Python numpy.tile() 使用实例

The following are code examples for showing how to use . They are extracted from open source Python projects. You can vote up the examples you like or vote down the exmaples you don’t like. You can also save this page to your account.

Example 1

def __init__(self, y_coo, num_factor, bias_scale, factor_scale, weight=None):

        if weight is None:
            weight = np.ones(y_coo.data.size)

        self.y_coo = y_coo
        self.y_csr = scipy.sparse.csr_matrix(y_coo)
        self.y_csc = scipy.sparse.csc_matrix(y_coo)
        self.num_factor = num_factor
        self.prior_param = {
            'col_bias_scale': bias_scale,
            'row_bias_scale': bias_scale,
            'factor_scale': np.tile(factor_scale, self.num_factor),
            'weight': weight,
            'obs_df': float('inf'),
            'param_df': float('inf'),
        } 

Example 2

def EStep(self):
    P = np.zeros((self.M, self.N))

    for i in range(0, self.M):
      diff     = self.X - np.tile(self.TY[i, :], (self.N, 1))
      diff    = np.multiply(diff, diff)
      P[i, :] = P[i, :] + np.sum(diff, axis=1)

    c = (2 * np.pi * self.sigma2) ** (self.D / 2)
    c = c * self.w / (1 - self.w)
    c = c * self.M / self.N

    P = np.exp(-P / (2 * self.sigma2))
    den = np.sum(P, axis=0)
    den = np.tile(den, (self.M, 1))
    den[den==0] = np.finfo(float).eps

    self.P   = np.divide(P, den)
    self.Pt1 = np.sum(self.P, axis=0)
    self.P1  = np.sum(self.P, axis=1)
    self.Np  = np.sum(self.P1) 

Example 3

def im_detect(sess, net, im):
  blobs, im_scales = _get_blobs(im)
  assert len(im_scales) == 1, "Only single-image batch implemented"

  im_blob = blobs['data']
  blobs['im_info'] = np.array([im_blob.shape[1], im_blob.shape[2], im_scales[0]], dtype=np.float32)

  _, scores, bbox_pred, rois = net.test_image(sess, blobs['data'], blobs['im_info'])
  
  boxes = rois[:, 1:5] / im_scales[0]
  scores = np.reshape(scores, [scores.shape[0], -1])
  bbox_pred = np.reshape(bbox_pred, [bbox_pred.shape[0], -1])
  if cfg.TEST.BBOX_REG:
    # Apply bounding-box regression deltas
    box_deltas = bbox_pred
    pred_boxes = bbox_transform_inv(boxes, box_deltas)
    pred_boxes = _clip_boxes(pred_boxes, im.shape)
  else:
    # Simply repeat the boxes, once for each class
    pred_boxes = np.tile(boxes, (1, scores.shape[1]))

  return scores, pred_boxes 

Example 4

def get_color_arr(c, n, flip_rb=False):
    """ 
    Convert string c to carr array (N x 3) format
    """
    carr = None;

    if isinstance(c, str): # single color
        carr = np.tile(np.array(colorConverter.to_rgb(c)), [n,1])
    elif  isinstance(c, float):
        carr = np.tile(np.array(color_func(c)), [n,1])
    else:
        carr = reshape_arr(c)

    if flip_rb: 
        b, r = carr[:,0], carr[:,2]
        carr[:,0], carr[:,2] = r.copy(), b.copy()

    # return floating point with values in [0,1]
    return carr.astype(np.float32) / 255.0 if carr.dtype == np.uint8 else carr.astype(np.float32) 

Example 5

def draw_bboxes(vis, bboxes, texts=None, ellipse=False, colored=True):
    if not len(bboxes): 
        return vis

    if not colored: 
        cols = np.tile([240,240,240], [len(bboxes), 1])
    else: 
        N = 20
        cwheel = colormap(np.linspace(0, 1, N))
        cols = np.vstack([cwheel[idx % N] for idx, _ in enumerate(bboxes)])            

    texts = [None] * len(bboxes) if texts is None else texts
    for col, b, t in zip(cols, bboxes, texts): 
        if ellipse: 
            cv2.ellipse(vis, ((b[0]+b[2])/2, (b[1]+b[3])/2), ((b[2]-b[0])/2, (b[3]-b[1])/2), 0, 0, 360, 
                        color=tuple(col), thickness=1)
        else: 
            cv2.rectangle(vis, (b[0], b[1]), (b[2], b[3]), tuple(col), 2)
        if t: 
            annotate_bbox(vis, b, title=t)
    return vis 

Example 6

def getMedianDistanceBetweenSamples(self, sampleSet=None) :
        """
        Jaakkola's heuristic method for setting the width parameter of the Gaussian
        radial basis function kernel is to pick a quantile (usually the median) of
        the distribution of Euclidean distances between points having different
        labels.

        Reference:
        Jaakkola, M. Diekhaus, and D. Haussler. Using the Fisher kernel method to detect
        remote protein homologies. In T. Lengauer, R. Schneider, P. Bork, D. Brutlad, J.
        Glasgow, H.- W. Mewes, and R. Zimmer, editors, Proceedings of the Seventh
        International Conference on Intelligent Systems for Molecular Biology.
        """
        numrows = sampleSet.shape[0]
        samples = sampleSet

        G = sum((samples * samples), 1)
        Q = numpy.tile(G[:, None], (1, numrows))
        R = numpy.tile(G, (numrows, 1))

        distances = Q + R - 2 * numpy.dot(samples, samples.T)
        distances = distances - numpy.tril(distances)
        distances = distances.reshape(numrows**2, 1, order="F").copy()

        return numpy.sqrt(0.5 * numpy.median(distances[distances > 0])) 

