Python numpy.eye() 使用实例

The following are code examples for showing how to use . They are extracted from open source Python projects. You can vote up the examples you like or vote down the exmaples you don’t like. You can also save this page to your account.

Example 1

def initialize_estimate(self, estimate_id, initial_state):
        """Initialize a state estimate with identity covariance.

        The initial estimate is saved in the `self.estimates` dictionary.
        The timestamp in the `self.estimate_times` is updated.

        Args:
             estimate_id (int): ID of the tracked target.
             initial_state (int): Initial state of the estimate.

        Returns:
             X (numpy.ndarray): Solution of equation.
        """
        x = initial_state
        P = self.initial_position_covariance * np.eye(6)
        P[3:6, 3:6] = 0
        estimate = UWBTracker.StateEstimate(x, P)
        self.estimates[estimate_id] = estimate
        self.estimate_times[estimate_id] = rospy.get_time()
        self.ikf_prev_outlier_flags[estimate_id] = False
        self.ikf_outlier_counts[estimate_id] = 0 

Example 2

def _compute_process_and_covariance_matrices(self, dt):
        """Computes the transition and covariance matrix of the process model and measurement model.

        Args:
             dt (float): Timestep of the discrete transition.

        Returns:
            F (numpy.ndarray): Transition matrix.
            Q (numpy.ndarray): Process covariance matrix.
            R (numpy.ndarray): Measurement covariance matrix.
        """
        F = np.array(np.bmat([[np.eye(3), dt * np.eye(3)], [np.zeros((3, 3)), np.eye(3)]]))
        self.process_matrix = F
        q_p = self.process_covariance_position
        q_v = self.process_covariance_velocity
        Q = np.diag([q_p, q_p, q_p, q_v, q_v, q_v]) ** 2 * dt
        r = self.measurement_covariance
        R = r * np.eye(4)
        self.process_covariance = Q
        self.measurement_covariance = R
        return F, Q, R 

Example 3

def get_covariance(self):
        """Compute data covariance with the generative model.
        ``cov = components_.T * S**2 * components_ + sigma2 * eye(n_features)``
        where  S**2 contains the explained variances.
        Returns
        -------
        cov : array, shape=(n_features, n_features)
            Estimated covariance of data.
        """
        components_ = self.components_
        exp_var = self.explained_variance_
        if self.whiten:
            components_ = components_ * np.sqrt(exp_var[:, np.newaxis])
        exp_var_diff = np.maximum(exp_var - self.noise_variance_, 0.)
        cov = np.dot(components_.T * exp_var_diff, components_)
        cov.flat[::len(cov) + 1] += self.noise_variance_  # modify diag inplace
        return cov 

Example 4

def infExact_scipy_post(self, K, covars, y, sig2e, fixedEffects):
		n = y.shape[0]

		#mean vector
		m = covars.dot(fixedEffects)
		
		if (K.shape[1] < K.shape[0]): K_true = K.dot(K.T)
		else: K_true = K
		
		if sig2e<1e-6:
			L = la.cholesky(K_true + sig2e*np.eye(n), overwrite_a=True, check_finite=False)    	 #Cholesky factor of covariance with noise
			sl =   1
			pL = -self.solveChol(L, np.eye(n))         									 		 #L = -inv(K+inv(sW^2))
		else:
			L = la.cholesky(K_true/sig2e + np.eye(n), overwrite_a=True, check_finite=False)	  	 #Cholesky factor of B
			sl = sig2e               	   
			pL = L                		   												 		 #L = chol(eye(n)+sW*sW'.*K)
		alpha = self.solveChol(L, y-m, overwrite_b=False) / sl
			
		post = dict([])	
		post['alpha'] = alpha					  										  		#return the posterior parameters
		post['sW'] = np.ones(n) / np.sqrt(sig2e)									  			#sqrt of noise precision vector
		post['L'] = pL
		return post 

Example 5

def BorthogonalityTest(B, U):
    """
    Test the frobenious norm of  U^TBU - I_k
    """
    BU = np.zeros(U.shape)
    Bu = Vector()
    u = Vector()
    B.init_vector(Bu,0)
    B.init_vector(u,1)
    
    nvec  = U.shape[1]
    for i in range(0,nvec):
        u.set_local(U[:,i])
        B.mult(u,Bu)
        BU[:,i] = Bu.get_local()
        
    UtBU = np.dot(U.T, BU)
    err = UtBU - np.eye(nvec, dtype=UtBU.dtype)
    print("|| UtBU - I ||_F = ", np.linalg.norm(err, 'fro') ) 

Example 6

def KeyGen(**kwargs):
	'''
	Appendix B of BLISS paper
	m_bar = m + n

	o/p:	
	A: Public Key n x m' numpy array
	S: Secret Key m'x n numpy array
	'''
	q, n, m, alpha = kwargs['q'], kwargs['n'], kwargs['m'], kwargs['alpha']
	Aq_bar = util.crypt_secure_matrix(-(q-1)/2, (q-1)/2, n, m)
	S_bar = util.crypt_secure_matrix(-(2)**alpha, (2)**alpha, m, n) # alpha is small enough, we need not reduce (modq)
	S = np.vstack((S_bar, np.eye(n, dtype = int))) # dimension is m_bar x n, Elements are in Z mod(2q)
	A = np.hstack((2*Aq_bar, q * np.eye(n, dtype = int) - 2*np.matmul(Aq_bar,S_bar))) # dimension is n x m_bar , Elements are in Z mod(2q)
	#return util.matrix_to_Zq(A, 2*q), S, Aq_bar, S_bar
	return util.matrix_to_Zq(A, 2*q), S 

Example 7

def test():
	# Classical SIS parameters
	n, m, alpha, q = 128, 872, 1, 114356107
	kappa = 20
	
