The following are code examples for showing how to use . They are extracted from open source Python projects. You can vote up the examples you like or vote down the exmaples you don’t like. You can also save this page to your account.
Example 1
def alpha(self): # Cronbach Alpha alpha = pd.DataFrame(0, index=np.arange(1), columns=self.latent) for i in range(self.lenlatent): block = self.data_[self.Variables['measurement'] [self.Variables['latent'] == self.latent[i]]] p = len(block.columns) if(p != 1): p_ = len(block) correction = np.sqrt((p_ - 1) / p_) soma = np.var(np.sum(block, axis=1)) cor_ = pd.DataFrame.corr(block) denominador = soma * correction**2 numerador = 2 * np.sum(np.tril(cor_) - np.diag(np.diag(cor_))) alpha_ = (numerador / denominador) * (p / (p - 1)) alpha[self.latent[i]] = alpha_ else: alpha[self.latent[i]] = 1 return alpha.T
Example 2
def __call__(self, *inputvals): assert len(inputvals) == len(self.nondata_inputs) + len(self.data_inputs) nondata_vals = inputvals[0:len(self.nondata_inputs)] data_vals = inputvals[len(self.nondata_inputs):] feed_dict = dict(zip(self.nondata_inputs, nondata_vals)) n = data_vals[0].shape[0] for v in data_vals[1:]: assert v.shape[0] == n for i_start in range(0, n, self.batch_size): slice_vals = [v[i_start:min(i_start+self.batch_size, n)] for v in data_vals] for (var,val) in zip(self.data_inputs, slice_vals): feed_dict[var]=val results = tf.get_default_session().run(self.outputs, feed_dict=feed_dict) if i_start==0: sum_results = results else: for i in range(len(results)): sum_results[i] = sum_results[i] + results[i] for i in range(len(results)): sum_results[i] = sum_results[i] / n return sum_results # ================================================================ # Modules # ================================================================
Example 3
def effective_sample_size(x, mu, var, logger): """ Calculate the effective sample size of sequence generated by MCMC. :param x: :param mu: mean of the variable :param var: variance of the variable :param logger: logg :return: effective sample size of the sequence Make sure that `mu` and `var` are correct! """ # batch size, time, dimension b, t, d = x.shape ess_ = np.ones([d]) for s in range(1, t): p = auto_correlation_time(x, s, mu, var) if np.sum(p > 0.05) == 0: break else: for j in range(0, d): if p[j] > 0.05: ess_[j] += 2.0 * p[j] * (1.0 - float(s) / t) logger.info('ESS: max [%f] min [%f] / [%d]' % (t / np.min(ess_), t / np.max(ess_), t)) return t / ess_
Example 4
def bn_hat_z_layers(self, hat_z_layers, z_pre_layers): # TODO: Calculate batchnorm using GPU Tensors. assert len(hat_z_layers) == len(z_pre_layers) hat_z_layers_normalized = [] for i, (hat_z, z_pre) in enumerate(zip(hat_z_layers, z_pre_layers)): if self.use_cuda: ones = Variable(torch.ones(z_pre.size()[0], 1).cuda()) else: ones = Variable(torch.ones(z_pre.size()[0], 1)) mean = torch.mean(z_pre, 0) noise_var = np.random.normal(loc=0.0, scale=1 - 1e-10, size=z_pre.size()) if self.use_cuda: var = np.var(z_pre.data.cpu().numpy() + noise_var, axis=0).reshape(1, z_pre.size()[1]) else: var = np.var(z_pre.data.numpy() + noise_var, axis=0).reshape(1, z_pre.size()[1]) var = Variable(torch.FloatTensor(var)) if self.use_cuda: hat_z = hat_z.cpu() ones = ones.cpu() mean = mean.cpu() hat_z_normalized = torch.div(hat_z - ones.mm(mean), ones.mm(torch.sqrt(var + 1e-10))) if self.use_cuda: hat_z_normalized = hat_z_normalized.cuda() hat_z_layers_normalized.append(hat_z_normalized) return hat_z_layers_normalized
