Python numpy.logspace() 使用实例

The following are code examples for showing how to use . They are extracted from open source Python projects. You can vote up the examples you like or vote down the exmaples you don’t like. You can also save this page to your account.

Example 1

def parameterChoosing(self):
        # Set the parameters by cross-validation
        tuned_parameters = [{'penalty': ['l1'],
                             'C': np.logspace(-5,5)},
                             {'penalty': ['l2'],
                              'C': np.logspace(-5,5)}]

        clf = GridSearchCV(linear_model.LogisticRegression(tol=1e-6), tuned_parameters, cv=5, scoring='precision_weighted')
        clf.fit(self.X_train, self.y_train.ravel())

        print "Best parameters set found on development set:\n"
        print clf.best_params_

        print "Grid scores on development set:\n"
        for params, mean_score, scores in clf.grid_scores_:
            print "%0.3f (+/-%0.03f) for %r\n" % (mean_score, scores.std() * 2, params)

        print "Detailed classification report:\n"
        y_true, y_pred = self.y_test, clf.predict(self.X_test)
        print classification_report(y_true, y_pred) 

Example 2

def calc_IndCurrent_FD_spectrum(self):
        """Gives FD induced current spectrum"""

        #INITIALIZE ATTRIBUTES
        Bpx = self.Bpx
        Bpz = self.Bpz
        a2  = self.a2
        azm = np.pi*self.azm/180.
        R   = self.R
        L   = self.L

        w = 2*np.pi*np.logspace(0,8,101)

        Ax = np.pi*a2**2*np.sin(azm)
        Az = np.pi*a2**2*np.cos(azm)

        Phi = (Ax*Bpx + Az*Bpz)
        EMF = -1j*w*Phi
        Is = EMF/(R + 1j*w*L)

        return EMF,Is 

Example 3

def WaveVelandSkindWidget(epsr, sigma):
    frequency = np.logspace(1, 9, 61)
    vel, skind = WaveVelSkind(frequency, epsr, 10**sigma)
    figure, ax = plt.subplots(1, 2, figsize = (10, 4))
    ax[0].loglog(frequency, vel, 'b', lw=3)
    ax[1].loglog(frequency, skind, 'r', lw=3)
    ax[0].set_ylim(1e6, 1e9)
    ax[1].set_ylim(1e-1, 1e7)
    ax[0].set_xlabel('Frequency (Hz)')
    ax[0].set_ylabel('Velocity (m/s)')
    ax[1].set_xlabel('Frequency (Hz)')
    ax[1].set_ylabel('Skin Depth (m)')
    ax[0].grid(True)
    ax[1].grid(True)

    plt.show()
    return 

Example 4

def process(self, **kwargs):
        """Process module."""
        self._rest_times = kwargs['rest_times']
        self._rest_t_explosion = kwargs[self.key('resttexplosion')]

        outputs = OrderedDict()
        max_times = max(self._rest_times)
        if max_times > self._rest_t_explosion:
            outputs['dense_times'] = np.unique(
                np.concatenate(([0.0], [
                    x + self._rest_t_explosion
                    for x in np.logspace(
                        self.L_T_MIN,
                        np.log10(max_times - self._rest_t_explosion),
                        num=self._n_times)
                ], self._rest_times)))
        else:
            outputs['dense_times'] = np.array(self._rest_times)
        outputs['dense_indices'] = np.searchsorted(
            outputs['dense_times'], self._rest_times)
        return outputs 

Example 5

def main(table, schema):

    logger = get_root_logger()
    _ = get_header(logger, 'Building a model to predict Trump tweets')

    loc = get_path(__file__) + '/{0}'

    params = {
        'features__text_processing__vect__ngram_range': [(1, 1), (1, 2), (1, 3)],
        'clf__n_estimators': [int(x) for x in logspace(1, 3, num=10)]
    }

    model = RandomForestModel(table, schema, **params)
    model.train()
    model.evaluate()
    model.save(loc.format('saved_models')) 

Example 6

def _get_knot_spacing(self):
        """Returns a list of knot locations based on the spline parameters