Example 7

def load_solar_data():
    with open('solar label.csv', 'r') as csvfile:
        reader = csv.reader(csvfile)
        rows = [row for row in reader]
    labels = np.array(rows, dtype=int)
    print(shape(labels))

    with open('solar.csv', 'r') as csvfile:
        reader = csv.reader(csvfile)
        rows = [row for row in reader]
    rows = np.array(rows, dtype=float)
    rows=rows[:104832,:]
    print(shape(rows))
    trX = np.reshape(rows.T,(-1,576))
    print(shape(trX))
    m = np.ndarray.max(rows)
    print("maximum value of solar power", m)
    trY=np.tile(labels,(32,1))
    trX=trX/m
    return trX,trY 

Example 8

def to_rgb(img):
    """
    Converts the given array into a RGB image. If the number of channels is not
    3 the array is tiled such that it has 3 channels. Finally, the values are
    rescaled to [0,255) 
    
    :param img: the array to convert [nx, ny, channels]
    
    :returns img: the rgb image [nx, ny, 3]
    """
    img = np.atleast_3d(img)
    channels = img.shape[2]
    if channels < 3:
        img = np.tile(img, 3)
    
    img[np.isnan(img)] = 0
    img -= np.amin(img)
    img /= np.amax(img)
    img *= 255
    return img 

Example 9

def test_run_model(self, input_dataset, ds_model_interface):
        out_ds = ds_model_interface.run_model()

        expected = input_dataset.copy()
        del expected.attrs[SimlabAccessor._snapshot_vars_key]
        del expected.clock.attrs[SimlabAccessor._snapshot_vars_key]
        del expected.out.attrs[SimlabAccessor._snapshot_vars_key]
        expected['grid__x'] = ('x', np.arange(10), {'description': ''})
        expected['quantity__quantity'] = (
            ('clock', 'x'),
            np.arange(0, 10, 2)[:, None] * np.arange(10) * 1.,
            {'description': 'a quantity'}
        )
        expected['some_process__some_effect'] = (
            ('out', 'x'), np.tile(np.arange(2, 12), 3).reshape(3, 10),
            {'description': ''}
        )
        expected['other_process__other_effect'] = (
            ('out', 'x'), np.tile(np.arange(-2, 8), 3).reshape(3, 10),
            {'description': ''}
        )

        xr.testing.assert_identical(out_ds, expected) 

Example 10

def get_image(filepath, image_target, image_size):
    
    img = imread(filepath).astype(np.float)
    h_origin, w_origin = img.shape[:2]

    if image_target > h_origin or image_target > w_origin:
        image_target = min(h_origin, w_origin)

    h_drop = int((h_origin - image_target)/2)    
    w_drop = int((w_origin - image_target)/2)

    if img.ndim == 2:
        img = np.tile(img.reshape(h_origin, w_origin, 1), (1,1,3))
    
    img_crop = img[h_drop:h_drop+image_target, w_drop:w_drop+image_target, :]
        
    img_resize = imresize(img_crop, [image_size, image_size])

    return np.array(img_resize)/127.5 - 1. 

Example 11

def fixed_label_diversity(model, config,step=''):
    sample_dir=make_sample_dir(model)
    str_step=str(step) or guess_model_step(model)

    N=64#per image
    n_combo=5#n label combinations

    #0,1 label combinations
    fixed_labels=model.attr.sample(n_combo)[model.cc.node_names]
    size=infer_grid_image_shape(N)

    for j, fx_label in enumerate(fixed_labels.values):
        fx_label=np.reshape(fx_label,[1,-1])
        fx_label=np.tile(fx_label,[N,1])
        do_dict={model.cc.labels: fx_label}

        images, feed_dict= sample(model, do_dict=do_dict)
        fx_file=os.path.join(sample_dir, str_step+'fxlab'+str(j)+'.pdf')
        save_figure_images(model.model_type,images['G'],fx_file,size=size)

    #which image is what label
    fixed_labels=fixed_labels.reset_index(drop=True)
    fixed_labels.to_csv(os.path.join(sample_dir,str_step+'fxlab'+'.csv')) 

Example 12

def _linear_phase(self, n_shift):
        """
        Private: Select the center of FOV
        """
        om = self.st['om']
        M = self.st['M']
        final_shifts = tuple(
            numpy.array(n_shift) +
            numpy.array(self.st['Nd']) / 2)

        phase = numpy.exp(
            1.0j *
            numpy.sum(
                om * numpy.tile(
                    final_shifts,
                    (M,1)),
                1))
        # add-up all the linear phasees in all axes,

        self.st['p'] = scipy.sparse.diags(phase, 0).dot(self.st['p0']) 

Example 13

def linear_phase(self, n_shift):
        '''
        Select the center of FOV
        '''
        om = self.st['om']
        M = self.st['M']
        final_shifts = tuple(
            numpy.array(n_shift) +
            numpy.array(self.st['Nd']) / 2)

        phase = numpy.exp(
            1.0j *
            numpy.sum(
                om * numpy.tile(
                    final_shifts,
                    (M,1)),
                1))
        # add-up all the linear phasees in all axes,

        self.st['p'] = scipy.sparse.diags(phase, 0).dot(self.st['p0'])
        # multiply the diagonal, linear phase before the gridding matrix 

Example 14

def _linear_phase(self, n_shift):
        """
        Private: Select the center of FOV
        """
        om = self.st['om']
        M = self.st['M']
        final_shifts = tuple(
            numpy.array(n_shift) +
            numpy.array(
                self.Nd) /
            2)
        phase = numpy.exp(
            1.0j *
            numpy.sum(
                om *
                numpy.tile(
                    final_shifts,
                    (M,
                     1)),
                1))
        # add-up all the linear phasees in all axes,

        self.st['p'] = scipy.sparse.diags(phase, 0).dot(self.st['p0'])
        return 0  # shifted sparse matrix 

Example 15

def _linear_phase(self, n_shift):
        """
        Private: Select the center of FOV
        """
        om = self.st['om']
        M = self.st['M']
        final_shifts = tuple(
            numpy.array(n_shift) +
            numpy.array(self.st['Nd']) / 2)

        phase = numpy.exp(
            1.0j *
            numpy.sum(
                om * numpy.tile(
                    final_shifts,
                    (M,1)),
                1))
        # add-up all the linear phasees in all axes,

        self.st['p'] = scipy.sparse.diags(phase, 0).dot(self.st['p0']) 