	#Discrete Gaussian Parameters
	sd = 300
	eta = 1.2

	A, S = KeyGen(q = q,n = n,m = m,alpha = alpha)
	#print np.array(np.matmul(A,S) - q*np.eye(n),dtype=float)/(2*q) #to test AS = q mod(2q)
	z, c = Sign(msg = "Hello Bob",A = A,S = S,m = m,n = n,sd = sd,q = q,M = 3.0,kappa = kappa)
	print z
	print c
	print Verify(msg = "Hello Bob", A=A, m=m, n=n, sd=sd, q=q, eta=eta, z=z, c=c, kappa = kappa)
	print Verify(msg = "Hello Robert", A=A, m=m, n=n, sd=sd, q=q, eta=eta, z=z, c=c, kappa = kappa)
	print Verify(msg = "Hello Roberto", A=A, m=m, n=n, sd=sd, q=q, eta=eta, z=z, c=c, kappa = kappa)
	print Verify(msg = "Hola Roberto", A=A, m=m, n=n, sd=sd, q=q, eta=eta, z=z, c=c, kappa = kappa) 

Example 8

def __init__(self, X, Y, R=None, t=None, s=None, sigma2=None, maxIterations=100, tolerance=0.001, w=0):
    if X.shape[1] != Y.shape[1]:
      raise 'Both point clouds must have the same number of dimensions!'

    self.X             = X
    self.Y             = Y
    self.TY            = Y
    (self.N, self.D)   = self.X.shape
    (self.M, _)        = self.Y.shape
    self.R             = np.eye(self.D) if R is None else R
    self.t             = np.atleast_2d(np.zeros((1, self.D))) if t is None else t
    self.s             = 1 if s is None else s
    self.sigma2        = sigma2
    self.iteration     = 0
    self.maxIterations = maxIterations
    self.tolerance     = tolerance
    self.w             = w
    self.q             = 0
    self.err           = 0 

Example 9

def __init__(self, X, Y, B=None, t=None, sigma2=None, maxIterations=100, tolerance=0.001, w=0):
    if X.shape[1] != Y.shape[1]:
        raise 'Both point clouds must have the same number of dimensions!'

    self.X             = X
    self.Y             = Y
    self.TY            = Y
    (self.N, self.D)   = self.X.shape
    (self.M, _)        = self.Y.shape
    self.B             = np.eye(self.D) if B is None else B
    self.t             = np.atleast_2d(np.zeros((1, self.D))) if t is None else t
    self.sigma2        = sigma2
    self.iteration     = 0
    self.maxIterations = maxIterations
    self.tolerance     = tolerance
    self.w             = w
    self.q             = 0
    self.err           = 0 

Example 10

def get_loss(pred, label, end_points, reg_weight=0.001):
    """ pred: B*NUM_CLASSES,
        label: B, """
    loss = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=pred, labels=label)
    classify_loss = tf.reduce_mean(loss)
    tf.summary.scalar('classify loss', classify_loss)

    # Enforce the transformation as orthogonal matrix
    transform = end_points['transform'] # BxKxK
    K = transform.get_shape()[1].value
    mat_diff = tf.matmul(transform, tf.transpose(transform, perm=[0,2,1]))
    mat_diff -= tf.constant(np.eye(K), dtype=tf.float32)
    mat_diff_loss = tf.nn.l2_loss(mat_diff) 
    tf.summary.scalar('mat loss', mat_diff_loss)

    return classify_loss + mat_diff_loss * reg_weight 

Example 11

def get_loss(pred, label, end_points, reg_weight=0.001):
    """ pred: BxNxC,
        label: BxN, """
    loss = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=pred, labels=label)
    classify_loss = tf.reduce_mean(loss)
    tf.scalar_summary('classify loss', classify_loss)

    # Enforce the transformation as orthogonal matrix
    transform = end_points['transform'] # BxKxK
    K = transform.get_shape()[1].value
    mat_diff = tf.matmul(transform, tf.transpose(transform, perm=[0,2,1]))
    mat_diff -= tf.constant(np.eye(K), dtype=tf.float32)
    mat_diff_loss = tf.nn.l2_loss(mat_diff) 
    tf.scalar_summary('mat_loss', mat_diff_loss)

    return classify_loss + mat_diff_loss * reg_weight 

Example 12

def get_loss(l_pred, seg_pred, label, seg, weight, end_points):
    per_instance_label_loss = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=l_pred, labels=label)
    label_loss = tf.reduce_mean(per_instance_label_loss)

    # size of seg_pred is batch_size x point_num x part_cat_num
    # size of seg is batch_size x point_num
    per_instance_seg_loss = tf.reduce_mean(tf.nn.sparse_softmax_cross_entropy_with_logits(logits=seg_pred, labels=seg), axis=1)
    seg_loss = tf.reduce_mean(per_instance_seg_loss)

    per_instance_seg_pred_res = tf.argmax(seg_pred, 2)
    
    # Enforce the transformation as orthogonal matrix
    transform = end_points['transform'] # BxKxK
    K = transform.get_shape()[1].value
    mat_diff = tf.matmul(transform, tf.transpose(transform, perm=[0,2,1])) - tf.constant(np.eye(K), dtype=tf.float32)
    mat_diff_loss = tf.nn.l2_loss(mat_diff) 
    

    total_loss = weight * seg_loss + (1 - weight) * label_loss + mat_diff_loss * 1e-3

    return total_loss, label_loss, per_instance_label_loss, seg_loss, per_instance_seg_loss, per_instance_seg_pred_res 

Example 13

def refit_model(self):
        """Learns a new surrogate model using the data observed so far.

