Python numpy.var() 使用实例

The following are code examples for showing how to use . They are extracted from open source Python projects. You can vote up the examples you like or vote down the exmaples you don’t like. You can also save this page to your account.

Example 1

def alpha(self):
        # Cronbach Alpha
        alpha = pd.DataFrame(0, index=np.arange(1), columns=self.latent)

        for i in range(self.lenlatent):
            block = self.data_[self.Variables['measurement']
                               [self.Variables['latent'] == self.latent[i]]]
            p = len(block.columns)

            if(p != 1):
                p_ = len(block)
                correction = np.sqrt((p_ - 1) / p_)
                soma = np.var(np.sum(block, axis=1))
                cor_ = pd.DataFrame.corr(block)

                denominador = soma * correction**2
                numerador = 2 * np.sum(np.tril(cor_) - np.diag(np.diag(cor_)))

                alpha_ = (numerador / denominador) * (p / (p - 1))
                alpha[self.latent[i]] = alpha_
            else:
                alpha[self.latent[i]] = 1

        return alpha.T 

Example 2

def __call__(self, *inputvals):
        assert len(inputvals) == len(self.nondata_inputs) + len(self.data_inputs)
        nondata_vals = inputvals[0:len(self.nondata_inputs)]
        data_vals = inputvals[len(self.nondata_inputs):]
        feed_dict = dict(zip(self.nondata_inputs, nondata_vals))
        n = data_vals[0].shape[0]
        for v in data_vals[1:]:
            assert v.shape[0] == n
        for i_start in range(0, n, self.batch_size):
            slice_vals = [v[i_start:min(i_start+self.batch_size, n)] for v in data_vals]
            for (var,val) in zip(self.data_inputs, slice_vals):
                feed_dict[var]=val
            results = tf.get_default_session().run(self.outputs, feed_dict=feed_dict)
            if i_start==0:
                sum_results = results
            else:
                for i in range(len(results)):
                    sum_results[i] = sum_results[i] + results[i]
        for i in range(len(results)):
            sum_results[i] = sum_results[i] / n
        return sum_results

# ================================================================
# Modules
# ================================================================ 

Example 3

def effective_sample_size(x, mu, var, logger):
    """
    Calculate the effective sample size of sequence generated by MCMC.
    :param x:
    :param mu: mean of the variable
    :param var: variance of the variable
    :param logger: logg
    :return: effective sample size of the sequence
    Make sure that `mu` and `var` are correct!
    """
    # batch size, time, dimension
    b, t, d = x.shape
    ess_ = np.ones([d])
    for s in range(1, t):
        p = auto_correlation_time(x, s, mu, var)
        if np.sum(p > 0.05) == 0:
            break
        else:
            for j in range(0, d):
                if p[j] > 0.05:
                    ess_[j] += 2.0 * p[j] * (1.0 - float(s) / t)

    logger.info('ESS: max [%f] min [%f] / [%d]' % (t / np.min(ess_), t / np.max(ess_), t))
    return t / ess_ 

Example 4

def bn_hat_z_layers(self, hat_z_layers, z_pre_layers):
        # TODO: Calculate batchnorm using GPU Tensors.
        assert len(hat_z_layers) == len(z_pre_layers)
        hat_z_layers_normalized = []
        for i, (hat_z, z_pre) in enumerate(zip(hat_z_layers, z_pre_layers)):
            if self.use_cuda:
                ones = Variable(torch.ones(z_pre.size()[0], 1).cuda())
            else:
                ones = Variable(torch.ones(z_pre.size()[0], 1))
            mean = torch.mean(z_pre, 0)
            noise_var = np.random.normal(loc=0.0, scale=1 - 1e-10, size=z_pre.size())
            if self.use_cuda:
                var = np.var(z_pre.data.cpu().numpy() + noise_var, axis=0).reshape(1, z_pre.size()[1])
            else:
                var = np.var(z_pre.data.numpy() + noise_var, axis=0).reshape(1, z_pre.size()[1])
            var = Variable(torch.FloatTensor(var))
            if self.use_cuda:
                hat_z = hat_z.cpu()
                ones = ones.cpu()
                mean = mean.cpu()
            hat_z_normalized = torch.div(hat_z - ones.mm(mean), ones.mm(torch.sqrt(var + 1e-10)))
            if self.use_cuda:
                hat_z_normalized = hat_z_normalized.cuda()
            hat_z_layers_normalized.append(hat_z_normalized)
        return hat_z_layers_normalized 