Example 16

def test_point_cloud_transformation(self, num_points=10):
        R_a_b = RigidTransform.random_rotation()
        t_a_b = RigidTransform.random_translation()
        T_a_b = RigidTransform(R_a_b, t_a_b, 'a', 'b')

        x_a = np.random.rand(3, num_points)
        pc_a = PointCloud(x_a, 'a')
        
        # multiply with numpy arrays
        x_b = R_a_b.dot(x_a) + np.tile(t_a_b.reshape(3,1), [1, num_points])

        # use multiplication operator
        pc_b = T_a_b * pc_a

        self.assertTrue(np.sum(np.abs(pc_b.data - x_b)) < 1e-5, msg='Point cloud transformation incorrect:\n Expected:\n {}\n Got:\n {}'.format(x_b, pc_b.data)) 

        # check frames
        self.assertEqual(pc_b.frame, 'b', msg='Transformed point cloud has incorrect frame') 

Example 17

def initializeAllParameters(self):
		self.phi = (1.0 / self.K) * np.ones((self.n_tasks,self.K))
		self.theta = np.tile(self.mu, (self.K, 1)) 
		self.gamma = [self.sigma for i in range(self.K)]
		self.xi = [[0]* len(self.task_dict[i]['Y']) for i in range(self.n_tasks)]
		self.computeXi()
		self.tau1 = self.tau10
		self.tau2 = self.tau20
		self.computeSmallPhis()	
		self.computeTaus()
		self.s = np.zeros((self.n_tasks,self.K))
		self.computeTaskVectors()

		self.xi_convergence_list = []
		self.phi_convergence_list = []
		self.s_convergence_list = []
		self.gamma_convergence_list = []
		self.theta_convergence_list = []

		if self.debug:
			print "initial phi", self.phi
			print "initial small phi1", self.small_phi1
			print "initial small phi2", self.small_phi2
			print "initial tau1", self.tau1, "tau2", self.tau2 

Example 18

def do_checkpoint(prefix):
    """Callback to checkpoint the model to prefix every epoch.

    Parameters
    ----------
    prefix : str
        The file prefix to checkpoint to

    Returns
    -------
    callback : function
        The callback function that can be passed as iter_end_callback to fit.
    """
    def _callback(iter_no, sym, arg, aux):
        #if config.TRAIN.BBOX_NORMALIZATION_PRECOMPUTED:
        #    print "save model with mean/std"
        #    num_classes = len(arg['bbox_pred_bias'].asnumpy()) / 4
        #    means = np.tile(np.array(config.TRAIN.BBOX_MEANS), (1, num_classes))
        #    stds = np.tile(np.array(config.TRAIN.BBOX_STDS), (1, num_classes))
        #    arg['bbox_pred_weight'] = (arg['bbox_pred_weight'].T * mx.nd.array(stds)).T
        #    arg['bbox_pred_bias'] = arg['bbox_pred_bias'] * mx.nd.array(np.squeeze(stds)) + \
        #                                   mx.nd.array(np.squeeze(means))
        """The checkpoint function."""
        save_checkpoint(prefix, iter_no + 1, sym, arg, aux)
    return _callback 

Example 19

def get_image(filepath, image_target, image_size):
    
    img = imread(filepath).astype(np.float)
    h_origin, w_origin = img.shape[:2]

    if image_target > h_origin or image_target > w_origin:
        image_target = min(h_origin, w_origin)

    h_drop = int((h_origin - image_target)/2)    
    w_drop = int((w_origin - image_target)/2)

    if img.ndim == 2:
        img = np.tile(img.reshape(h_origin, w_origin, 1), (1,1,3))
    
    img_crop = img[h_drop:h_drop+image_target, w_drop:w_drop+image_target, :]
        
    img_resize = imresize(img_crop, [image_size, image_size])

    return np.array(img_resize)/127.5 - 1. 

Example 20

def test_f_init_dims(self):
        """
        Best I can tell, f_init is only ever given one sentence, but it appears to be
        written to process multiple sentences.
        """
        self.logger.info("========================================================================================")
        self.logger.info("Starting the f_init_dims test to determine that x_f_init acts as expected.")
        self.logger.info("========================================================================================")
        x0_state0, x0_ctx0 = self.remote_interface.x_f_init(x0)  # (1, 1024) (31, 1, 2048)

        # If tile input, state/context should be tiled too
        xx0_state0, xx0_ctx0 = self.remote_interface.x_f_init(xx0)  # (2, 1024) (31, 2, 2048)
        self.assertTrue(np.allclose(np.tile(x0_state0, [2, 1]), xx0_state0))
        self.assertTrue(np.allclose(np.tile(x0_ctx0, [1, 2, 1]), xx0_ctx0))

        # Different inputs should create different state
        x1_state0, x1_ctx0 = self.remote_interface.x_f_init(x1)
        self.assertFalse(np.allclose(x0_state0, x1_state0))

        # Different inputs (of same length) should create different state and context
        x1_2_state0, x1_2_ctx0 = self.remote_interface.x_f_init(x1 * 2)
        self.assertFalse(np.allclose(x1_state0, x1_2_state0))
        self.assertFalse(np.allclose(x1_ctx0, x1_2_ctx0)) 