        """

        # only fit the model if there is data for it.
        if len(self.known_models) > 0:

            self._build_feature_maps(self.known_models, self.ngram_maxlen, self.thres)

            X = sp.vstack([ self._compute_features(mdl)
                    for mdl in self.known_models], "csr")
            y = np.array(self.known_scores, dtype='float64')

            #A = np.dot(X.T, X) + lamb * np.eye(X.shape[1])
            #b = np.dot(X.T, y)
            self.surr_model = lm.Ridge(self.lamb_ridge)
            self.surr_model.fit(X, y)


# NOTE: if the search space has holes, it break. needs try/except module. 

Example 14

def covariance_matrix(self):
        if self._debug:
            # return None
            ka = self.k_active
            if ka > 0:
                C = np.eye(self.N) + np.dot(self.V[:ka].T * self.S[:ka],
                                            self.V[:ka])
                C = (C * self.D).T * self.D
            else:
                C = np.diag(self.D**2)
            C *= self.sigma**2
        else:
            # Fake Covariance Matrix for Speed
            C = np.ones(1)
            self.B = np.ones(1)
        return C 

Example 15

def Minibatch_Discriminator(input, num_kernels=100, dim_per_kernel=5, init=False, name='MD'):
    num_inputs=df_dim*4
    theta = tf.get_variable(name+"/theta",[num_inputs, num_kernels, dim_per_kernel], initializer=tf.random_normal_initializer(stddev=0.05))
    log_weight_scale = tf.get_variable(name+"/lws",[num_kernels, dim_per_kernel], initializer=tf.constant_initializer(0.0))
    W = tf.mul(theta, tf.expand_dims(tf.exp(log_weight_scale)/tf.sqrt(tf.reduce_sum(tf.square(theta),0)),0))
    W = tf.reshape(W,[-1,num_kernels*dim_per_kernel])
    x = input
    x=tf.reshape(x, [batchsize,num_inputs])
    activation = tf.matmul(x, W)
    activation = tf.reshape(activation,[-1,num_kernels,dim_per_kernel])
    abs_dif = tf.mul(tf.reduce_sum(tf.abs(tf.sub(tf.expand_dims(activation,3),tf.expand_dims(tf.transpose(activation,[1,2,0]),0))),2),
                                                1-tf.expand_dims(tf.constant(np.eye(batchsize),dtype=np.float32),1))
    f = tf.reduce_sum(tf.exp(-abs_dif),2)/tf.reduce_sum(tf.exp(-abs_dif))
    print(f.get_shape())
    print(input.get_shape())
    return tf.concat(1,[x, f]) 

Example 16

def _build_policy(env, predictor, epsilon):
    eye = np.eye(env.num_states)
    q_values = predictor.predict(
        {str(i): eye[i]
         for i in range(env.num_states)}
    )
    policy_vector = [
        env.ACTIONS[np.argmax([q_values[action][i] for action in env.ACTIONS])]
        for i in range(env.num_states)
    ]

    def policy(state) -> str:
        if np.random.random() < epsilon:
            return np.random.choice(env.ACTIONS)
        else:
            return policy_vector[state]

    return policy 

Example 17

def export_data(prediction_dir, nii_image_dir, tfrecords_dir, export_dir, transformation=None):

    for file_path in os.listdir(prediction_dir):
        name, prediction, probability = read_prediction_file(os.path.join(prediction_dir, file_path))

        if transformation:
            image, ground_truth = get_original_image(os.path.join(tfrecords_dir, name + '.tfrecord'), False)
            prediction = transformation.transform_image(prediction, probability, image)

        # build cv_predictions .nii image
        img = nib.Nifti1Image(prediction, np.eye(4))
        img.set_data_dtype(dtype=np.uint8)

        path = os.path.join(nii_image_dir, name)

        adc_name = next(l for l in os.listdir(path) if 'MR_ADC' in l)
        export_image = nib.load(os.path.join(nii_image_dir, name, adc_name, adc_name + '.nii'))

        i = export_image.get_data()
        i[:] = img.get_data()

        # set name to specification and export
        _id = next(l for l in os.listdir(path) if 'MR_MTT' in l).split('.')[-1]
        export_path = os.path.join(export_dir, 'SMIR.' + name + '.' + _id + '.nii')
        nib.save(export_image, os.path.join(export_path)) 

Example 18

def eye(sites, ldim):
    """Returns a MPA representing the identity matrix

    :param sites: Number of sites
    :param ldim: Int-like local dimension or iterable of local dimensions
    :returns: Representation of the identity matrix as MPA

    >>> I = eye(4, 2)
    >>> I.ranks, I.shape
    ((1, 1, 1), ((2, 2), (2, 2), (2, 2), (2, 2)))
    >>> I = eye(3, (3, 4, 5))
    >>> I.shape
    ((3, 3), (4, 4), (5, 5))
    """
    if isinstance(ldim, collections.Iterable):
        ldim = tuple(ldim)
        assert len(ldim) == sites
    else:
        ldim = it.repeat(ldim, sites)
    return mp.MPArray.from_kron(map(np.eye, ldim)) 

Example 19

def _embed_ltens_identity(mpa, embed_tensor=None):
    """Embed with identity matrices by default.

    :param embed_tensor: If the MPAs do not have two physical legs or
        have non-square physical dimensions, you must provide an
        embedding tensor. The default is to use the square identity
        matrix, assuming that the size of the two physical legs is the
        same at each site.
    :returns: `embed_tensor` with one size-one virtual leg added at each
        end.