Example 5

def test_ddof_too_big(self):
        nanfuncs = [np.nanvar, np.nanstd]
        stdfuncs = [np.var, np.std]
        dsize = [len(d) for d in _rdat]
        for nf, rf in zip(nanfuncs, stdfuncs):
            for ddof in range(5):
                with warnings.catch_warnings(record=True) as w:
                    warnings.simplefilter('always')
                    tgt = [ddof >= d for d in dsize]
                    res = nf(_ndat, axis=1, ddof=ddof)
                    assert_equal(np.isnan(res), tgt)
                    if any(tgt):
                        assert_(len(w) == 1)
                        assert_(issubclass(w[0].category, RuntimeWarning))
                    else:
                        assert_(len(w) == 0) 

Example 6

def update(self, x):
        batch_mean = np.mean(x, axis=0)
        batch_var = np.var(x, axis=0)
        batch_count = x.shape[0]

        delta = batch_mean - self.mean
        tot_count = self.count + batch_count

        new_mean = self.mean + delta * batch_count / tot_count        
        m_a = self.var * (self.count)
        m_b = batch_var * (batch_count)
        M2 = m_a + m_b + np.square(delta) * self.count * batch_count / (self.count + batch_count)
        new_var = M2 / (self.count + batch_count)

        new_count = batch_count + self.count

        self.mean = new_mean
        self.var = new_var
        self.count = new_count 

Example 7

def test_runningmeanstd():
    for (x1, x2, x3) in [
        (np.random.randn(3), np.random.randn(4), np.random.randn(5)),
        (np.random.randn(3,2), np.random.randn(4,2), np.random.randn(5,2)),
        ]:

        rms = RunningMeanStd(epsilon=0.0, shape=x1.shape[1:])

        x = np.concatenate([x1, x2, x3], axis=0)
        ms1 = [x.mean(axis=0), x.var(axis=0)]
        rms.update(x1)
        rms.update(x2)
        rms.update(x3)
        ms2 = [rms.mean, rms.var]

        assert np.allclose(ms1, ms2) 

Example 8

def autocorrelate(signal, lag=1):
  """Gives the correlation coefficient for the signal's correlation with itself.

  Args:
    signal: The signal on which to compute the autocorrelation. Can be a list.
    lag: The offset at which to correlate the signal with itself. E.g. if lag
      is 1, will compute the correlation between the signal and itself 1 beat
      later.
  Returns:
    Correlation coefficient.
  """
  n = len(signal)
  x = np.asarray(signal) - np.mean(signal)
  c0 = np.var(signal)

  return (x[lag:] * x[:n - lag]).sum() / float(n) / c0 

Example 9

def effective_sample_size_1d(samples):
    """
    Compute the effective sample size of a chain of scalar samples.

    :param samples: A 1-D numpy array. The chain of samples.
    :return: A float. The effective sample size.
    """
    n = samples.shape[0]
    mu_hat = np.mean(samples)
    var = np.var(samples) * n / (n - 1)
    var_plus = var * (n - 1) / n

    def auto_covariance(lag):
        return np.mean((samples[:n - lag] - mu_hat) * (samples[lag:] - mu_hat))

    sum_rho = 0
    for t in range(0, n):
        rho = 1 - (var - auto_covariance(t)) / var_plus
        if rho < 0:
            break
        sum_rho += rho

    ess = n / (1 + 2 * sum_rho)
    return ess 

Example 10

def __init__(self, kernel='rbf', nbases=50, lenscale=1., var=1.,
                 regulariser=1., ard=True, maxiter=3000, batch_size=10,
                 alpha=0.01, beta1=0.9, beta2=0.99, epsilon=1e-8,
                 random_state=None, nstarts=500):

        super().__init__(likelihood=Gaussian(Parameter(var, Positive())),
                         basis=None,
                         maxiter=maxiter,
                         batch_size=batch_size,
                         updater=Adam(alpha, beta1, beta2, epsilon),
                         random_state=random_state,
                         nstarts=nstarts
                         )
        self._store_params(kernel, regulariser, nbases, lenscale, ard)


# Bespoke regressor for basin-depth problems 

Example 11

def __init__(self, kernel='rbf', nbases=50, lenscale=1., var=1.,
                 falloff=1., regulariser=1., ard=True,
                 indicator_field='censored', maxiter=3000,
                 batch_size=10, alpha=0.01, beta1=0.9,
                 beta2=0.99, epsilon=1e-8, random_state=None):

        lhood = Switching(lenscale=falloff,
                          var_init=Parameter(var, Positive()))

        super().__init__(likelihood=lhood,
                         basis=None,
                         maxiter=maxiter,
                         batch_size=batch_size,
                         updater=Adam(alpha, beta1, beta2, epsilon),
                         random_state=random_state
                         )

        self.indicator_field = indicator_field
        self._store_params(kernel, regulariser, nbases, lenscale, ard) 