Example 21

def toa_normalize(x0, y0):
    xdim = x0.shape[0]
    m = x0.shape[1]
    n = x0.shape[1]

    t = -x0[:, 1]
    x = x0 + np.tile(t, (1, m))
    y = y0 + np.tile(t, (1, n))

    qr_a = x[:, 2:(1 + xdim)]
    q, r = scipy.linalg.qr(qr_a)

    x = (q.conj().T) * x
    y = (q.conj().T) * y
    M = np.diag(sign(np.diag(qr_a)))
    x1 = M * x
    y1 = M * y

    return x1, y1 

Example 22

def update_per_row(self, y_i, phi_i, J, mu0, c, v, r_prev_i, u_prev_i, phi_r_i, phi_u):
        # Params:
        #   J - column indices

        nnz_i = len(J)
        residual_i = y_i - mu0 - c[J]
        prior_Phi = np.diag(np.concatenate(([phi_r_i], phi_u)))
        v_T = np.hstack((np.ones((nnz_i, 1)), v[J, :]))
        post_Phi_i = prior_Phi + \
                     np.dot(v_T.T,
                            np.tile(phi_i[:, np.newaxis], (1, 1 + self.num_factor)) * v_T)  # Weighted sum of v_j * v_j.T
        post_mean_i = np.squeeze(np.dot(phi_i * residual_i, v_T))
        C, lower = scipy.linalg.cho_factor(post_Phi_i)
        post_mean_i = scipy.linalg.cho_solve((C, lower), post_mean_i)
        # Generate Gaussian, recycling the Cholesky factorization from the posterior mean computation.
        ru_i = math.sqrt(1 - self.relaxation ** 2) * scipy.linalg.solve_triangular(C, np.random.randn(len(post_mean_i)),
                                                                                   lower=lower)
        ru_i += post_mean_i + self.relaxation * (post_mean_i - np.concatenate(([r_prev_i], u_prev_i)))
        r_i = ru_i[0]
        u_i = ru_i[1:]

        return r_i, u_i 

Example 23

def update_per_col(self, y_j, phi_j, I, mu0, r, u, c_prev_j, v_prev_j, phi_c_j, phi_v):

        prior_Phi = np.diag(np.concatenate(([phi_c_j], phi_v)))
        nnz_j = len(I)
        residual_j = y_j - mu0 - r[I]
        u_T = np.hstack((np.ones((nnz_j, 1)), u[I, :]))
        post_Phi_j = prior_Phi + \
                     np.dot(u_T.T,
                            np.tile(phi_j[:, np.newaxis], (1, 1 + self.num_factor)) * u_T)  # Weighted sum of u_i * u_i.T
        post_mean_j = np.squeeze(np.dot(phi_j * residual_j, u_T))
        C, lower = scipy.linalg.cho_factor(post_Phi_j)
        post_mean_j = scipy.linalg.cho_solve((C, lower), post_mean_j)
        # Generate Gaussian, recycling the Cholesky factorization from the posterior mean computation.
        cv_j = math.sqrt(1 - self.relaxation ** 2) * scipy.linalg.solve_triangular(C, np.random.randn(len(post_mean_j)),
                                                                              lower=lower)
        cv_j += post_mean_j + self.relaxation * (post_mean_j - np.concatenate(([c_prev_j], v_prev_j)))
        c_j = cv_j[0]
        v_j = cv_j[1:]

        return c_j, v_j 

Example 24

def frame_blocking(signal, framerate, sampletime=0.025, overlap=0.5):
            """
            ??

                ?N???????????????????????N???256?512???????
            ?20~30ms??
            :param framerate:???
            :param signal:????
            :param sampletime:??????
            :param overlap:????????????
            :return: ????????
            """
            samplenum = len(signal)  # ??????
            framesize = int(framerate * sampletime)  # ?????
            step = int(framesize * overlap)  # ?????
            framenum = 1 + math.ceil((samplenum - framesize) / step)  # ??????
            padnum = (framenum - 1) * step + framesize
            zeros = np.zeros((padnum - samplenum,))
            padsignal = np.concatenate((signal, zeros))

            indices = np.tile(np.arange(0, framesize), (framenum, 1)) + np.tile(np.arange(0, framenum * step, step),
                                                                                (framesize, 1)).T
            indices = np.array(indices, dtype=np.int32)
            frames = padsignal[indices]
            return frames 

Example 25

def add_missing_facets(data, layout, vars, facet_vals):
    # When in a dataframe some layer does not have all
    # the facet variables, add the missing facet variables
    # and create new data where the points(duplicates) are
    # present in all the facets
    missing_facets = set(vars) - set(facet_vals)
    if missing_facets:
        to_add = layout.loc[:, missing_facets].drop_duplicates()
        to_add.reset_index(drop=True, inplace=True)

        # a point for each facet, [0, 1, ..., n-1, 0, 1, ..., n-1, ...]
        data_rep = np.tile(np.arange(len(data)), len(to_add))
        # a facet for each point, [0, 0, 0, 1, 1, 1, ... n-1, n-1, n-1]
        facet_rep = np.repeat(np.arange(len(to_add)), len(data))

        data = data.iloc[data_rep, :].reset_index(drop=True)
        facet_vals = facet_vals.iloc[data_rep, :].reset_index(drop=True)
        to_add = to_add.iloc[facet_rep, :].reset_index(drop=True)
        facet_vals = pd.concat([facet_vals, to_add],
                               axis=1, ignore_index=False)

    return data, facet_vals 

Example 26

def __init__(self, nrBasis=11, sigma=0.05, num_samples=100):
        self.x = np.linspace(0, 1, num_samples)
        self.nrSamples = len(self.x)
        self.nrBasis = nrBasis
        self.sigma = sigma
        self.sigmaSignal = float('inf')  # Noise of signal (float)
        self.C = np.arange(0,nrBasis)/(nrBasis-1.0)
        self.Phi = np.exp(-.5 * (np.array(map(lambda x: x - self.C, np.tile(self.x, (self.nrBasis, 1)).T)).T ** 2 / (self.sigma ** 2)))
        self.Phi /= sum(self.Phi)

        self.viapoints = []
        self.W = np.array([])
        self.nrTraj = 0
        self.meanW = None
        self.sigmaW = None
        self.Y = np.empty((0, self.nrSamples), float) 