Example 5
def test_ddof_too_big(self): nanfuncs = [np.nanvar, np.nanstd] stdfuncs = [np.var, np.std] dsize = [len(d) for d in _rdat] for nf, rf in zip(nanfuncs, stdfuncs): for ddof in range(5): with warnings.catch_warnings(record=True) as w: warnings.simplefilter('always') tgt = [ddof >= d for d in dsize] res = nf(_ndat, axis=1, ddof=ddof) assert_equal(np.isnan(res), tgt) if any(tgt): assert_(len(w) == 1) assert_(issubclass(w[0].category, RuntimeWarning)) else: assert_(len(w) == 0)
Example 6
def update(self, x): batch_mean = np.mean(x, axis=0) batch_var = np.var(x, axis=0) batch_count = x.shape[0] delta = batch_mean - self.mean tot_count = self.count + batch_count new_mean = self.mean + delta * batch_count / tot_count m_a = self.var * (self.count) m_b = batch_var * (batch_count) M2 = m_a + m_b + np.square(delta) * self.count * batch_count / (self.count + batch_count) new_var = M2 / (self.count + batch_count) new_count = batch_count + self.count self.mean = new_mean self.var = new_var self.count = new_count
Example 7
def test_runningmeanstd(): for (x1, x2, x3) in [ (np.random.randn(3), np.random.randn(4), np.random.randn(5)), (np.random.randn(3,2), np.random.randn(4,2), np.random.randn(5,2)), ]: rms = RunningMeanStd(epsilon=0.0, shape=x1.shape[1:]) x = np.concatenate([x1, x2, x3], axis=0) ms1 = [x.mean(axis=0), x.var(axis=0)] rms.update(x1) rms.update(x2) rms.update(x3) ms2 = [rms.mean, rms.var] assert np.allclose(ms1, ms2)
Example 8
def autocorrelate(signal, lag=1): """Gives the correlation coefficient for the signal's correlation with itself. Args: signal: The signal on which to compute the autocorrelation. Can be a list. lag: The offset at which to correlate the signal with itself. E.g. if lag is 1, will compute the correlation between the signal and itself 1 beat later. Returns: Correlation coefficient. """ n = len(signal) x = np.asarray(signal) - np.mean(signal) c0 = np.var(signal) return (x[lag:] * x[:n - lag]).sum() / float(n) / c0
Example 9
def effective_sample_size_1d(samples): """ Compute the effective sample size of a chain of scalar samples. :param samples: A 1-D numpy array. The chain of samples. :return: A float. The effective sample size. """ n = samples.shape[0] mu_hat = np.mean(samples) var = np.var(samples) * n / (n - 1) var_plus = var * (n - 1) / n def auto_covariance(lag): return np.mean((samples[:n - lag] - mu_hat) * (samples[lag:] - mu_hat)) sum_rho = 0 for t in range(0, n): rho = 1 - (var - auto_covariance(t)) / var_plus if rho < 0: break sum_rho += rho ess = n / (1 + 2 * sum_rho) return ess
Example 10
def __init__(self, kernel='rbf', nbases=50, lenscale=1., var=1., regulariser=1., ard=True, maxiter=3000, batch_size=10, alpha=0.01, beta1=0.9, beta2=0.99, epsilon=1e-8, random_state=None, nstarts=500): super().__init__(likelihood=Gaussian(Parameter(var, Positive())), basis=None, maxiter=maxiter, batch_size=batch_size, updater=Adam(alpha, beta1, beta2, epsilon), random_state=random_state, nstarts=nstarts ) self._store_params(kernel, regulariser, nbases, lenscale, ard) # Bespoke regressor for basin-depth problems
Example 11
def __init__(self, kernel='rbf', nbases=50, lenscale=1., var=1., falloff=1., regulariser=1., ard=True, indicator_field='censored', maxiter=3000, batch_size=10, alpha=0.01, beta1=0.9, beta2=0.99, epsilon=1e-8, random_state=None): lhood = Switching(lenscale=falloff, var_init=Parameter(var, Positive())) super().__init__(likelihood=lhood, basis=None, maxiter=maxiter, batch_size=batch_size, updater=Adam(alpha, beta1, beta2, epsilon), random_state=random_state ) self.indicator_field = indicator_field self._store_params(kernel, regulariser, nbases, lenscale, ard)