Example 12

def test_final_variance_runs(self):
        exp             = VarianceExperiment()
        printer_final   = Print(name="Final")
        avgr            = Averager('repeats', name="TestAverager")
        var_buff        = DataBuffer(name='Variance Buffer')
        mean_buff       = DataBuffer(name='Mean Buffer')

        edges = [(exp.chan1,           avgr.sink),
                 (avgr.final_variance, printer_final.sink),
                 (avgr.final_variance, var_buff.sink),
                 (avgr.final_average,  mean_buff.sink)]

        exp.set_graph(edges)
        exp.run_sweeps()

        var_data  = var_buff.get_data()['Variance'].reshape(var_buff.descriptor.data_dims())
        mean_data = mean_buff.get_data()['chan1'].reshape(mean_buff.descriptor.data_dims())
        orig_data = exp.vals.reshape(exp.chan1.descriptor.data_dims())

        self.assertTrue(np.abs(np.sum(mean_data - np.mean(orig_data, axis=0))) <= 1e-3)
        self.assertTrue(np.abs(np.sum(var_data - np.var(orig_data, axis=0, ddof=1))) <= 1e-3) 

Example 13

def regularize(features):

    #regularize per column
    for i in range(0,len(features[0])):
	try:
	        #take evary column
        	feat=features[:,i]
    
	        #mean and variance of every column	
        	mean=np.mean(feat)
	        var=np.var(feat)

        	if(var!=0):
	            features[:,i]=(features[:,i]-mean)/float(3*var)
        	else :
	            features[:,i]=0
	except:
		pass

    features[features>1]=1
    features[features<-1]=-1
     
    return features

#reguralize features to [-1,1] horizontally, yi=yi/norm(yi,2) 

Example 14

def test_variance_wgrad(input_tensor):
    inputs = input_tensor
    targets = ng.placeholder(inputs.axes)

    inp_stat = ng.variance(inputs, reduction_axes=inputs.axes.batch_axes())
    err = ng.sum(inp_stat - targets, out_axes=())
    d_inputs = ng.deriv(err, inputs)
    with executor([err, d_inputs], inputs, targets) as comp_func:

        input_value = rng.uniform(-0.1, 0.1, inputs.axes)
        target_value = rng.uniform(-0.1, 0.1, targets.axes)
        ng_f_res, ng_b_res = comp_func(input_value, target_value)

        np_f_res = np.sum(np.var(input_value, axis=1, keepdims=True) - target_value)

        ng.testing.assert_allclose(np_f_res, ng_f_res, atol=1e-4, rtol=1e-4)

        np_b_res = 2 * (input_value - np.mean(input_value, axis=1, keepdims=True))

        ng.testing.assert_allclose(np_b_res, ng_b_res, atol=1e-4, rtol=1e-4) 

Example 15

def calculateParamGV(feat_file_list, feat_dim=32):
    data = numpy.empty((1, feat_dim))
    for file_index in range(len(feat_file_list)):
        file_name   = feat_file_list[file_index]
        (junk, ext) = feat_file_list[file_index].split('.')

        features    = readBottleneckFeatures(file_name, feat_dim)

        if ext == 'lf0': #remove unvoiced values
            features = features[numpy.where(features != -1.*(10**(10)))[0]]
            features = numpy.exp(features) #convert to linear scale

        if file_index==0:
            data=features
        else:
            data=numpy.concatenate((data,features),0)

    gv = numpy.var(data, 0)
    return gv 

Example 16

def bn_forward(X, gamma, beta, cache, momentum=.9, train=True):
    running_mean, running_var = cache

    if train:
        mu = np.mean(X, axis=0)
        var = np.var(X, axis=0)

        X_norm = (X - mu) / np.sqrt(var + c.eps)
        out = gamma * X_norm + beta

        cache = (X, X_norm, mu, var, gamma, beta)

        running_mean = util.exp_running_avg(running_mean, mu, momentum)
        running_var = util.exp_running_avg(running_var, var, momentum)
    else:
        X_norm = (X - running_mean) / np.sqrt(running_var + c.eps)
        out = gamma * X_norm + beta
        cache = None

    return out, cache, running_mean, running_var 

Example 17

def bn_backward(dout, cache):
    X, X_norm, mu, var, gamma, beta = cache

    N, D = X.shape

    X_mu = X - mu
    std_inv = 1. / np.sqrt(var + c.eps)

    dX_norm = dout * gamma
    dvar = np.sum(dX_norm * X_mu, axis=0) * -.5 * std_inv**3
    dmu = np.sum(dX_norm * -std_inv, axis=0) + dvar * np.mean(-2. * X_mu, axis=0)