    """
    if embed_tensor is None:
        pdims = mpa.shape[0]
        assert len(pdims) == 2 and pdims[0] == pdims[1], (
            "For ndims != 2 or non-square shape, you must supply a tensor"
            "for embedding")
        embed_tensor = np.eye(pdims[0])
    embed_ltens = embed_tensor[None, ..., None]
    return embed_ltens 

Example 20

def test_povm_normalization_ic(dim):
    for name, constructor in ALL_POVMS.items():
        # Check that the POVM is normalized: elements must sum to the identity
        current_povm = constructor(dim)
        element_sum = sum(iter(current_povm))
        assert_array_almost_equal(element_sum, np.eye(dim))

        # Check that the attribute that says whether the POVM is IC is correct.
        linear_inversion_recons = np.dot(current_povm.linear_inversion_map,
                                         current_povm.probability_map)
        if current_povm.informationally_complete:
            assert_array_almost_equal(
                linear_inversion_recons, np.eye(dim**2),
                err_msg='POVM {} is not informationally complete'.format(name))
        else:
            assert np.abs(linear_inversion_recons - np.eye(dim**2)).max() > 0.1, \
                'POVM {} is informationally complete'.format(name) 

Example 21

def test_povm_ic_mpa(nr_sites, local_dim, rank, rgen):
    # Check that the tensor product of the PauliGen POVM is IC.
    paulis = povm.pauli_povm(local_dim)
    inv_map = mp_from_array_repeat(paulis.linear_inversion_map, nr_sites)
    probab_map = mp_from_array_repeat(paulis.probability_map, nr_sites)
    reconstruction_map = mp.dot(inv_map, probab_map)

    eye = factory.eye(nr_sites, local_dim**2)
    assert mp.norm(reconstruction_map - eye) < 1e-5

    # Check linear inversion for a particular example MPA.
    # Linear inversion works for arbitrary matrices, not only for states,
    # so we test it for an arbitrary MPA.
    # Normalize, otherwise the absolute error check below will not work.
    mpa = factory.random_mpa(nr_sites, local_dim**2, rank,
                             dtype=np.complex_, randstate=rgen, normalized=True)
    probabs = mp.dot(probab_map, mpa)
    recons = mp.dot(inv_map, probabs)
    assert mp.norm(recons - mpa) < 1e-6 

Example 22

def test_randomized_svd(rows, cols, rank, dtype, transpose, n_iter, target_gen,
                        rgen):
    rank = min(rows, cols) - 2 if rank is 'fullrank' else rank
    A = target_gen(rows, cols, rank=rank, randstate=rgen, dtype=dtype)

    U_ref, s_ref, V_ref = utils.truncated_svd(A, k=rank)
    U, s, V = em.randomized_svd(A, rank, transpose=transpose, randstate=rgen,
                                n_iter=n_iter)

    error_U = np.abs(U.conj().T.dot(U_ref)) - np.eye(rank)
    assert_allclose(np.linalg.norm(error_U), 0, atol=1e-3)
    error_V = np.abs(V.dot(V_ref.conj().T)) - np.eye(rank)
    assert_allclose(np.linalg.norm(error_V), 0, atol=1e-3)
    assert_allclose(s.ravel() - s_ref, 0, atol=1e-3)
    # Check that singular values are returned in descending order
    assert_array_equal(s, np.sort(s)[::-1]) 

Example 23

def hessian(self, x, d=None):
        """
        Computes Hessian matrix
        """
        d = calc_distances(x) if d is None else d
        if d.ndim == 1: d = squareform(d)

        H = np.zeros((3*len(x), 3*len(x)))
        n = self.n
        
        for i in range(len(x)):
            for j in range(len(x)):

                if j == i: continue

                dx = x[i]-x[j]
                r  = d[i,j]
                h  = n / r**(0.5*n+2) * ((n+2) * np.multiply.outer(dx,dx) - np.eye(3) * r)

                H[3*i:3*(i+1), 3*j:3*(j+1)]  = -h 
                H[3*i:3*(i+1), 3*i:3*(i+1)] +=  h

        return H 

Example 24

def apply_gate(self,gate,on_qubit_name):
		on_qubit=self.qubits.get_quantum_register_containing(on_qubit_name)
		if len(on_qubit.get_noop()) > 0:
			print "NOTE this qubit has been measured previously, there should be no more gates allowed but we are reverting that measurement for consistency with IBM's language"
			on_qubit.set_state(on_qubit.get_noop())
			on_qubit.set_noop([])
		if not on_qubit.is_entangled():
			if on_qubit.get_num_qubits()!=1:
				raise Exception("This qubit is not marked as entangled but it has an entangled state")
			on_qubit.set_state(gate*on_qubit.get_state())
		else:
			if not on_qubit.get_num_qubits()>1:
				raise Exception("This qubit is marked as entangled but it does not have an entangled state")
			n_entangled=len(on_qubit.get_entangled())
			apply_gate_to_qubit_idx=[qb.name for qb in on_qubit.get_entangled()].index(on_qubit_name)
			if apply_gate_to_qubit_idx==0:
				entangled_gate=gate
			else:
				entangled_gate=Gate.eye
			for i in range(1,n_entangled):
				if apply_gate_to_qubit_idx==i:
					entangled_gate=np.kron(entangled_gate,gate)
				else:
					entangled_gate=np.kron(entangled_gate,Gate.eye)
			on_qubit.set_state(entangled_gate*on_qubit.get_state()) 

Example 25

def _matrix_inverse(self, matrix):
        """
        Computes inverse of a matrix.
        """
        matrix = np.array(matrix)
        n_features = matrix.shape[0]
        rank = np.linalg.matrix_rank(matrix)

        if rank == n_features:
            return np.linalg.inv(matrix)
        else:
            # Matrix is not full rank, so use Hadi's technique to compute inverse
            # Reference: Ali S. Hadi (1992) "Identifying Multiple Outliers in Multivariate Data" eg. 2.3, 2.4
            eigenValues, eigenVectors = np.linalg.eig(matrix)
            eigenValues = np.abs(eigenValues)  # to deal with -0 values
            idx = eigenValues.argsort()[::-1]
            eigenValues = eigenValues[idx]
            eigenVectors = eigenVectors[:, idx]

            s = eigenValues[eigenValues != 0].min()
            w = [1 / max(e, s) for e in eigenValues]
            W = w * np.eye(n_features)

            return eigenVectors.dot(W).dot(eigenVectors.T) 

Example 26

def swap_affine(axes):
    """ Build a correction matrix, from the given orientation of axes to RAS.