        If the option `spacing` is 'lin', uses linear spacing
                                   'log', uses log spacing

        Places 'spline_N' knots between 'spline_min' and 'spline_max'
        """

        space_key = self.get_option('spacing').lower()[:3]

        if space_key == 'log':
            vol = np.logspace(np.log10(self.get_option('spline_min')),
                              np.log10(self.get_option('spline_max')),
                              self.get_option('spline_N'))

        elif space_key == 'lin':
            vol = np.linspace(self.get_option('spline_min'),
                              self.get_option('spline_max'),
                              self.get_option('spline_N'))
        else:
            raise KeyError("{:} only `lin`ear and `log` spacing are"
                           "accepted".format(self.get_inform(1)))
        # end
        return vol 

Example 7

def plot():
    '''
    
    '''
    
    # Register the functions
    builtins.__dict__.update(globals())
    
    # Loop over various dataset sizes
    Narr = np.logspace(0, 5, 5)
    tpp = np.zeros_like(Narr)
    tbm = np.zeros_like(Narr)
    tps = np.zeros_like(Narr)
    for i, N in enumerate(Narr):
        tpp[i] = timeit.timeit('run_pp(%d)' % N, number = 10) / 10.
        if batman is not None:
            tbm[i] = timeit.timeit('run_bm(%d)' % N, number = 10) / 10.
        if ps is not None:
            tps[i] = timeit.timeit('run_ps(%d)' % N, number = 10) / 10.
    
    pl.plot(Narr, tpp, '-o', label = 'planetplanet')
    if batman is not None:
        pl.plot(Narr, tbm, '-o', label = 'batman')
    if ps is not None:
        pl.plot(Narr, tps, '-o', label = 'pysyzygy')
    pl.legend()
    pl.yscale('log')
    pl.xscale('log')
    pl.ylabel('Time [seconds]', fontweight = 'bold')
    pl.xlabel('Number of datapoints', fontweight = 'bold') 

Example 8

def fit_koff(nmax=523, NN=4e8, **params):
    tbind = params.pop("tbind")
    params["kd"] = 1e9/tbind
    dx = params.pop("dx")
    rw = randomwalk.get_rw(NAME, params, setup=setup_rw, calc=True)
    rw.domains[1].dx = dx
    times = draw_empirically(rw, N=NN, nmax=nmax, success=False)
    bins = np.logspace(np.log10(min(times)), np.log10(max(times)), 35)
    #bins = np.logspace(-3., 2., 35)
    hist, _ = np.histogram(times, bins=bins)
    cfd = np.cumsum(hist)/float(np.sum(hist))
    t = 0.5*(bins[:-1] + bins[1:])
    tmean = times.mean()
    toff = NLS(t, cfd, t0=tmean)
    koff = 1./toff
    return dict(t=t, cfd=cfd, toff=toff, tmean=tmean, koff=koff)

##### run rw in collect mode and draw bindings from empirical distributions 

Example 9

def exponential_hist(times, a, b, **params):
    cutoff = 0.03 # cutoff frequency in ms
    if len(times) == 0:
        return
    bins = np.logspace(a, b, 100)
    hist = plt.hist(times, bins=bins, alpha=0.5, **params)
    plt.xscale("log")
    params.pop("label")
    color = params.pop("color")
    total = integrate_hist(hist, cutoff)
    if sum(times > cutoff) == 0:
        return
    tmean = times[times > cutoff].mean()
    T = np.logspace(a-3, b, 1000)
    fT = np.exp(-T/tmean)*T/tmean
    fT *= total/integrate_values(T, fT, cutoff)
    plt.plot(T, fT, label="exp. fit, mean = %.2f ms" % (tmean,),
             color="dark" + color, **params)
    plt.xlim(10**a, 10**b) 