Example 12
def test_final_variance_runs(self): exp = VarianceExperiment() printer_final = Print(name="Final") avgr = Averager('repeats', name="TestAverager") var_buff = DataBuffer(name='Variance Buffer') mean_buff = DataBuffer(name='Mean Buffer') edges = [(exp.chan1, avgr.sink), (avgr.final_variance, printer_final.sink), (avgr.final_variance, var_buff.sink), (avgr.final_average, mean_buff.sink)] exp.set_graph(edges) exp.run_sweeps() var_data = var_buff.get_data()['Variance'].reshape(var_buff.descriptor.data_dims()) mean_data = mean_buff.get_data()['chan1'].reshape(mean_buff.descriptor.data_dims()) orig_data = exp.vals.reshape(exp.chan1.descriptor.data_dims()) self.assertTrue(np.abs(np.sum(mean_data - np.mean(orig_data, axis=0))) <= 1e-3) self.assertTrue(np.abs(np.sum(var_data - np.var(orig_data, axis=0, ddof=1))) <= 1e-3)
Example 13
def regularize(features): #regularize per column for i in range(0,len(features[0])): try: #take evary column feat=features[:,i] #mean and variance of every column mean=np.mean(feat) var=np.var(feat) if(var!=0): features[:,i]=(features[:,i]-mean)/float(3*var) else : features[:,i]=0 except: pass features[features>1]=1 features[features<-1]=-1 return features #reguralize features to [-1,1] horizontally, yi=yi/norm(yi,2)
Example 14
def test_variance_wgrad(input_tensor): inputs = input_tensor targets = ng.placeholder(inputs.axes) inp_stat = ng.variance(inputs, reduction_axes=inputs.axes.batch_axes()) err = ng.sum(inp_stat - targets, out_axes=()) d_inputs = ng.deriv(err, inputs) with executor([err, d_inputs], inputs, targets) as comp_func: input_value = rng.uniform(-0.1, 0.1, inputs.axes) target_value = rng.uniform(-0.1, 0.1, targets.axes) ng_f_res, ng_b_res = comp_func(input_value, target_value) np_f_res = np.sum(np.var(input_value, axis=1, keepdims=True) - target_value) ng.testing.assert_allclose(np_f_res, ng_f_res, atol=1e-4, rtol=1e-4) np_b_res = 2 * (input_value - np.mean(input_value, axis=1, keepdims=True)) ng.testing.assert_allclose(np_b_res, ng_b_res, atol=1e-4, rtol=1e-4)
Example 15
def calculateParamGV(feat_file_list, feat_dim=32): data = numpy.empty((1, feat_dim)) for file_index in range(len(feat_file_list)): file_name = feat_file_list[file_index] (junk, ext) = feat_file_list[file_index].split('.') features = readBottleneckFeatures(file_name, feat_dim) if ext == 'lf0': #remove unvoiced values features = features[numpy.where(features != -1.*(10**(10)))[0]] features = numpy.exp(features) #convert to linear scale if file_index==0: data=features else: data=numpy.concatenate((data,features),0) gv = numpy.var(data, 0) return gv
Example 16
def bn_forward(X, gamma, beta, cache, momentum=.9, train=True): running_mean, running_var = cache if train: mu = np.mean(X, axis=0) var = np.var(X, axis=0) X_norm = (X - mu) / np.sqrt(var + c.eps) out = gamma * X_norm + beta cache = (X, X_norm, mu, var, gamma, beta) running_mean = util.exp_running_avg(running_mean, mu, momentum) running_var = util.exp_running_avg(running_var, var, momentum) else: X_norm = (X - running_mean) / np.sqrt(running_var + c.eps) out = gamma * X_norm + beta cache = None return out, cache, running_mean, running_var
Example 17