    Parameters
    ----------
    axes: str (manadtory)
        the given orientation of the axes.

    Returns
    -------
    rotation: array (4, 4)
        the correction matrix.
    """
    rotation = numpy.eye(4)
    rotation[:3, 0] = CORRECTION_MATRIX_COLUMNS[axes[0]]
    rotation[:3, 1] = CORRECTION_MATRIX_COLUMNS[axes[1]]
    rotation[:3, 2] = CORRECTION_MATRIX_COLUMNS[axes[2]]
    return rotation 

Example 27

def distribution_parameters(self, parameter_name):
		if parameter_name=='trend':
			E = dot(dot(self.derivative_matrix.T,inv(diag(self.parameters.list['omega'].current_value))),self.derivative_matrix)
			mean = dot(inv(eye(self.size)+E),self.data)
			cov = (self.parameters.list['sigma2'].current_value)*inv(eye(self.size)+E)
			return {'mean' : mean, 'cov' : cov}
		elif parameter_name=='sigma2':
			E = dot(dot(self.derivative_matrix.T,inv(diag(self.parameters.list['omega'].current_value))),self.derivative_matrix)
			pos = self.size
			loc = 0
			scale = 0.5*dot((self.data-dot(eye(self.size),self.parameters.list['trend'].current_value)).T,(self.data-dot(eye(self.size),self.parameters.list['trend'].current_value)))+0.5*dot(dot(self.parameters.list['trend'].current_value.T,E),self.parameters.list['trend'].current_value)
		elif parameter_name=='lambda2':
			pos = self.size-self.total_variation_order-1+self.alpha
			loc = 0.5*(norm(dot(self.derivative_matrix,self.parameters.list['trend'].current_value),ord=1))/self.parameters.list['sigma2'].current_value+self.rho
			scale = 1
		elif parameter_name==str('omega'):
			pos = [sqrt(((self.parameters.list['lambda2'].current_value**2)*self.parameters.list['sigma2'].current_value)/(dj**2)) for dj in dot(self.derivative_matrix,self.parameters.list['trend'].current_value)]
			loc = 0
			scale = self.parameters.list['lambda2'].current_value**2
		return {'pos' : pos, 'loc' : loc, 'scale' : scale} 

Example 28

def estimate_time_constant(y, p=2, sn=None, lags=5, fudge_factor=1.):
    """
    Estimate AR model parameters through the autocovariance function

    Parameters
    ----------
    y : array, shape (T,)
        One dimensional array containing the fluorescence intensities with
        one entry per time-bin.
    p : positive integer
        order of AR system
    sn : float
        sn standard deviation, estimated if not provided.
    lags : positive integer
        number of additional lags where he autocovariance is computed
    fudge_factor : float (0< fudge_factor <= 1)
        shrinkage factor to reduce bias

    Returns
    -------
    g : estimated coefficients of the AR process
    """

    if sn is None:
        sn = GetSn(y)

    lags += p
    xc = axcov(y, lags)
    xc = xc[:, np.newaxis]

    A = scipy.linalg.toeplitz(xc[lags + np.arange(lags)],
                              xc[lags + np.arange(p)]) - sn**2 * np.eye(lags, p)
    g = np.linalg.lstsq(A, xc[lags + 1:])[0]
    gr = np.roots(np.concatenate([np.array([1]), -g.flatten()]))
    gr = (gr + gr.conjugate()) / 2.
    gr[gr > 1] = 0.95 + np.random.normal(0, 0.01, np.sum(gr > 1))
    gr[gr < 0] = 0.15 + np.random.normal(0, 0.01, np.sum(gr < 0))
    g = np.poly(fudge_factor * gr)
    g = -g[1:]

    return g.flatten() 

Example 29

def gaussian_function(y, dimension, ?, cov, log=False, standard=False):
            """??????????? y???(???) ??????(?????) cov??????,log????????,standard??????"""
            x = y - ?
            if standard:
                x = np.dot(x, np.linalg.inv(cov) ** 0.5)
                cov_ = np.eye(dimension)
            else:
                cov_ = cov
            np.seterr(all='ignore')  # ??????
            if log:
                func = - (dimension / 2) * np.log(2 * math.pi) - 0.5 * np.log(np.linalg.det(cov_))
                exp = -0.5 * np.dot(np.dot(x, np.linalg.inv(cov_)), x.T)
                return func + exp
            else:
                sigma = (2 * math.pi) ** (dimension / 2) * np.linalg.det(cov_) ** 0.5
                func = 1. / sigma
                exp = np.exp(-0.5 * np.dot(np.dot(x, np.linalg.inv(cov_)), x.T))
                return func * exp 

Example 30

def batch_works(k):
    if k == n_processes - 1:
        paths = all_paths[k * int(len(all_paths) / n_processes) : ]
    else:
        paths = all_paths[k * int(len(all_paths) / n_processes) : (k + 1) * int(len(all_paths) / n_processes)]
        
    for path in paths:
        probs = np.load(os.path.join(input_path, path))
        pred = np.argmax(probs, axis=3)
        fg_prob = 1 - probs[..., 0]
        pred = clean_contour(fg_prob, pred)
        seg = np.zeros(pred.shape, dtype=np.int16)
        seg[pred == 1] = 1
        seg[pred == 2] = 2
        seg[pred == 3] = 4
        img = nib.Nifti1Image(seg, np.eye(4))
        nib.save(img, os.path.join(output_path, path.replace('_probs.npy', '.nii.gz'))) 