Example 10

def _update_data_x(self):
        if self.is_zero_span():
            self._data_x = np.zeros(self.points)
            # data_x will be measured during first scan...
            return

        if self.logscale:
            raw_values = np.logspace(
                np.log10(self.start_freq),
                np.log10(self.stop_freq),
                         self.points,
                         endpoint=True)
        else:
            raw_values = np.linspace(self.start_freq,
                               self.stop_freq,
                               self.points,
                               endpoint=True)
        values = np.zeros(len(raw_values))
        for index, val in enumerate(raw_values):
            values[index] = self.iq.__class__.frequency. \
                validate_and_normalize(self, val)  # retrieve the real freqs...
        self._data_x = values 

Example 11

def MieQ_withWavelengthRange(m, diameter, wavelengthRange=(100,1600), nw=1000, logW=False):
#  http://pymiescatt.readthedocs.io/en/latest/forward.html#MieQ_withWavelengthRange
  if type(m) == complex and len(wavelengthRange)==2:
    if logW:
      wavelengths = np.logspace(np.log10(wavelengthRange[0]),np.log10(wavelengthRange[1]),nw)
    else:
      wavelengths = np.linspace(wavelengthRange[0],wavelengthRange[1],nw)
    _qD = [AutoMieQ(m,wavelength,diameter) for wavelength in wavelengths]
  elif type(m) in [np.ndarray,list,tuple] and len(wavelengthRange)==len(m):
    wavelengths=wavelengthRange
    _qD = [MieQ(emm,wavelength,diameter) for emm,wavelength in zip(m,wavelengths)]
  else:
    warnings.warn("Error: the size of the input data is minmatched. Please examine your inputs and try again.")
    return

  qext = np.array([q[0] for q in _qD])
  qsca = np.array([q[1] for q in _qD])
  qabs = np.array([q[2] for q in _qD])
  g = np.array([q[3] for q in _qD])
  qpr = np.array([q[4] for q in _qD])
  qback = np.array([q[5] for q in _qD])
  qratio = np.array([q[6] for q in _qD])
  return wavelengths, qext, qsca, qabs, g, qpr, qback, qratio 

Example 12

def MieQ_withSizeParameterRange(m, xRange=(1,10), nx=1000, logX=False):
#  http://pymiescatt.readthedocs.io/en/latest/forward.html#MieQ_withSizeParameterRange
  if logX:
    xValues = list(np.logspace(np.log10(xRange[0]),np.log10(xRange[1]),nx))
  else:
    xValues = list(np.linspace(xRange[0],xRange[1], nx))
  dValues = [1000*x/np.pi for x in xValues]
  _qD = [AutoMieQ(m,1000,d) for d in dValues]
  qext = np.array([q[0] for q in _qD])
  qsca = np.array([q[1] for q in _qD])
  qabs = np.array([q[2] for q in _qD])
  g = np.array([q[3] for q in _qD])
  qpr = np.array([q[4] for q in _qD])
  qback = np.array([q[5] for q in _qD])
  qratio = np.array([q[6] for q in _qD])
  return xValues, qext, qsca, qabs, g, qpr, qback, qratio 

Example 13

def MieQ_withWavelengthRange(m, diameter, wavelengthRange=(100,1600), nw=1000, logW=False):
#  http://pymiescatt.readthedocs.io/en/latest/forward.html#MieQ_withWavelengthRange
  if type(m) == complex and len(wavelengthRange)==2:
    if logW:
      wavelengths = np.logspace(np.log10(wavelengthRange[0]),np.log10(wavelengthRange[1]),nw)
    else:
      wavelengths = np.linspace(wavelengthRange[0],wavelengthRange[1],nw)
    _qD = [AutoMieQ(m,wavelength,diameter) for wavelength in wavelengths]
  elif type(m) in [np.ndarray,list,tuple] and len(wavelengthRange)==len(m):
    wavelengths=wavelengthRange
    _qD = [MieQ(emm,wavelength,diameter) for emm,wavelength in zip(m,wavelengths)]
  else:
    warnings.warn("Error: the size of the input data is minmatched. Please examine your inputs and try again.")
    return

  qext = np.array([q[0] for q in _qD])
  qsca = np.array([q[1] for q in _qD])
  qabs = np.array([q[2] for q in _qD])
  g = np.array([q[3] for q in _qD])
  qpr = np.array([q[4] for q in _qD])
  qback = np.array([q[5] for q in _qD])
  qratio = np.array([q[6] for q in _qD])
  return wavelengths, qext, qsca, qabs, g, qpr, qback, qratio 