Example 27

def generate_trajectory(self, randomness=1e-10):
        """
        Outputs a trajectory
        :param randomness: float between 0. (output will be the mean of gaussians) and 1. (fully randomized inside the variance)
        :return: a 1-D vector of the generated points
        """
        newMu = self.meanW
        newSigma = self.sigmaW

        for viapoint in self.viapoints:
            PhiT = np.exp(-.5 * (np.array(map(lambda x: x - self.C, np.tile(viapoint['t'], (11, 1)).T)).T ** 2 / (self.sigma ** 2)))
            PhiT = PhiT / sum(PhiT)  # basis functions at observed time points

            # Conditioning
            aux = viapoint['sigmay'] + np.dot(np.dot(PhiT.T, newSigma), PhiT)
            newMu = newMu + np.dot(np.dot(newSigma, PhiT) * 1 / aux, (viapoint['obsy'] - np.dot(PhiT.T, newMu)))  # new weight mean conditioned on observations
            newSigma = newSigma - np.dot(np.dot(newSigma, PhiT) * 1 / aux, np.dot(PhiT.T, newSigma))

        sampW = np.random.multivariate_normal(newMu, randomness*newSigma, 1).T
        return np.dot(self.Phi.T, sampW) 

Example 28

def test_link_matrix(self):
        b, n = 2, 5
        write_weighting = np.random.rand(b, n)
        precedence_weighting = np.random.rand(b, n)  # precedence weighting from previous time step
        link_matrix_old = np.random.rand(b, n, n) * (
            1 - np.tile(np.eye(5), [b, 1, 1]))  # random link matrix with diagonals zero
        link_matrix_correct = np.zeros((b, n, n))
        for k in range(b):
            for i in range(n):
                for j in range(n):
                    if i != j:
                        link_matrix_correct[k, i, j] = (1 - write_weighting[k, i] - write_weighting[k, j]) * \
                                                       link_matrix_old[k, i, j] + \
                                                       write_weighting[k, i] * precedence_weighting[k, j]

        with self.test_session():
            tf.global_variables_initializer().run()
            Memory.batch_size = b
            Memory.memory_size = n
            new_link_matrix = Memory.update_link_matrix(Memory,
                                                        tf.constant(link_matrix_old, dtype=tf.float32),
                                                        tf.constant(precedence_weighting, dtype=tf.float32),
                                                        tf.constant(write_weighting, dtype=tf.float32))
            self.assertAllClose(link_matrix_correct, new_link_matrix.eval()) 

Example 29

def create_test_input(batch_size, height, width, channels):
  """Create test input tensor.

  Args:
    batch_size: The number of images per batch or `None` if unknown.
    height: The height of each image or `None` if unknown.
    width: The width of each image or `None` if unknown.
    channels: The number of channels per image or `None` if unknown.

  Returns:
    Either a placeholder `Tensor` of dimension
      [batch_size, height, width, channels] if any of the inputs are `None` or a
    constant `Tensor` with the mesh grid values along the spatial dimensions.
  """
  if None in [batch_size, height, width, channels]:
    return tf.placeholder(tf.float32, (batch_size, height, width, channels))
  else:
    return tf.to_float(
        np.tile(
            np.reshape(
                np.reshape(np.arange(height), [height, 1]) +
                np.reshape(np.arange(width), [1, width]),
                [1, height, width, 1]),
            [batch_size, 1, 1, channels])) 

Example 30

def closestPoints(mesh, pts, gridLoc='CC'):
    """Move a list of points to the closest points on a grid.

    :param BaseMesh mesh: The mesh
    :param numpy.ndarray pts: Points to move
    :param string gridLoc: ['CC', 'N', 'Fx', 'Fy', 'Fz', 'Ex', 'Ex', 'Ey', 'Ez']
    :rtype: numpy.ndarray
    :return: nodeInds
    """

    pts = asArray_N_x_Dim(pts, mesh.dim)
    grid = getattr(mesh, 'grid' + gridLoc)
    nodeInds = np.empty(pts.shape[0], dtype=int)

    for i, pt in enumerate(pts):
        if mesh.dim == 1:
            nodeInds[i] = ((pt - grid)**2).argmin()
        else:
            nodeInds[i] = ((np.tile(pt, (grid.shape[0], 1)) - grid)**2).sum(axis=1).argmin()

    return nodeInds 

Example 31

def get_im2col_indices(x_shape, field_height, field_width, padding=1, stride=1):
    # First figure out what the size of the output should be
    N, C, H, W = x_shape
    assert (H + 2 * padding - field_height) % stride == 0
    assert (W + 2 * padding - field_height) % stride == 0
    out_height = (H + 2 * padding - field_height) / stride + 1
    out_width = (W + 2 * padding - field_width) / stride + 1

    i0 = np.repeat(np.arange(field_height), field_width)
    i0 = np.tile(i0, C)
    i1 = stride * np.repeat(np.arange(out_height), out_width)
    j0 = np.tile(np.arange(field_width), field_height * C)
    j1 = stride * np.tile(np.arange(out_width), out_height)
    i = i0.reshape(-1, 1) + i1.reshape(1, -1)
    j = j0.reshape(-1, 1) + j1.reshape(1, -1)

    k = np.repeat(np.arange(C), field_height * field_width).reshape(-1, 1)

    return (k, i, j) 

Example 32

def test_big_binary(self):
        """Test workarounds for 32-bit limited fwrite, fseek, and ftell
        calls in windows. These normally would hang doing something like this.
        See http://projects.scipy.org/numpy/ticket/1660"""
        if sys.platform != 'win32':
            return
        try:
            # before workarounds, only up to 2**32-1 worked
            fourgbplus = 2**32 + 2**16
            testbytes = np.arange(8, dtype=np.int8)
            n = len(testbytes)
            flike = tempfile.NamedTemporaryFile()
            f = flike.file
            np.tile(testbytes, fourgbplus // testbytes.nbytes).tofile(f)
            flike.seek(0)
            a = np.fromfile(f, dtype=np.int8)
            flike.close()
            assert_(len(a) == fourgbplus)
            # check only start and end for speed:
            assert_((a[:n] == testbytes).all())
            assert_((a[-n:] == testbytes).all())
        except (MemoryError, ValueError):
            pass 