    dX = (dX_norm * std_inv) + (dvar * 2 * X_mu / N) + (dmu / N)
    dgamma = np.sum(dout * X_norm, axis=0)
    dbeta = np.sum(dout, axis=0)

    return dX, dgamma, dbeta 

Example 18

def cv_gradient(self,z):
        """
        The control variate augmented Monte Carlo gradient estimate
        """
        gradient = np.zeros(np.sum(self.approx_param_no))
        z_t = z.T      
        log_q = self.normal_log_q(z.T)
        log_p = self.log_p(z.T)
        grad_log_q = self.grad_log_q(z)
        gradient = grad_log_q*(log_p-log_q)

        alpha0 = alpha_recursion(np.zeros(np.sum(self.approx_param_no)), grad_log_q, gradient, np.sum(self.approx_param_no))           

        vectorized = gradient - ((alpha0/np.var(grad_log_q,axis=1))*grad_log_q.T).T

        return np.mean(vectorized,axis=1) 

Example 19

def cv_gradient_initial(self,z):
        """
        The control variate augmented Monte Carlo gradient estimate
        """
        gradient = np.zeros(np.sum(self.approx_param_no))
        z_t = z.T      
        log_q = self.normal_log_q_initial(z.T)
        log_p = self.log_p(z.T)
        grad_log_q = self.grad_log_q(z)
        gradient = grad_log_q*(log_p-log_q)

        alpha0 = alpha_recursion(np.zeros(np.sum(self.approx_param_no)), grad_log_q, gradient, np.sum(self.approx_param_no))

        vectorized = gradient - ((alpha0/np.var(grad_log_q,axis=1))*grad_log_q.T).T

        return np.mean(vectorized,axis=1) 

Example 20

def cv_gradient(self, z):
        """
        The control variate augmented Monte Carlo gradient estimate
        RAO-BLACKWELLIZED!
        """        
        z_t = np.transpose(z)
        log_q = self.normal_log_q(z_t)
        log_p = self.log_p(z_t)
        grad_log_q = self.grad_log_q(z)
        gradient = grad_log_q*np.repeat((log_p - log_q).T,2,axis=0)

        alpha0 = alpha_recursion(np.zeros(np.sum(self.approx_param_no)), grad_log_q, gradient, np.sum(self.approx_param_no))      
        
        vectorized = gradient - ((alpha0/np.var(grad_log_q,axis=1))*grad_log_q.T).T

        return np.mean(vectorized,axis=1) 

Example 21

def cv_gradient_initial(self,z):
        """
        The control variate augmented Monte Carlo gradient estimate
        RAO-BLACKWELLIZED!
        """        
        z_t = np.transpose(z)
        log_q = self.normal_log_q_initial(z_t)
        log_p = self.log_p(z_t)
        grad_log_q = self.grad_log_q(z)
        gradient = grad_log_q*np.repeat((log_p - log_q).T,2,axis=0)

        alpha0 = alpha_recursion(np.zeros(np.sum(self.approx_param_no)), grad_log_q, gradient, np.sum(self.approx_param_no))

        vectorized = gradient - ((alpha0/np.var(grad_log_q,axis=1))*grad_log_q.T).T

        return np.mean(vectorized,axis=1) 

Example 22

def testRandom(self):
        
        ig = InverseGaussian(1., 1.)
        samples = ig.random(1000000)
        mu = numpy.mean(samples)
        var = numpy.var(samples)
        
        self.assertAlmostEqual(ig.mu, mu, delta=1e-1)
        self.assertAlmostEqual(ig.mu ** 3 / ig.shape, var, delta=1e-1)

        ig = InverseGaussian(3., 6.)

        samples = ig.random(1000000)
        mu = numpy.mean(samples)
        var = numpy.var(samples)
        
        self.assertAlmostEqual(ig.mu, mu, delta=1e-1)
        self.assertAlmostEqual(ig.mu ** 3 / ig.shape, var, delta=5e-1) 

Example 23

def testRandom(self):
        
        from scipy.special import kv
        from numpy import sqrt

        a = 2.
        b = 1.
        p = 1
        gig = GeneralizedInverseGaussian(a, b, p)
        samples = gig.random(10000)

        mu_analytical = sqrt(b) * kv(p + 1, sqrt(a * b)) / (sqrt(a) * kv(p, sqrt(a * b)))

        var_analytical = b * kv(p + 2, sqrt(a * b)) / a / kv(p, sqrt(a * b)) - mu_analytical ** 2
        
        mu = numpy.mean(samples)
        var = numpy.var(samples)
        
        self.assertAlmostEqual(mu_analytical, mu, delta=1e-1)
        self.assertAlmostEqual(var_analytical, var, delta=1e-1) 