def bn_backward(dout, cache): X, X_norm, mu, var, gamma, beta = cache N, D = X.shape X_mu = X - mu std_inv = 1. / np.sqrt(var + c.eps) dX_norm = dout * gamma dvar = np.sum(dX_norm * X_mu, axis=0) * -.5 * std_inv**3 dmu = np.sum(dX_norm * -std_inv, axis=0) + dvar * np.mean(-2. * X_mu, axis=0) dX = (dX_norm * std_inv) + (dvar * 2 * X_mu / N) + (dmu / N) dgamma = np.sum(dout * X_norm, axis=0) dbeta = np.sum(dout, axis=0) return dX, dgamma, dbeta
Example 18
def cv_gradient(self,z): """ The control variate augmented Monte Carlo gradient estimate """ gradient = np.zeros(np.sum(self.approx_param_no)) z_t = z.T log_q = self.normal_log_q(z.T) log_p = self.log_p(z.T) grad_log_q = self.grad_log_q(z) gradient = grad_log_q*(log_p-log_q) alpha0 = alpha_recursion(np.zeros(np.sum(self.approx_param_no)), grad_log_q, gradient, np.sum(self.approx_param_no)) vectorized = gradient - ((alpha0/np.var(grad_log_q,axis=1))*grad_log_q.T).T return np.mean(vectorized,axis=1)
Example 19
def cv_gradient_initial(self,z): """ The control variate augmented Monte Carlo gradient estimate """ gradient = np.zeros(np.sum(self.approx_param_no)) z_t = z.T log_q = self.normal_log_q_initial(z.T) log_p = self.log_p(z.T) grad_log_q = self.grad_log_q(z) gradient = grad_log_q*(log_p-log_q) alpha0 = alpha_recursion(np.zeros(np.sum(self.approx_param_no)), grad_log_q, gradient, np.sum(self.approx_param_no)) vectorized = gradient - ((alpha0/np.var(grad_log_q,axis=1))*grad_log_q.T).T return np.mean(vectorized,axis=1)
Example 20
def cv_gradient(self, z): """ The control variate augmented Monte Carlo gradient estimate RAO-BLACKWELLIZED! """ z_t = np.transpose(z) log_q = self.normal_log_q(z_t) log_p = self.log_p(z_t) grad_log_q = self.grad_log_q(z) gradient = grad_log_q*np.repeat((log_p - log_q).T,2,axis=0) alpha0 = alpha_recursion(np.zeros(np.sum(self.approx_param_no)), grad_log_q, gradient, np.sum(self.approx_param_no)) vectorized = gradient - ((alpha0/np.var(grad_log_q,axis=1))*grad_log_q.T).T return np.mean(vectorized,axis=1)
Example 21
def cv_gradient_initial(self,z): """ The control variate augmented Monte Carlo gradient estimate RAO-BLACKWELLIZED! """ z_t = np.transpose(z) log_q = self.normal_log_q_initial(z_t) log_p = self.log_p(z_t) grad_log_q = self.grad_log_q(z) gradient = grad_log_q*np.repeat((log_p - log_q).T,2,axis=0) alpha0 = alpha_recursion(np.zeros(np.sum(self.approx_param_no)), grad_log_q, gradient, np.sum(self.approx_param_no)) vectorized = gradient - ((alpha0/np.var(grad_log_q,axis=1))*grad_log_q.T).T return np.mean(vectorized,axis=1)
Example 22
def testRandom(self): ig = InverseGaussian(1., 1.) samples = ig.random(1000000) mu = numpy.mean(samples) var = numpy.var(samples) self.assertAlmostEqual(ig.mu, mu, delta=1e-1) self.assertAlmostEqual(ig.mu ** 3 / ig.shape, var, delta=1e-1) ig = InverseGaussian(3., 6.) samples = ig.random(1000000) mu = numpy.mean(samples) var = numpy.var(samples) self.assertAlmostEqual(ig.mu, mu, delta=1e-1) self.assertAlmostEqual(ig.mu ** 3 / ig.shape, var, delta=5e-1)
Example 23
def testRandom(self): from scipy.special import kv from numpy import sqrt a = 2. b = 1. p = 1 gig = GeneralizedInverseGaussian(a, b, p) samples = gig.random(10000) mu_analytical = sqrt(b) * kv(p + 1, sqrt(a * b)) / (sqrt(a) * kv(p, sqrt(a * b))) var_analytical = b * kv(p + 2, sqrt(a * b)) / a / kv(p, sqrt(a * b)) - mu_analytical ** 2 mu = numpy.mean(samples) var = numpy.var(samples) self.assertAlmostEqual(mu_analytical, mu, delta=1e-1) self.assertAlmostEqual(var_analytical, var, delta=1e-1)