Example 33

def test_two_keys_two_vars(self):
        a = np.array(list(zip(np.tile([10, 11], 5), np.repeat(np.arange(5), 2),
                              np.arange(50, 60), np.arange(10, 20))),
                     dtype=[('k', int), ('a', int), ('b', int), ('c', int)])

        b = np.array(list(zip(np.tile([10, 11], 5), np.repeat(np.arange(5), 2),
                              np.arange(65, 75), np.arange(0, 10))),
                     dtype=[('k', int), ('a', int), ('b', int), ('c', int)])

        control = np.array([(10, 0, 50, 65, 10, 0), (11, 0, 51, 66, 11, 1),
                            (10, 1, 52, 67, 12, 2), (11, 1, 53, 68, 13, 3),
                            (10, 2, 54, 69, 14, 4), (11, 2, 55, 70, 15, 5),
                            (10, 3, 56, 71, 16, 6), (11, 3, 57, 72, 17, 7),
                            (10, 4, 58, 73, 18, 8), (11, 4, 59, 74, 19, 9)],
                           dtype=[('k', int), ('a', int), ('b1', int),
                                  ('b2', int), ('c1', int), ('c2', int)])
        test = join_by(
            ['a', 'k'], a, b, r1postfix='1', r2postfix='2', jointype='inner')
        assert_equal(test.dtype, control.dtype)
        assert_equal(test, control) 

Example 34

def dist_info_sym(self, obs_var, latent_var=None):  # this is ment to be for one path!
        # now this is not doing anything! And for computing the dist_info_vars of npo_snn_rewardMI it doesn't work
        if latent_var is None:
            latent_var1 = theano.shared(np.expand_dims(self.latent_fix, axis=0))  # new fix to avoid putting the latent as an input: just take the one fixed!
            latent_var = TT.tile(latent_var1, [obs_var.shape[0], 1])

        # generate the generalized input (append latents to obs.)
        if self.bilinear_integration:
            extended_obs_var = TT.concatenate([obs_var, latent_var,
                                               TT.flatten(obs_var[:, :, np.newaxis] * latent_var[:, np.newaxis, :],
                                                          outdim=2)]
                                              , axis=1)
        else:
            extended_obs_var = TT.concatenate([obs_var, latent_var], axis=1)
        mean_var, log_std_var = L.get_output([self._l_mean, self._l_log_std], extended_obs_var)
        if self.min_std is not None:
            log_std_var = TT.maximum(log_std_var, np.log(self.min_std))
        return dict(mean=mean_var, log_std=log_std_var) 

Example 35

def train(self, tran, selected):
        self.targetNet.blobs['frames'].data[...] \
            = tran.frames[selected + 1].copy()
        netOut = self.targetNet.forward()

        target = np.tile(tran.reward[selected]
                         + pms.discount
                         * tran.n_last[selected]
                         * np.resize(netOut['value_q'].max(1),
                                     (pms.batchSize, 1)),
                         (pms.actionSize,)
                         ) * tran.action[selected]

        self.solver.net.blobs['target'].data[...] = target
        self.solver.net.blobs['frames'].data[...] = tran.frames[selected].copy()
        self.solver.net.blobs['filter'].data[...] = tran.action[selected].copy()
        self.solver.step(1) 

Example 36

def knn_masked_data(trX,trY,missing_data_dir, input_shape, k):
    
    raw_im_data = np.loadtxt(join(script_dir,missing_data_dir,'index.txt'),delimiter=' ',dtype=str)
    raw_mask_data = np.loadtxt(join(script_dir,missing_data_dir,'index_mask.txt'),delimiter=' ',dtype=str)
    # Using 'brute' method since we only want to do one query per classifier
    # so this will be quicker as it avoids overhead of creating a search tree
    knn_m = KNeighborsClassifier(algorithm='brute',n_neighbors=k)
    prob_Y_hat = np.zeros((raw_im_data.shape[0],int(np.max(trY)+1)))
    total_images = raw_im_data.shape[0]
    pbar = progressbar.ProgressBar(widgets=[progressbar.FormatLabel('\rProcessed %(value)d of %(max)d Images '), progressbar.Bar()], maxval=total_images, term_width=50).start()
    for i in range(total_images):
        mask_im=load_image(join(script_dir,missing_data_dir,raw_mask_data[i][0]), input_shape,1).reshape(np.prod(input_shape))
        mask = np.logical_not(mask_im > eps) # since mask is 1 at missing locations
        v_im=load_image(join(script_dir,missing_data_dir,raw_im_data[i][0]), input_shape, 255).reshape(np.prod(input_shape))
        rep_mask = np.tile(mask,(trX.shape[0],1))
        # Corrupt whole training set according to the current mask
        corr_trX = np.multiply(trX, rep_mask)        
        knn_m.fit(corr_trX, trY)
        prob_Y_hat[i,:] = knn_m.predict_proba(v_im.reshape(1,-1))
        pbar.update(i)
    pbar.finish()
    return prob_Y_hat 

Example 37

def get_im2col_indices(x_shape, field_height, field_width, padding=1, stride=1):
    # First figure out what the size of the output should be
    C, H, W = x_shape
    assert (H + 2 * padding - field_height) % stride == 0
    assert (W + 2 * padding - field_height) % stride == 0
    out_height = (H + 2 * padding - field_height) / stride + 1
    out_width = (W + 2 * padding - field_width) / stride + 1

    i0 = np.repeat(np.arange(field_height), field_width)
    i0 = np.tile(i0, C)
    i1 = stride * np.repeat(np.arange(out_height), out_width)
    j0 = np.tile(np.arange(field_width), field_height * C)
    j1 = stride * np.tile(np.arange(out_width), out_height)
    i = i0.reshape(-1, 1) + i1.reshape(1, -1)
    j = j0.reshape(-1, 1) + j1.reshape(1, -1)

    k = np.repeat(np.arange(C), field_height * field_width).reshape(-1, 1)

    return (k, i, j) 

