time_step, :] = path['dom'] return dict(data=data_matrix, classes=class_matrix, domains=dom_matrix)
Example 45
def sample(self, path, save_samples): gan = self.gan generator = gan.uniform_sample z_t = gan.uniform_encoder.sample x_t = gan.inputs.x sess = gan.session config = gan.config global x_v global z_v x_v = sess.run(x_t) x_v = np.tile(x_v[0], [gan.batch_size(),1,1,1]) sample = sess.run(generator, {x_t: x_v}) stacks = [] bs = gan.batch_size() width = 5 print(np.shape(x_v), np.shape(sample)) stacks.append([x_v[1], sample[1], sample[2], sample[3], sample[4]]) for i in range(bs//width-1): stacks.append([sample[i*width+width+j] for j in range(width)]) images = np.vstack([np.hstack(s) for s in stacks]) self.plot(images, path, save_samples) return [{'images': images, 'label': 'tiled x sample'}]
Example 46
def shadow_image(self, img, pos): if img is None: return None weighted_img = np.ones((img.shape[0], img.shape[1]), np.uint8) x = int(pos.x() / self.scale) y = int(pos.y() / self.scale) weighted_img[y, x] = 0 dist_img = cv2.distanceTransform(weighted_img, distanceType=cv2.cv.CV_DIST_L2, maskSize=5).astype(np.float32) dist_sigma = self.img_size/2.0 dist_img_f = np.exp(-dist_img / dist_sigma) dist_img_f = np.tile(dist_img_f[..., np.newaxis], [1,1,3]) l = 0.25 img_f = img.astype(np.float32) rst_f = (img_f * l + (1-l) * (img_f * dist_img_f + (1-dist_img_f)*255.0)) rst = rst_f.astype(np.uint8) return rst
Example 47
def CSMToBinary(D, Kappa): """ Turn a cross-similarity matrix into a binary cross-simlarity matrix If Kappa = 0, take all neighbors If Kappa < 1 it is the fraction of mutual neighbors to consider Otherwise Kappa is the number of mutual neighbors to consider """ N = D.shape[0] M = D.shape[1] if Kappa == 0: return np.ones((N, M)) elif Kappa < 1: NNeighbs = int(np.round(Kappa*M)) else: NNeighbs = Kappa J = np.argpartition(D, NNeighbs, 1)[:, 0:NNeighbs] I = np.tile(np.arange(N)[:, None], (1, NNeighbs)) V = np.ones(I.size) [I, J] = [I.flatten(), J.flatten()] ret = sparse.coo_matrix((V, (I, J)), shape=(N, M)) return ret.toarray()
Example 48
def load_np_image_uint8(image_file): """Loads an image as a numpy array. Args: image_file: str. Image file. Returns: A 3-D numpy array of shape [image_size, image_size, 3] and dtype uint8, with values in [0, 255]. """ with tempfile.NamedTemporaryFile() as f: f.write(tf.gfile.GFile(image_file, 'rb').read()) f.flush() image = scipy.misc.imread(f.name) # Workaround for black-and-white images if image.ndim == 2: image = np.tile(image[:, :, None], (1, 1, 3)) return image
Example 49
def _radii(self): """Returns an array the same size as self.num_points with the distance from the y-axis (i.e. the x coordinate) of each velocity point (hence x.increment/2 is added). For axial- symmetric fields, this is the radius, which is required to formulate the differential operators. Returns Radius of each velocity point. """ return np.tile(self.x.vector, self.y.samples) + self.x.increment/2
Example 50
def test_sample_from_probs2_gof(size): set_random_seed(size) probs = np.exp(2 * np.random.random(size)).astype(np.float32) counts = np.zeros(size, dtype=np.int32) num_samples = 2000 * size probs2 = np.tile(probs, (num_samples, 1)) samples = sample_from_probs2(probs2) probs /= probs.sum() # Normalize afterwards. counts = np.bincount(samples, minlength=size) print(counts) print(probs * num_samples) gof = multinomial_goodness_of_fit(probs, counts, num_samples, plot=True) assert 1e-2 < gof