Example 24
def calculate_aggregate(values): agg_measures = { 'avg': np.mean(values), 'std': np.std(values), 'var': np.var(values), 'med': np.median(values), '10p': np.percentile(values, 10), '25p': np.percentile(values, 25), '50p': np.percentile(values, 50), '75p': np.percentile(values, 75), '90p': np.percentile(values, 90), 'iqr': np.percentile(values, 75) - np.percentile(values, 25), 'iqm': interquartile_range_mean(values), 'mad': mean_absolute_deviation(values), 'cov': 1.0 * np.mean(values) / np.std(values), 'gin': gini_coefficient(values), 'skw': stats.skew(values), 'kur': stats.kurtosis(values), 'sum': np.sum(values) } return agg_measures
Example 25
def test_sample_contexts_from_distribution(): env = Catapult(segments=[(0, 0), (20, 0)], context_interval=(0, 20), context_distribution=uniform(5, 10), random_state=0) env.init() contexts = np.empty(1000) for i in range(contexts.shape[0]): context = env.request_context(None) contexts[i] = context[0] norm_dist = uniform(0.25, 0.5) assert_true(np.all(0.25 <= contexts)) assert_true(np.all(contexts <= 0.75)) mean, var = norm_dist.stats("mv") assert_almost_equal(np.mean(contexts), mean, places=1) assert_almost_equal(np.var(contexts), var, places=1)
Example 26
def displayDataset(self, dataset): eps = 0.00001 linewidth = dataset.linewidth if np.var(dataset.values) < eps: linewidth += 2 mean = np.mean(dataset.values) x = np.arange(0, 1, 0.1) x = np.sort(np.append(x, [mean, mean-eps, mean+eps])) density = [1 if v == mean else 0 for v in x] else: self.kde.fit(np.asarray([[x] for x in dataset.values])) ## Computes the x axis x_max = np.amax(dataset.values) x_min = np.amin(dataset.values) delta = x_max - x_min density_delta = 1.1 * delta x = np.arange(x_min, x_max, density_delta / self.num_points) x_density = [[y] for y in x] ## kde.score_samples returns the 'log' of the density log_density = self.kde.score_samples(x_density).tolist() density = map(math.exp, log_density) self.ax.plot(x, density, label = dataset.label, color = dataset.color, linewidth = linewidth, linestyle = dataset.linestyle)
Example 27
def snr(vref, vcmp): """ Compute Signal to Noise Ratio (SNR) of two images. Parameters ---------- vref : array_like Reference image vcmp : array_like Comparison image Returns ------- x : float SNR of `vcmp` with respect to `vref` """ dv = np.var(vref) with np.errstate(divide='ignore'): rt = dv/mse(vref, vcmp) return 10.0*np.log10(rt)
Example 28
def bsnr(vblr, vnsy): """ Compute Blurred Signal to Noise Ratio (BSNR) for a blurred and noisy image. Parameters ---------- vblr : array_like Blurred noise free image vnsy : array_like Blurred image with additive noise Returns ------- x : float BSNR of `vnsy` with respect to `vblr` and `vdeg` """ blrvar = np.var(vblr) nsevar = np.var(vnsy - vblr) with np.errstate(divide='ignore'): rt = blrvar/nsevar return 10.0*np.log10(rt)
Example 29
def forward_pass(self, X, training=True): # Initialize running mean and variance if first run if self.running_mean is None: self.running_mean = np.mean(X, axis=0) self.running_var = np.var(X, axis=0) if training: mean = np.mean(X, axis=0) var = np.var(X, axis=0) self.X_centered = X - mean self.stddev_inv = 1 / np.sqrt(var + self.eps) self.running_mean = self.momentum * self.running_mean + (1 - self.momentum) * mean self.running_var = self.momentum * self.running_var + (1 - self.momentum) * var else: mean = self.running_mean var = self.running_var X_norm = (X - mean) / np.sqrt(var + self.eps) output = self.gamma * X_norm + self.beta return output