Example 24

def calculate_aggregate(values):
    agg_measures = {
        'avg': np.mean(values),
        'std': np.std(values),
        'var': np.var(values),
        'med': np.median(values),
        '10p': np.percentile(values, 10),
        '25p': np.percentile(values, 25),
        '50p': np.percentile(values, 50),
        '75p': np.percentile(values, 75),
        '90p': np.percentile(values, 90),
        'iqr': np.percentile(values, 75) - np.percentile(values, 25),
        'iqm': interquartile_range_mean(values),
        'mad': mean_absolute_deviation(values),
        'cov': 1.0 * np.mean(values) / np.std(values),
        'gin': gini_coefficient(values),
        'skw': stats.skew(values),
        'kur': stats.kurtosis(values),
        'sum': np.sum(values)
    }

    return agg_measures 

Example 25

def test_sample_contexts_from_distribution():
    env = Catapult(segments=[(0, 0), (20, 0)], context_interval=(0, 20),
                   context_distribution=uniform(5, 10), random_state=0)
    env.init()

    contexts = np.empty(1000)
    for i in range(contexts.shape[0]):
        context = env.request_context(None)
        contexts[i] = context[0]

    norm_dist = uniform(0.25, 0.5)
    assert_true(np.all(0.25 <= contexts))
    assert_true(np.all(contexts <= 0.75))
    mean, var = norm_dist.stats("mv")
    assert_almost_equal(np.mean(contexts), mean, places=1)
    assert_almost_equal(np.var(contexts), var, places=1) 

Example 26

def displayDataset(self, dataset):
        eps = 0.00001
        linewidth = dataset.linewidth
        if np.var(dataset.values) < eps:
            linewidth += 2
            mean = np.mean(dataset.values)
            x = np.arange(0, 1, 0.1)
            x = np.sort(np.append(x, [mean, mean-eps, mean+eps]))
            density = [1 if v == mean else 0 for v in x]
        else:
            self.kde.fit(np.asarray([[x] for x in dataset.values]))
            ## Computes the x axis
            x_max = np.amax(dataset.values)
            x_min = np.amin(dataset.values)
            delta = x_max - x_min
            density_delta = 1.1 * delta
            x = np.arange(x_min, x_max, density_delta / self.num_points)
            x_density = [[y] for y in x]
            ## kde.score_samples returns the 'log' of the density
            log_density = self.kde.score_samples(x_density).tolist()
            density = map(math.exp, log_density)
        self.ax.plot(x, density, label = dataset.label, color = dataset.color,
                linewidth = linewidth, linestyle = dataset.linestyle) 

Example 27

def snr(vref, vcmp):
    """
    Compute Signal to Noise Ratio (SNR) of two images.

    Parameters
    ----------
    vref : array_like
      Reference image
    vcmp : array_like
      Comparison image

    Returns
    -------
    x : float
      SNR of `vcmp` with respect to `vref`
    """

    dv = np.var(vref)
    with np.errstate(divide='ignore'):
        rt = dv/mse(vref, vcmp)
    return 10.0*np.log10(rt) 

Example 28

def bsnr(vblr, vnsy):
    """
    Compute Blurred Signal to Noise Ratio (BSNR) for a blurred and noisy
    image.

    Parameters
    ----------
    vblr : array_like
      Blurred noise free image
    vnsy : array_like
      Blurred image with additive noise

    Returns
    -------
    x : float
      BSNR of `vnsy` with respect to `vblr` and `vdeg`
    """

    blrvar = np.var(vblr)
    nsevar = np.var(vnsy - vblr)
    with np.errstate(divide='ignore'):
        rt = blrvar/nsevar
    return 10.0*np.log10(rt) 

Example 29

def forward_pass(self, X, training=True):

        # Initialize running mean and variance if first run
        if self.running_mean is None:
            self.running_mean = np.mean(X, axis=0)
            self.running_var = np.var(X, axis=0)

        if training:
            mean = np.mean(X, axis=0)
            var = np.var(X, axis=0)
            self.X_centered = X - mean
            self.stddev_inv = 1 / np.sqrt(var + self.eps)
            self.running_mean = self.momentum * self.running_mean + (1 - self.momentum) * mean
            self.running_var = self.momentum * self.running_var + (1 - self.momentum) * var
        else:
            mean = self.running_mean
            var = self.running_var

        X_norm = (X - mean) / np.sqrt(var + self.eps)
        output = self.gamma * X_norm + self.beta

        return output 

Example 30

def Gelman_Rubin(sampled_parameters):
    nsamples = len(sampled_parameters[0])
    nchains = len(sampled_parameters)
    nburnin = nsamples//2

    chain_var = [np.var(sampled_parameters[chain][nburnin:,:], axis=0) for chain in range(nchains)]