Example 38

def __init__(self, directory, num_act, mean_path, num_threads=1, capacity=1e5, batch_size=32,
                scale=(1.0/255.0), s_t_shape=[84, 84, 4], x_t_1_shape=[84, 84, 1], colorspace='gray'):
        self.scale = scale
        self.s_t_shape = s_t_shape
        self.x_t_1_shape = x_t_1_shape

        # Load image mean
        mean = np.load(os.path.join(mean_path))

        # Prepare data flow
        s_t, a_t, x_t_1 = _read_and_decode(directory,
                                        s_t_shape=s_t_shape,
                                        num_act=num_act,
                                        x_t_1_shape=x_t_1_shape)
        self.mean = mean
        self.s_t_batch, self.a_t_batch, self.x_t_1_batch = tf.train.shuffle_batch([s_t, a_t, x_t_1],
                                                            batch_size=batch_size, capacity=capacity,
                                                            min_after_dequeue=int(capacity*0.25),
                                                            num_threads=num_threads)

        # Subtract image mean (according to J Oh design)
        self.mean_const = tf.constant(mean, dtype=tf.float32)
        print(self.mean_const.get_shape())
        self.s_t_batch = (self.s_t_batch - tf.tile(self.mean_const, [1, 1, 4])) * scale
        self.x_t_1_batch = (self.x_t_1_batch - self.mean_const) * scale 

Example 39

def create_test_input(batch_size, height, width, channels):
  """Create test input tensor.

  Args:
    batch_size: The number of images per batch or `None` if unknown.
    height: The height of each image or `None` if unknown.
    width: The width of each image or `None` if unknown.
    channels: The number of channels per image or `None` if unknown.

  Returns:
    Either a placeholder `Tensor` of dimension
      [batch_size, height, width, channels] if any of the inputs are `None` or a
    constant `Tensor` with the mesh grid values along the spatial dimensions.
  """
  if None in [batch_size, height, width, channels]:
    return tf.placeholder(tf.float32, (batch_size, height, width, channels))
  else:
    return tf.to_float(
        np.tile(
            np.reshape(
                np.reshape(np.arange(height), [height, 1]) +
                np.reshape(np.arange(width), [1, width]),
                [1, height, width, 1]),
            [batch_size, 1, 1, channels])) 

Example 40

def create_test_input(batch_size, height, width, channels):
  """Create test input tensor.

  Args:
    batch_size: The number of images per batch or `None` if unknown.
    height: The height of each image or `None` if unknown.
    width: The width of each image or `None` if unknown.
    channels: The number of channels per image or `None` if unknown.

  Returns:
    Either a placeholder `Tensor` of dimension
      [batch_size, height, width, channels] if any of the inputs are `None` or a
    constant `Tensor` with the mesh grid values along the spatial dimensions.
  """
  if None in [batch_size, height, width, channels]:
    return tf.placeholder(tf.float32, (batch_size, height, width, channels))
  else:
    return tf.to_float(
        np.tile(
            np.reshape(
                np.reshape(np.arange(height), [height, 1]) +
                np.reshape(np.arange(width), [1, width]),
                [1, height, width, 1]),
            [batch_size, 1, 1, channels])) 

Example 41

def get_op(self):
        """Returns all symmetry operations (including inversions and
        subtranslations), but unlike get_symop(), they are returned as
        two ndarrays."""
        if self.centrosymmetric:
            rot = np.tile(np.vstack((self.rotations, -self.rotations)), 
                          (self.nsubtrans, 1, 1))
            trans = np.tile(np.vstack((self.translations, -self.translations)),
                            (self.nsubtrans, 1))
            trans += np.repeat(self.subtrans, 2 * len(self.rotations), axis=0)
            trans = np.mod(trans, 1)
        else:
            rot = np.tile(self.rotations, (self.nsubtrans, 1, 1))
            trans = np.tile(self.translations, (self.nsubtrans, 1))
            trans += np.repeat(self.subtrans, len(self.rotations), axis=0)
            trans = np.mod(trans, 1)
        return rot, trans 

Example 42

def get_feed_dic_obs(self, obs):
    # needing to create all the nessisary feeds
    obs_x = []
    obs_y = []
    obs_tf = []
    
    for _ in range(OBS_SIZE):
      obs_x.append(np.zeros([N_BATCH,L]))
      obs_y.append(np.zeros([N_BATCH,L]))
      obs_tf.append(np.zeros([N_BATCH,2]))

    num_obs = len(obs)
    for ob_idx in range(num_obs):
      ob_coord, ob_lab = obs[ob_idx]
      ob_x, ob_y = vectorize(ob_coord)
      obs_x[ob_idx] = np.tile(ob_x, [50,1])
      obs_y[ob_idx] = np.tile(ob_y, [50,1])
      obs_tf[ob_idx] = np.tile(ob_lab, [50,1])

    feed_dic = dict(zip(self.ph_obs_x + self.ph_obs_y + self.ph_obs_tf, 
                        obs_x + obs_y + obs_tf))
    return feed_dic 

Example 43

def get_feed_dic_obs(self, obs):
    # needing to create all the nessisary feeds
    obs_x = []
    obs_y = []
    obs_tf = []
    
    for _ in range(OBS_SIZE):
      obs_x.append(np.zeros([N_BATCH,L]))
      obs_y.append(np.zeros([N_BATCH,L]))
      obs_tf.append(np.zeros([N_BATCH,2]))

    num_obs = len(obs)
    for ob_idx in range(num_obs):
      ob_coord, ob_lab = obs[ob_idx]
      ob_x, ob_y = vectorize(ob_coord)
      obs_x[ob_idx] = np.tile(ob_x, [50,1])
      obs_y[ob_idx] = np.tile(ob_y, [50,1])
      obs_tf[ob_idx] = np.tile(ob_lab, [50,1])

    feed_dic = dict(zip(self.ph_obs_x + self.ph_obs_y + self.ph_obs_tf, 
                        obs_x + obs_y + obs_tf))
    return feed_dic 