Example 30
def Gelman_Rubin(sampled_parameters): nsamples = len(sampled_parameters[0]) nchains = len(sampled_parameters) nburnin = nsamples//2 chain_var = [np.var(sampled_parameters[chain][nburnin:,:], axis=0) for chain in range(nchains)] W = np.mean(chain_var, axis=0) chain_means = [np.mean(sampled_parameters[chain][nburnin:,:], axis=0) for chain in range(nchains)] B = np.var(chain_means, axis=0) var_est = (W*(1-(1./nsamples))) + B Rhat = np.sqrt(np.divide(var_est, W)) return Rhat
Example 31
def testRelativeToJackknife(self): data = pd.DataFrame({"X": [1, 2, 3, 4, 5, 6, 7, 8, 9], "Y": [0, 0, 0, 1, 1, 1, 2, 2, 2]}) metric = metrics.Sum("X") comparison = comparisons.AbsoluteDifference("Y", 0) se_method = standard_errors.Jackknife() output = core.Analyze(data).relative_to(comparison).with_standard_errors( se_method).calculate(metric).run() rowindex = pd.Index([1, 2], name="Y") correct = pd.DataFrame( np.array([[9.0, np.sqrt(5 * np.var([12, 11, 10, 5, 4, 3]))], [18.0, np.sqrt(5 * np.var([21, 20, 19, 11, 10, 9]))]]), columns=("sum(X) Absolute Difference", "sum(X) Absolute Difference Jackknife SE"), index=rowindex) self.assertTrue(output.equals(correct))
Example 32
def testRelativeToJackknifeIncludeBaseline(self): data = pd.DataFrame({"X": [1, 2, 3, 4, 5, 6, 7, 8, 9], "Y": [0, 0, 0, 1, 1, 1, 2, 2, 2]}) metric = metrics.Sum("X") comparison = comparisons.AbsoluteDifference("Y", 0, include_base=True) se_method = standard_errors.Jackknife() output = core.Analyze(data).relative_to(comparison).with_standard_errors( se_method).calculate(metric).run() rowindex = pd.Index([0, 1, 2], name="Y") correct = pd.DataFrame( np.array([[0.0, 0.0], [9.0, np.sqrt(5 * np.var([12, 11, 10, 5, 4, 3]))], [18.0, np.sqrt(5 * np.var([21, 20, 19, 11, 10, 9]))]]), columns=("sum(X) Absolute Difference", "sum(X) Absolute Difference Jackknife SE"), index=rowindex) self.assertTrue(output.equals(correct))
Example 33
def testRelativeToJackknifeSingleComparisonBaselineFirst(self): data = pd.DataFrame({"X": [1, 2, 3, 4, 5, 6], "Y": [0, 0, 0, 1, 1, 1]}) metric = metrics.Sum("X") comparison = comparisons.AbsoluteDifference("Y", 0) se_method = standard_errors.Jackknife() output = core.Analyze(data).relative_to(comparison).with_standard_errors( se_method).calculate(metric).run() rowindex = pd.Index([1], name="Y") correct = pd.DataFrame( np.array([[9.0, np.sqrt(5 * np.var([12, 11, 10, 5, 4, 3]))]]), columns=("sum(X) Absolute Difference", "sum(X) Absolute Difference Jackknife SE"), index=rowindex) self.assertTrue(output.equals(correct))
Example 34
def testRelativeToJackknifeSingleComparisonBaselineSecond(self): data = pd.DataFrame({"X": [1, 2, 3, 4, 5, 6], "Y": [0, 0, 0, 1, 1, 1]}) metric = metrics.Sum("X") comparison = comparisons.AbsoluteDifference("Y", 1) se_method = standard_errors.Jackknife() output = core.Analyze(data).relative_to(comparison).with_standard_errors( se_method).calculate(metric).run() rowindex = pd.Index([0], name="Y") correct = pd.DataFrame( np.array([[-9.0, np.sqrt(5 * np.var([12, 11, 10, 5, 4, 3]))]]), columns=("sum(X) Absolute Difference", "sum(X) Absolute Difference Jackknife SE"), index=rowindex) self.assertTrue(output.equals(correct))
Example 35