Example 31

def __prepare_controls_and_actions(self):
        self.__discrete_controls_to_net = np.array([i for i in range(len(self.__discrete_controls))
                                                    if i not in self.__discrete_controls_manual])
        self.__num_manual_controls = len(self.__discrete_controls_manual)
        self.__net_discrete_actions = []
        if not self.__opposite_button_pairs:
            for perm in it.product([False, True], repeat=len(self.__discrete_controls_to_net)):
                self.__net_discrete_actions.append(list(perm))
        else:
            for perm in it.product([False, True], repeat=len(self.__discrete_controls_to_net)):
                act = list(perm)
                valid = True
                for button_p in self.__opposite_button_pairs:
                    if act[button_p[0]] and act[button_p[1]]:
                        valid = False
                if valid:
                    self.__net_discrete_actions.append(act)

        self.__num_net_discrete_actions = len(self.__net_discrete_actions)
        self.__action_to_index = {tuple(val): ind for (ind, val) in enumerate(self.__net_discrete_actions)}
        self.__net_discrete_actions = np.array(self.__net_discrete_actions)
        self.__onehot_discrete_acitons = np.eye(self.__num_net_discrete_actions) 

Example 32

def initialize_match_matrix(self):
        """
        Construct the initial match matrix.

        Returns:
        --------
        match_matrix: array
            The match matrix

        """
        # TODO add possibility for slack

        match_matrix = np.zeros((self.reactants_elements.size, self.products_elements.size))

        # set sub blocks of the match matrix to one plus random pertubation
        # followed by column normalization
        for indices in self.element_type_subset_indices:
            match_matrix[indices] = 1 + 1e-3 * np.random.random(match_matrix[indices].shape)
            match_matrix[indices] /= match_matrix[indices].sum(0)

        #match_matrix = np.eye(match_matrix.shape[0])
        #for i,j in [(0,0),(0,4),(1,1),(1,3),(4,0),(4,4),(3,3),(3,1),(7,7),(7,11),(8,8),(8,10),(20,20),(20,24),(21,21),(21,23),(11,7),(11,11),(10,8),(10,10),(24,20),(24,24),(23,23),(23,21)]:
        #    match_matrix[i,j] = 0.5

        return match_matrix 

Example 33

def test_nonzero_twodim(self):
        x = np.array([[0, 1, 0], [2, 0, 3]])
        assert_equal(np.count_nonzero(x), 3)
        assert_equal(np.nonzero(x), ([0, 1, 1], [1, 0, 2]))

        x = np.eye(3)
        assert_equal(np.count_nonzero(x), 3)
        assert_equal(np.nonzero(x), ([0, 1, 2], [0, 1, 2]))

        x = np.array([[(0, 1), (0, 0), (1, 11)],
                   [(1, 1), (1, 0), (0, 0)],
                   [(0, 0), (1, 5), (0, 1)]], dtype=[('a', 'f4'), ('b', 'u1')])
        assert_equal(np.count_nonzero(x['a']), 4)
        assert_equal(np.count_nonzero(x['b']), 5)
        assert_equal(np.nonzero(x['a']), ([0, 1, 1, 2], [2, 0, 1, 1]))
        assert_equal(np.nonzero(x['b']), ([0, 0, 1, 2, 2], [0, 2, 0, 1, 2]))

        assert_(not x['a'].T.flags.aligned)
        assert_equal(np.count_nonzero(x['a'].T), 4)
        assert_equal(np.count_nonzero(x['b'].T), 5)
        assert_equal(np.nonzero(x['a'].T), ([0, 1, 1, 2], [1, 1, 2, 0]))
        assert_equal(np.nonzero(x['b'].T), ([0, 0, 1, 2, 2], [0, 1, 2, 0, 2])) 

Example 34

def test_matrix_rank(self):
        # Full rank matrix
        yield assert_equal, 4, matrix_rank(np.eye(4))
        # rank deficient matrix
        I = np.eye(4)
        I[-1, -1] = 0.
        yield assert_equal, matrix_rank(I), 3
        # All zeros - zero rank
        yield assert_equal, matrix_rank(np.zeros((4, 4))), 0
        # 1 dimension - rank 1 unless all 0
        yield assert_equal, matrix_rank([1, 0, 0, 0]), 1
        yield assert_equal, matrix_rank(np.zeros((4,))), 0
        # accepts array-like
        yield assert_equal, matrix_rank([1]), 1
        # greater than 2 dimensions raises error
        yield assert_raises, TypeError, matrix_rank, np.zeros((2, 2, 2))
        # works on scalar
        yield assert_equal, matrix_rank(1), 1 

Example 35

def test_byteorder_check():
    # Byte order check should pass for native order
    if sys.byteorder == 'little':
        native = '<'
    else:
        native = '>'

    for dtt in (np.float32, np.float64):
        arr = np.eye(4, dtype=dtt)
        n_arr = arr.newbyteorder(native)
        sw_arr = arr.newbyteorder('S').byteswap()
        assert_equal(arr.dtype.byteorder, '=')
        for routine in (linalg.inv, linalg.det, linalg.pinv):
            # Normal call
            res = routine(arr)
            # Native but not '='
            assert_array_equal(res, routine(n_arr))
            # Swapped
            assert_array_equal(res, routine(sw_arr)) 

Example 36

def test_100(self):
        x, w = leg.leggauss(100)