Example 44

def collect_trajs_for_cost(self, n_trajs, pol, env, dom, cls):
        paths = []
        #print(n_trajs)
        for iter_step in range(0, n_trajs):
            paths.append(self.cyberpunk_rollout(agent=pol, env=env, max_path_length=self.horizon,
                                                reward_extractor=None))

        data_matrix = tensor_utils.stack_tensor_list([p['im_observations'] for p in paths])
        class_matrix = np.tile(cls, (n_trajs, self.horizon, 1))
        dom_matrix = np.tile(dom, (n_trajs, self.horizon, 1))

        #data_matrix = np.zeros(shape=(n_trajs, self.horizon, self.im_height, self.im_width, self.im_channels))
        #class_matrix = np.zeros(shape=(n_trajs, self.horizon, 2))
        #dom_matrix = np.zeros(shape=(n_trajs, self.horizon, 2))
        #for path, path_step in zip(paths, range(0, len(paths))):
        #    for sub_path, time_step in zip(path['im_observations'], range(0, self.horizon)):
        #        data_matrix[path_step, time_step, :, :, :] = sub_path
        #        class_matrix[path_step, time_step, :] = path['class']
        #        dom_matrix[path_step, time_step, :] = path['dom']

        return dict(data=data_matrix, classes=class_matrix, domains=dom_matrix) 

Example 45

def sample(self, path, save_samples):
        gan = self.gan
        generator = gan.uniform_sample
        z_t = gan.uniform_encoder.sample
        x_t = gan.inputs.x
        
        sess = gan.session
        config = gan.config
        global x_v
        global z_v
        x_v = sess.run(x_t)
        x_v = np.tile(x_v[0], [gan.batch_size(),1,1,1])
        
        sample = sess.run(generator, {x_t: x_v})
        stacks = []
        bs = gan.batch_size()
        width = 5
        print(np.shape(x_v), np.shape(sample))
        stacks.append([x_v[1], sample[1], sample[2], sample[3], sample[4]])
        for i in range(bs//width-1):
            stacks.append([sample[i*width+width+j] for j in range(width)])
        images = np.vstack([np.hstack(s) for s in stacks])

        self.plot(images, path, save_samples)
        return [{'images': images, 'label': 'tiled x sample'}] 

Example 46

def shadow_image(self, img, pos):
        if img is None:
            return None
        weighted_img = np.ones((img.shape[0], img.shape[1]), np.uint8)
        x = int(pos.x() / self.scale)
        y = int(pos.y() / self.scale)

        weighted_img[y, x] = 0
        dist_img = cv2.distanceTransform(weighted_img, distanceType=cv2.cv.CV_DIST_L2, maskSize=5).astype(np.float32)
        dist_sigma = self.img_size/2.0
        dist_img_f = np.exp(-dist_img / dist_sigma)
        dist_img_f = np.tile(dist_img_f[..., np.newaxis], [1,1,3])
        l = 0.25
        img_f = img.astype(np.float32)
        rst_f = (img_f * l + (1-l) * (img_f * dist_img_f + (1-dist_img_f)*255.0))
        rst = rst_f.astype(np.uint8)
        return rst 

Example 47

def CSMToBinary(D, Kappa):
    """
    Turn a cross-similarity matrix into a binary cross-simlarity matrix
    If Kappa = 0, take all neighbors
    If Kappa < 1 it is the fraction of mutual neighbors to consider
    Otherwise Kappa is the number of mutual neighbors to consider
    """
    N = D.shape[0]
    M = D.shape[1]
    if Kappa == 0:
        return np.ones((N, M))
    elif Kappa < 1:
        NNeighbs = int(np.round(Kappa*M))
    else:
        NNeighbs = Kappa
    J = np.argpartition(D, NNeighbs, 1)[:, 0:NNeighbs]
    I = np.tile(np.arange(N)[:, None], (1, NNeighbs))
    V = np.ones(I.size)
    [I, J] = [I.flatten(), J.flatten()]
    ret = sparse.coo_matrix((V, (I, J)), shape=(N, M))
    return ret.toarray() 

Example 48

def load_np_image_uint8(image_file):
  """Loads an image as a numpy array.

  Args:
    image_file: str. Image file.

  Returns:
    A 3-D numpy array of shape [image_size, image_size, 3] and dtype uint8,
    with values in [0, 255].
  """
  with tempfile.NamedTemporaryFile() as f:
    f.write(tf.gfile.GFile(image_file, 'rb').read())
    f.flush()
    image = scipy.misc.imread(f.name)
    # Workaround for black-and-white images
    if image.ndim == 2:
      image = np.tile(image[:, :, None], (1, 1, 3))
    return image 

Example 49

def _radii(self):
        """Returns an array the same size as self.num_points with the distance from the y-axis
        (i.e. the x coordinate) of each velocity point (hence x.increment/2 is added). For axial-
        symmetric fields, this is the radius, which is required to formulate the differential
        operators.

        Returns
            Radius of each velocity point.
        """

        return np.tile(self.x.vector, self.y.samples) + self.x.increment/2 

Example 50

def test_sample_from_probs2_gof(size):
    set_random_seed(size)
    probs = np.exp(2 * np.random.random(size)).astype(np.float32)
    counts = np.zeros(size, dtype=np.int32)
    num_samples = 2000 * size
    probs2 = np.tile(probs, (num_samples, 1))
    samples = sample_from_probs2(probs2)
    probs /= probs.sum()  # Normalize afterwards.
    counts = np.bincount(samples, minlength=size)
    print(counts)
    print(probs * num_samples)
    gof = multinomial_goodness_of_fit(probs, counts, num_samples, plot=True)
    assert 1e-2 < gof 
点赞