def testRelativeToSplitJackknife(self): data = pd.DataFrame( {"X": [1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 1, 2, 3, 4, 5, 6, 7, 8], "Y": [1, 1, 1, 2, 2, 2, 3, 3, 3, 1, 1, 1, 2, 2, 2, 3, 3, 3], "Z": [0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1]}) metric = metrics.Sum("X") comparison = comparisons.AbsoluteDifference("Z", 0) se_method = standard_errors.Jackknife() output = core.Analyze(data).split_by("Y").relative_to( comparison).with_standard_errors(se_method).calculate(metric).run() rowindex = pd.MultiIndex( levels=[[1, 2, 3], [1]], labels=[[0, 1, 2], [0, 0, 0]], names=["Y", "Z"]) correct = pd.DataFrame( np.array([[-3.0, np.sqrt(5 * np.var([0, -1, -2, -3, -4, -5]))], [-3.0, np.sqrt(5 * np.var([3, 2, 1, -8, -7, -6]))], [-3.0, np.sqrt(5 * np.var([6, 5, 4, -11, -10, -9]))]]), columns=("sum(X) Absolute Difference", "sum(X) Absolute Difference Jackknife SE"), index=rowindex) self.assertTrue(output.equals(correct))
Example 36
def test_ddof_too_big(self): nanfuncs = [np.nanvar, np.nanstd] stdfuncs = [np.var, np.std] dsize = [len(d) for d in _rdat] for nf, rf in zip(nanfuncs, stdfuncs): for ddof in range(5): with warnings.catch_warnings(record=True) as w: warnings.simplefilter('always') tgt = [ddof >= d for d in dsize] res = nf(_ndat, axis=1, ddof=ddof) assert_equal(np.isnan(res), tgt) if any(tgt): assert_(len(w) == 1) assert_(issubclass(w[0].category, RuntimeWarning)) else: assert_(len(w) == 0)
Example 37
def mainHmmGeneralClf(): isTrain = 1 # 1 for train, 0 for test isOutlierRemoval = 1 # 1 for outlier removal, 0 otherwise performance = 0 normalizedPerformance = 0 clf = ClassificationHmmGeneralize(isTrain) normPerforms = [] for i in range(12): print "Route: {}".format(i) [perfor, normaPefor] = clf.evaluateGeneral(clf.routes_general[i]) normPerforms.append(normaPefor) performance += perfor normalizedPerformance += normaPefor performance = round(performance/8, 2) normalizedPerformance = round(normalizedPerformance/8, 2) print "\nAverage Performance: {}%".format(performance) print "Average Normalized Performance: {}%".format(normalizedPerformance) print "Normalized Performance Variance: {}".format(np.var(normPerforms))
Example 38
def mainUniformGeneralClf(): isTrain = 1 # 1 for train, 0 for test isOutlierRemoval = 1 # 1 for outlier removal, 0 otherwise performance = 0 normalizedPerformance = 0 clf = ClassificationUniformGeneralize(isTrain) print clf.X_general.shape normPerforms = [] for i in range(12): print "Route: {}".format(i) [perfor, normaPefor] = clf.evaluateGeneral(clf.routes_general[i]) normPerforms.append(normaPefor) performance += perfor normalizedPerformance += normaPefor performance = round(performance/8, 2) normalizedPerformance = round(normalizedPerformance/8, 2) print "\nAverage Performance: {}%".format(performance) print "Average Normalized Performance: {}%".format(normalizedPerformance) print "Normalized Performance Variance: {}".format(np.var(normPerforms))
Example 39
def vif(self): vif = [] totalmanifests = range(len(self.data_.columns)) for i in range(len(totalmanifests)): independent = [x for j, x in enumerate(totalmanifests) if j != i] coef, resid = np.linalg.lstsq( self.data_.ix[:, independent], self.data_.ix[:, i])[:2] r2 = 1 - resid / \ (self.data_.ix[:, i].size * self.data_.ix[:, i].var()) vif.append(1 / (1 - r2)) vif = pd.DataFrame(vif, index=self.manifests) return vif
Example 40
def explained_variance_1d(ypred,y): """ Var[ypred - y] / var[y]. https://www.quora.com/What-is-the-meaning-proportion-of-variance-explained-in-linear-regression """ assert y.ndim == 1 and ypred.ndim == 1 vary = np.var(y) return np.nan if vary==0 else 1 - np.var(y-ypred)/vary