        # test orthogonality. Note that the results need to be normalized,
        # otherwise the huge values that can arise from fast growing
        # functions like Laguerre can be very confusing.
        v = leg.legvander(x, 99)
        vv = np.dot(v.T * w, v)
        vd = 1/np.sqrt(vv.diagonal())
        vv = vd[:, None] * vv * vd
        assert_almost_equal(vv, np.eye(100))

        # check that the integral of 1 is correct
        tgt = 2.0
        assert_almost_equal(w.sum(), tgt) 

Example 37

def _fwlinear(self, args, output_size, scope=None):
    if args is None or (nest.is_sequence(args) and not args):
      raise ValueError("`args` must be specified")
    if not nest.is_sequence(args):
      args = [args]
    assert len(args) == 2
    assert args[0].get_shape().as_list()[1] == output_size

    dtype = [a.dtype for a in args][0]

    with vs.variable_scope(scope or "Linear"):
      matrixW = vs.get_variable(
        "MatrixW", dtype=dtype, initializer=tf.convert_to_tensor(np.eye(output_size, dtype=np.float32) * .05))

      matrixC = vs.get_variable(
        "MatrixC", [args[1].get_shape().as_list()[1], output_size], dtype=dtype)

      res = tf.matmul(args[0], matrixW) + tf.matmul(args[1], matrixC)
      return res 

Example 38

def getValuesFromPose(self, P):
		'''return the virtual values of the pots corresponding to the pose P'''
		vals = []
		grads = []
		for i, r, l, placement, attach_p in zip(range(3), self.rs, self.ls, self.placements, self.attach_ps):
			#first pot axis
			a = placement.rot * col([1, 0, 0])
			#second pot axis
			b = placement.rot * col([0, 1, 0])
			#string axis
			c = placement.rot * col([0, 0, 1])

			#attach point on the joystick
			p_joystick = P * attach_p
			v = p_joystick - placement.trans
			va = v - dot(v, a)*a
			vb = v - dot(v, b)*b
			#angles of the pots
			alpha = math.atan2(dot(vb, a), dot(vb, c))
			beta = math.atan2(dot(va, b), dot(va, c))
			vals.append(alpha)
			vals.append(beta)
			
			#calculation of the derivatives
			dv = np.bmat([-P.rot.mat() * quat.skew(attach_p), P.rot.mat()])
			dva = (np.eye(3) - a*a.T) * dv
			dvb = (np.eye(3) - b*b.T) * dv
			dalpha = (1/dot(vb,vb)) * (dot(vb,c) * a.T - dot(vb,a) * c.T) * dvb
			dbeta = (1/dot(va,va)) * (dot(va,c) * b.T - dot(va,b) * c.T) * dva
			grads.append(dalpha)
			grads.append(dbeta)
		return (col(vals), np.bmat([[grads]])) 

Example 39

def prepare_cholesky(N=100, dtype=np.double):
    N = int(N*2)
    A = np.asarray(np.random.rand(N, N), dtype=dtype)
    return ( A*A.transpose() + N*np.eye(N), )
    #return toc/trials, N*N*N/3.0*1e-9, times

#inv:    return toc/trials, 2*N*N*N*1e-9, times


################################################################################## 

Example 40

def update_filter(self, timestep, estimate, ranges):
        """Update position filter.

        Args:
             timestep (float): Time elapsed since last update.
             estimate (StateEstimate): Position estimate to update.
             ranges (list of floats): Range measurements.

        Returns:
            new_estimate (StateEstimate): Updated position estimate.
            outlier_flag (bool): Flag indicating whether the measurement was rejected as an outlier.
        """
        num_of_units = len(ranges)
        x = estimate.state
        P = estimate.covariance
        # Compute process matrix and covariance matrices
        F, Q, R = self._compute_process_and_covariance_matrices(timestep)
        # rospy.logdebug('F: {}'.format(F))
        # rospy.logdebug('Q: {}'.format(Q))
        # rospy.logdebug('R: {}'.format(R))
        # Prediction
        x = np.dot(F, x)
        P = np.dot(F, np.dot(P, F.T)) + Q
        # Update
        n = np.copy(x)
        H = np.zeros((num_of_units, x.size))
        z = np.zeros((num_of_units, 1))
        h = np.zeros((num_of_units, 1))
        for i in xrange(self.ikf_iterations):
            n, K, outlier_flag = self._ikf_iteration(x, n, ranges, h, H, z, estimate, R)
        if outlier_flag:
            new_estimate = estimate
        else:
            new_state = n
            new_covariance = np.dot((np.eye(6) - np.dot(K, H)), P)
            new_estimate = UWBTracker.StateEstimate(new_state, new_covariance)
        return new_estimate, outlier_flag 

Example 41

def get_precision(self):
        """Compute data precision matrix with the generative model.
        Equals the inverse of the covariance but computed with
        the matrix inversion lemma for efficiency.
        Returns
        -------
        precision : array, shape=(n_features, n_features)
            Estimated precision of data.
        """
        n_features = self.components_.shape[1]

        # handle corner cases first
        if self.n_components_ == 0:
            return np.eye(n_features) / self.noise_variance_
        if self.n_components_ == n_features:
            return linalg.inv(self.get_covariance())

        # Get precision using matrix inversion lemma
        components_ = self.components_
        exp_var = self.explained_variance_
        exp_var_diff = np.maximum(exp_var - self.noise_variance_, 0.)
        precision = np.dot(components_, components_.T) / self.noise_variance_
        precision.flat[::len(precision) + 1] += 1. / exp_var_diff
        precision = np.dot(components_.T,
                           np.dot(linalg.inv(precision), components_))
        precision /= -(self.noise_variance_ ** 2)
        precision.flat[::len(precision) + 1] += 1. / self.noise_variance_
        return precision 