    W = np.mean(chain_var, axis=0)

    chain_means = [np.mean(sampled_parameters[chain][nburnin:,:], axis=0) for chain in range(nchains)]

    B = np.var(chain_means, axis=0)

    var_est = (W*(1-(1./nsamples))) + B

    Rhat = np.sqrt(np.divide(var_est, W))

    return Rhat 

Example 31

def testRelativeToJackknife(self):
    data = pd.DataFrame({"X": [1, 2, 3, 4, 5, 6, 7, 8, 9],
                         "Y": [0, 0, 0, 1, 1, 1, 2, 2, 2]})

    metric = metrics.Sum("X")
    comparison = comparisons.AbsoluteDifference("Y", 0)
    se_method = standard_errors.Jackknife()
    output = core.Analyze(data).relative_to(comparison).with_standard_errors(
        se_method).calculate(metric).run()

    rowindex = pd.Index([1, 2], name="Y")
    correct = pd.DataFrame(
        np.array([[9.0, np.sqrt(5 * np.var([12, 11, 10, 5, 4, 3]))],
                  [18.0, np.sqrt(5 * np.var([21, 20, 19, 11, 10, 9]))]]),
        columns=("sum(X) Absolute Difference",
                 "sum(X) Absolute Difference Jackknife SE"),
        index=rowindex)

    self.assertTrue(output.equals(correct)) 

Example 32

def testRelativeToJackknifeIncludeBaseline(self):
    data = pd.DataFrame({"X": [1, 2, 3, 4, 5, 6, 7, 8, 9],
                         "Y": [0, 0, 0, 1, 1, 1, 2, 2, 2]})

    metric = metrics.Sum("X")
    comparison = comparisons.AbsoluteDifference("Y", 0, include_base=True)
    se_method = standard_errors.Jackknife()
    output = core.Analyze(data).relative_to(comparison).with_standard_errors(
        se_method).calculate(metric).run()

    rowindex = pd.Index([0, 1, 2], name="Y")
    correct = pd.DataFrame(
        np.array([[0.0, 0.0],
                  [9.0, np.sqrt(5 * np.var([12, 11, 10, 5, 4, 3]))],
                  [18.0, np.sqrt(5 * np.var([21, 20, 19, 11, 10, 9]))]]),
        columns=("sum(X) Absolute Difference",
                 "sum(X) Absolute Difference Jackknife SE"),
        index=rowindex)

    self.assertTrue(output.equals(correct)) 

Example 33

def testRelativeToJackknifeSingleComparisonBaselineFirst(self):
    data = pd.DataFrame({"X": [1, 2, 3, 4, 5, 6], "Y": [0, 0, 0, 1, 1, 1]})

    metric = metrics.Sum("X")
    comparison = comparisons.AbsoluteDifference("Y", 0)
    se_method = standard_errors.Jackknife()
    output = core.Analyze(data).relative_to(comparison).with_standard_errors(
        se_method).calculate(metric).run()

    rowindex = pd.Index([1], name="Y")
    correct = pd.DataFrame(
        np.array([[9.0, np.sqrt(5 * np.var([12, 11, 10, 5, 4, 3]))]]),
        columns=("sum(X) Absolute Difference",
                 "sum(X) Absolute Difference Jackknife SE"),
        index=rowindex)

    self.assertTrue(output.equals(correct)) 

Example 34

def testRelativeToJackknifeSingleComparisonBaselineSecond(self):
    data = pd.DataFrame({"X": [1, 2, 3, 4, 5, 6], "Y": [0, 0, 0, 1, 1, 1]})

    metric = metrics.Sum("X")
    comparison = comparisons.AbsoluteDifference("Y", 1)
    se_method = standard_errors.Jackknife()
    output = core.Analyze(data).relative_to(comparison).with_standard_errors(
        se_method).calculate(metric).run()

    rowindex = pd.Index([0], name="Y")
    correct = pd.DataFrame(
        np.array([[-9.0, np.sqrt(5 * np.var([12, 11, 10, 5, 4, 3]))]]),
        columns=("sum(X) Absolute Difference",
                 "sum(X) Absolute Difference Jackknife SE"),
        index=rowindex)

    self.assertTrue(output.equals(correct)) 