Example 41
def gauss_prob(mu, logstd, x): std = tf.exp(logstd) var = tf.square(std) gp = tf.exp(-(x - mu)/(2*var)) / ((2*np.pi)**.5 * std) return tf.reduce_prod(gp, [1])
Example 42
def gauss_log_prob(mu, logstd, x): var = tf.exp(2*logstd) gp = -tf.square(x - mu)/(2*var) - .5*tf.log(tf.constant(2*np.pi)) - logstd return tf.reduce_sum(gp, [1])
Example 43
def var(x, axis=None, keepdims=False): meanx = mean(x, axis=axis, keepdims=keepdims) return mean(tf.square(x - meanx), axis=axis, keepdims=keepdims)
Example 44
def std(x, axis=None, keepdims=False): return tf.sqrt(var(x, axis=axis, keepdims=keepdims))
Example 45
def minimize_and_clip(optimizer, objective, var_list, clip_val=10): """Minimized `objective` using `optimizer` w.r.t. variables in `var_list` while ensure the norm of the gradients for each variable is clipped to `clip_val` """ gradients = optimizer.compute_gradients(objective, var_list=var_list) for i, (grad, var) in enumerate(gradients): if grad is not None: gradients[i] = (tf.clip_by_norm(grad, clip_val), var) return optimizer.apply_gradients(gradients)
Example 46
def test_output_shape(self): """ Test that the axis parameter is handled correctly """ stream = [np.random.random((16, 7, 3)) for _ in range(5)] stack = np.stack(stream, axis = -1) for axis in (0, 1, 2, None): with self.subTest('axis = {}'.format(axis)): from_numpy = np.var(stack, axis = axis) from_ivar = last(ivar(stream, axis = axis)) self.assertSequenceEqual(from_numpy.shape, from_ivar.shape) self.assertTrue(np.allclose(from_ivar, from_numpy))
Example 47
def test_ddof(self): """ Test that the ddof parameter is equivalent to numpy's """ stream = [np.random.random((16, 7, 3)) for _ in range(10)] stack = np.stack(stream, axis = -1) with catch_warnings(): simplefilter('ignore') for axis in (0, 1, 2, None): for ddof in range(4): with self.subTest('axis = {}, ddof = {}'.format(axis, ddof)): from_numpy = np.var(stack, axis = axis, ddof = ddof) from_ivar = last(ivar(stream, axis = axis, ddof = ddof)) self.assertSequenceEqual(from_numpy.shape, from_ivar.shape) self.assertTrue(np.allclose(from_ivar, from_numpy))
Example 48
def summarize_bootstrapped_top_n(top_n_boot): top_n_bcs_mean = np.mean(top_n_boot) top_n_bcs_sd = np.std(top_n_boot) top_n_bcs_var = np.var(top_n_boot) result = {} result['filtered_bcs_var'] = top_n_bcs_var result['filtered_bcs_cv'] = tk_stats.robust_divide(top_n_bcs_sd, top_n_bcs_mean) result['filtered_bcs_lb'] = round(scipy.stats.norm.ppf(0.025, top_n_bcs_mean, top_n_bcs_sd)) result['filtered_bcs_ub'] = round(scipy.stats.norm.ppf(0.975, top_n_bcs_mean, top_n_bcs_sd)) result['filtered_bcs'] = round(top_n_bcs_mean) return result
Example 49
def auto_correlation_time(x, s, mu, var): b, t, d = x.shape act_ = np.zeros([d]) for i in range(0, b): y = x[i] - mu p, n = y[:-s], y[s:] act_ += np.mean(p * n, axis=0) / var act_ = act_ / b return act_
Example 50
def gelman_rubin_diagnostic(x, logger, mu=None): m, n = x.shape[0], x.shape[1] theta = np.mean(x, axis=1) sigma = np.var(x, axis=1) # theta_m = np.mean(theta, axis=0) theta_m = mu if mu else np.mean(theta, axis=0) b = float(n) / float(m-1) * np.sum((theta - theta_m) ** 2) w = 1. / float(m) * np.sum(sigma, axis=0) v = float(n-1) / float(n) * w + float(m+1) / float(m * n) * b r_hat = np.sqrt(v / w) logger.info('R: max [%f] min [%f]' % (np.max(r_hat), np.min(r_hat))) return r_hat