Example 42

def getTrainKernel(self, params):
		self.checkParams(params)
		return np.eye(self.n) 

Example 43

def AorthogonalityCheck(A, U, d):
    """
    Test the frobenious norm of  D^{-1}(U^TAU) - I_k
    """
    V = np.zeros(U.shape)
    AV = np.zeros(U.shape)
    Av = Vector()
    v = Vector()
    A.init_vector(Av,0)
    A.init_vector(v,1)
    
    nvec  = U.shape[1]
    for i in range(0,nvec):
        v.set_local(U[:,i])
        v *= 1./math.sqrt(d[i])
        A.mult(v,Av)
        AV[:,i] = Av.get_local()
        V[:,i] = v.get_local()
        
    VtAV = np.dot(V.T, AV)    
    err = VtAV - np.eye(nvec, dtype=VtAV.dtype)
    
#    plt.imshow(np.abs(err))
#    plt.colorbar()
#    plt.show()
    
    print("i, ||Vt(i,:)AV(:,i) - I_i||_F, V[:,i] = 1/sqrt(lambda_i) U[:,i]")
    for i in range(1,nvec+1):
        print(i, np.linalg.norm(err[0:i,0:i], 'fro') ) 

Example 44

def chol_inv(B, lower=True):
    """
    Returns the inverse of matrix A, where A = B*B.T,
    ie B is the Cholesky decomposition of A.

    Solves Ax = I
    given B is the cholesky factorization of A.
    """
    return cho_solve((B, lower), np.eye(B.shape[0])) 

Example 45

def test_theta_0():
    rng.seed(0)
    n_samples = 100
    Y = rng.randn(n_samples, 5)
    X = rng.randn(n_samples, 5)

    sgcrf = SparseGaussianCRF(lamL=0.01, lamT=0.01)
    sgcrf.fit(X, Y)

    assert np.allclose(sgcrf.Lam, np.eye(5), .1, .2) 

Example 46

def init_layers(X, Z, dims, final_mean_function):
    M = Z.shape[0]
    q_mus, q_sqrts, mean_functions, Zs = [], [], [], []
    X_running, Z_running = X.copy(), Z.copy()
    
    for dim_in, dim_out in zip(dims[:-2], dims[1:-1]):
        if dim_in == dim_out: # identity for same dims
            W = np.eye(dim_in)
        elif dim_in > dim_out: # use PCA mf for stepping down
            _, _, V = np.linalg.svd(X_running, full_matrices=False)
            W = V[:dim_out, :].T
        elif dim_in < dim_out: # identity + pad with zeros for stepping up
            I = np.eye(dim_in)
            zeros = np.zeros((dim_in, dim_out - dim_in))
            W = np.concatenate([I, zeros], 1)

        mean_functions.append(Linear(A=W))
        Zs.append(Z_running.copy())
        q_mus.append(np.zeros((M, dim_out)))
        q_sqrts.append(np.eye(M)[:, :, None] * np.ones((1, 1, dim_out)))
        
        Z_running = Z_running.dot(W)
        X_running = X_running.dot(W)

    # final layer (as before but no mean function)
    mean_functions.append(final_mean_function)
    Zs.append(Z_running.copy())
    q_mus.append(np.zeros((M, dims[-1])))
    q_sqrts.append(np.eye(M)[:, :, None] * np.ones((1, 1, dims[-1])))

    return q_mus, q_sqrts, Zs, mean_functions 

Example 47

def eye_mask(self, shape):
        """
        Build a mask using np.eye.
        """
        return ~np.eye(*shape, dtype=bool) 

Example 48

def gl_update_joint_matrices(self,node,parent_joint=None,parent_joint_matrix=numpy.eye(3,4,dtype=numpy.float32)):
        for child in node.children:
            if child.node_type == j3d.inf1.NodeType.JOINT:
                joint = self.gl_joints[child.index]
                joint_matrix = self.gl_joint_matrices[child.index]
                joint_matrix[:] = joint.create_matrix(parent_joint,parent_joint_matrix)
                self.gl_update_joint_matrices(child,joint,joint_matrix)
            else:
                self.gl_update_joint_matrices(child,parent_joint,parent_joint_matrix) 

Example 49

def KeyGen_test():
	A, S, Aq_bar, S_bar = KeyGen(q = 7,n = 5, m = 7, alpha=1)
	print Aq_bar
	print S_bar
	print A
	print S
	print np.matmul(A,S) - 7*np.eye(5, dtype=int) 

Example 50

def __init__(self, Y, R=None, t=None, maxIterations=100, gamma=0.1, ):
    if Y is None:
      raise 'Empty list of point clouds!'

    dimensions = [cloud.shape[1] for cloud in Y]

    if not all(dimension == dimensions[0] for dimension in dimensions):
      raise 'All point clouds must have the same number of dimensions!'

    self.Y = Y
    self.M = [cloud.shape[0] for cloud in self.Y]
    self.D = dimensions[0]

    if R:
      rotations = [rotation.shape for rotation in R]
      if not all(rotation[0] == self.D and rotation[1] == self.D for rotation in rotations):
        raise 'All rotation matrices need to be %d x %d matrices!' % (self.D, self.D)
      self.R = R
    else:
      self.R = [np.eye(self.D) for cloud in Y]

    if t:
      translations = [translations.shape for translation in t]
      if not all(translations[0] == 1 and translations[1] == self.D for translation in translations):
        raise 'All translation vectors need to be 1 x %d matrices!' % (self.D)
      self.t = t
    else:
      self.t = [np.atleast_2d(np.zeros((1, self.D))) for cloud in self.Y] 
点赞