Example 35

def testRelativeToSplitJackknife(self):
    data = pd.DataFrame(
        {"X": [1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 1, 2, 3, 4, 5, 6, 7, 8],
         "Y": [1, 1, 1, 2, 2, 2, 3, 3, 3, 1, 1, 1, 2, 2, 2, 3, 3, 3],
         "Z": [0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1]})

    metric = metrics.Sum("X")
    comparison = comparisons.AbsoluteDifference("Z", 0)
    se_method = standard_errors.Jackknife()
    output = core.Analyze(data).split_by("Y").relative_to(
        comparison).with_standard_errors(se_method).calculate(metric).run()

    rowindex = pd.MultiIndex(
        levels=[[1, 2, 3], [1]],
        labels=[[0, 1, 2], [0, 0, 0]],
        names=["Y", "Z"])
    correct = pd.DataFrame(
        np.array([[-3.0, np.sqrt(5 * np.var([0, -1, -2, -3, -4, -5]))],
                  [-3.0, np.sqrt(5 * np.var([3, 2, 1, -8, -7, -6]))],
                  [-3.0, np.sqrt(5 * np.var([6, 5, 4, -11, -10, -9]))]]),
        columns=("sum(X) Absolute Difference",
                 "sum(X) Absolute Difference Jackknife SE"),
        index=rowindex)

    self.assertTrue(output.equals(correct)) 

Example 36

def test_ddof_too_big(self):
        nanfuncs = [np.nanvar, np.nanstd]
        stdfuncs = [np.var, np.std]
        dsize = [len(d) for d in _rdat]
        for nf, rf in zip(nanfuncs, stdfuncs):
            for ddof in range(5):
                with warnings.catch_warnings(record=True) as w:
                    warnings.simplefilter('always')
                    tgt = [ddof >= d for d in dsize]
                    res = nf(_ndat, axis=1, ddof=ddof)
                    assert_equal(np.isnan(res), tgt)
                    if any(tgt):
                        assert_(len(w) == 1)
                        assert_(issubclass(w[0].category, RuntimeWarning))
                    else:
                        assert_(len(w) == 0) 

Example 37

def mainHmmGeneralClf():
    isTrain = 1 # 1 for train, 0 for test
    isOutlierRemoval = 1 # 1 for outlier removal, 0 otherwise

    performance = 0
    normalizedPerformance = 0
    clf = ClassificationHmmGeneralize(isTrain)

    normPerforms = []
    for i in range(12):
        print "Route: {}".format(i)
        [perfor, normaPefor] = clf.evaluateGeneral(clf.routes_general[i])
        normPerforms.append(normaPefor)
        performance += perfor
        normalizedPerformance += normaPefor

    performance = round(performance/8, 2)
    normalizedPerformance = round(normalizedPerformance/8, 2)


    print "\nAverage Performance: {}%".format(performance)
    print "Average Normalized Performance: {}%".format(normalizedPerformance)
    print "Normalized Performance Variance: {}".format(np.var(normPerforms)) 

Example 38

def mainUniformGeneralClf():
    isTrain = 1 # 1 for train, 0 for test
    isOutlierRemoval = 1 # 1 for outlier removal, 0 otherwise

    performance = 0
    normalizedPerformance = 0
    clf = ClassificationUniformGeneralize(isTrain)
    print clf.X_general.shape

    normPerforms = []
    for i in range(12):
        print "Route: {}".format(i)
        [perfor, normaPefor] = clf.evaluateGeneral(clf.routes_general[i])
        normPerforms.append(normaPefor)
        performance += perfor
        normalizedPerformance += normaPefor

    performance = round(performance/8, 2)
    normalizedPerformance = round(normalizedPerformance/8, 2)


    print "\nAverage Performance: {}%".format(performance)
    print "Average Normalized Performance: {}%".format(normalizedPerformance)
    print "Normalized Performance Variance: {}".format(np.var(normPerforms)) 

Example 39

def vif(self):
        vif = []
        totalmanifests = range(len(self.data_.columns))
        for i in range(len(totalmanifests)):
            independent = [x for j, x in enumerate(totalmanifests) if j != i]
            coef, resid = np.linalg.lstsq(
                self.data_.ix[:, independent], self.data_.ix[:, i])[:2]

            r2 = 1 - resid / \
                (self.data_.ix[:, i].size * self.data_.ix[:, i].var())

            vif.append(1 / (1 - r2))

        vif = pd.DataFrame(vif, index=self.manifests)
        return vif 

Example 40

def explained_variance_1d(ypred,y):
    """
    Var[ypred - y] / var[y]. 
    https://www.quora.com/What-is-the-meaning-proportion-of-variance-explained-in-linear-regression
    """
    assert y.ndim == 1 and ypred.ndim == 1    
    vary = np.var(y)
    return np.nan if vary==0 else 1 - np.var(y-ypred)/vary 

Example 41

def gauss_prob(mu, logstd, x):
    std = tf.exp(logstd)
    var = tf.square(std)
    gp = tf.exp(-(x - mu)/(2*var)) / ((2*np.pi)**.5 * std)
    return  tf.reduce_prod(gp, [1]) 

Example 42

def gauss_log_prob(mu, logstd, x):
    var = tf.exp(2*logstd)
    gp = -tf.square(x - mu)/(2*var) - .5*tf.log(tf.constant(2*np.pi)) - logstd
    return  tf.reduce_sum(gp, [1]) 

Example 43

def var(x, axis=None, keepdims=False):
    meanx = mean(x, axis=axis, keepdims=keepdims)
    return mean(tf.square(x - meanx), axis=axis, keepdims=keepdims) 

Example 44

def std(x, axis=None, keepdims=False):
    return tf.sqrt(var(x, axis=axis, keepdims=keepdims)) 

Example 45

def minimize_and_clip(optimizer, objective, var_list, clip_val=10):
    """Minimized `objective` using `optimizer` w.r.t. variables in
    `var_list` while ensure the norm of the gradients for each
    variable is clipped to `clip_val`
    """
    gradients = optimizer.compute_gradients(objective, var_list=var_list)
    for i, (grad, var) in enumerate(gradients):
        if grad is not None:
            gradients[i] = (tf.clip_by_norm(grad, clip_val), var)
    return optimizer.apply_gradients(gradients) 

Example 46

def test_output_shape(self):
        """ Test that the axis parameter is handled correctly """
        stream = [np.random.random((16, 7, 3)) for _ in range(5)]
        stack = np.stack(stream, axis = -1)

        for axis in (0, 1, 2, None):
            with self.subTest('axis = {}'.format(axis)):
                from_numpy = np.var(stack, axis = axis)
                from_ivar = last(ivar(stream, axis = axis))
                self.assertSequenceEqual(from_numpy.shape, from_ivar.shape)
                self.assertTrue(np.allclose(from_ivar, from_numpy)) 

Example 47

def test_ddof(self):
        """ Test that the ddof parameter is equivalent to numpy's """
        stream = [np.random.random((16, 7, 3)) for _ in range(10)]
        stack = np.stack(stream, axis = -1)

        with catch_warnings():
            simplefilter('ignore')
            for axis in (0, 1, 2, None):
                for ddof in range(4):
                    with self.subTest('axis = {}, ddof = {}'.format(axis, ddof)):
                        from_numpy = np.var(stack, axis = axis, ddof = ddof)
                        from_ivar = last(ivar(stream, axis = axis, ddof = ddof))
                        self.assertSequenceEqual(from_numpy.shape, from_ivar.shape)
                        self.assertTrue(np.allclose(from_ivar, from_numpy)) 

Example 48

def summarize_bootstrapped_top_n(top_n_boot):
    top_n_bcs_mean = np.mean(top_n_boot)
    top_n_bcs_sd = np.std(top_n_boot)
    top_n_bcs_var = np.var(top_n_boot)
    result = {}
    result['filtered_bcs_var'] = top_n_bcs_var
    result['filtered_bcs_cv'] = tk_stats.robust_divide(top_n_bcs_sd, top_n_bcs_mean)
    result['filtered_bcs_lb'] = round(scipy.stats.norm.ppf(0.025, top_n_bcs_mean, top_n_bcs_sd))
    result['filtered_bcs_ub'] = round(scipy.stats.norm.ppf(0.975, top_n_bcs_mean, top_n_bcs_sd))
    result['filtered_bcs'] = round(top_n_bcs_mean)
    return result 

Example 49

def auto_correlation_time(x, s, mu, var):
    b, t, d = x.shape
    act_ = np.zeros([d])
    for i in range(0, b):
        y = x[i] - mu
        p, n = y[:-s], y[s:]
        act_ += np.mean(p * n, axis=0) / var
    act_ = act_ / b
    return act_ 

Example 50

def gelman_rubin_diagnostic(x, logger, mu=None):
    m, n = x.shape[0], x.shape[1]
    theta = np.mean(x, axis=1)
    sigma = np.var(x, axis=1)
    # theta_m = np.mean(theta, axis=0)
    theta_m = mu if mu else np.mean(theta, axis=0)
    b = float(n) / float(m-1) * np.sum((theta - theta_m) ** 2)
    w = 1. / float(m) * np.sum(sigma, axis=0)
    v = float(n-1) / float(n) * w + float(m+1) / float(m * n) * b
    r_hat = np.sqrt(v / w)
    logger.info('R: max [%f] min [%f]' % (np.max(r_hat), np.min(r_hat)))
    return r_hat 
点赞