Example 14

def MieQ_withSizeParameterRange(m, xRange=(1,10), nx=1000, logX=False):
#  http://pymiescatt.readthedocs.io/en/latest/forward.html#MieQ_withSizeParameterRange
  if logX:
    xValues = list(np.logspace(np.log10(xRange[0]),np.log10(xRange[1]),nx))
  else:
    xValues = list(np.linspace(xRange[0],xRange[1], nx))
  dValues = [1000*x/np.pi for x in xValues]
  _qD = [AutoMieQ(m,1000,d) for d in dValues]
  qext = np.array([q[0] for q in _qD])
  qsca = np.array([q[1] for q in _qD])
  qabs = np.array([q[2] for q in _qD])
  g = np.array([q[3] for q in _qD])
  qpr = np.array([q[4] for q in _qD])
  qback = np.array([q[5] for q in _qD])
  qratio = np.array([q[6] for q in _qD])
  return xValues, qext, qsca, qabs, g, qpr, qback, qratio 

Example 15

def grid_search_gamma(rbf_svm, X, y):
    ## grid search - gamma only
    # use a full grid over all parameters
    param_grid = {'gamma': np.logspace(-15, 4, num = 5000, base = 2.0)}
    grid_search = GridSearchCV(rbf_svm, param_grid = param_grid, scoring = 'roc_auc',
                               cv = 10, pre_dispatch = '2*n_jobs', n_jobs = -1)
    # re-fit on the whole training data
    grid_search.fit(X, y)
    grid_search_scores = [score[1] for score in grid_search.grid_scores_]
    print('Best parameters : {}'.format(grid_search.best_params_))
    print('Best score : {}'.format(grid_search.best_score_))
    
    # set canvas
    fig, ax = plt.subplots(1, 1)
    # ax.scatter(X[:, 0], X[:, 1], c = y)
    ax.plot(param_grid['gamma'], grid_search_scores)
    ax.set_title('AUC = f(gamma, C = 1.0)', fontsize = 'large')
    ax.set_xlabel('gamma', fontsize = 'medium')
    ax.set_ylabel('AUC', fontsize = 'medium')
    
    return fig 

Example 16

def test_cv():
    """Simple CV check."""
    # XXX: don't use scikit-learn for tests.
    X, y = make_regression()
    cv = KFold(X.shape[0], 5)

    glm_normal = GLM(distr='gaussian', alpha=0.01, reg_lambda=0.1)
    # check that it returns 5 scores
    scores = cross_val_score(glm_normal, X, y, cv=cv)
    assert_equal(len(scores), 5)

    param_grid = [{'alpha': np.linspace(0.01, 0.99, 2)},
                  {'reg_lambda': np.logspace(np.log(0.5), np.log(0.01),
                                             10, base=np.exp(1))}]
    glmcv = GridSearchCV(glm_normal, param_grid, cv=cv)
    glmcv.fit(X, y) 

Example 17

def test_l1l2path():
    
    X_file = 'data_c/X_200_100.csv'
    Y_file = 'data_c/Y_200_100.csv'
    
    X = np.genfromtxt(X_file)
    Y = np.genfromtxt(Y_file)
    
    mu = 1e-3
    tau_range = np.logspace(-2,0,3)
    k_max = 10000
    tolerance = 1e-4
    
    pc = pplus.PPlusConnection(debug=False, workers_servers = ('127.0.0.1',))
    
    pc.submit(l1l2path_job,
                  args=(X, Y, mu, tau_range, k_max, tolerance),
                  modules=('numpy as np', 'ctypes'))

    result_keys = pc.collect()
    
    print result_keys

    print("Done") 

Example 18

def nextfastpower(n):
    """Return the next integral power of small factors greater than the given
    number.  Specifically, return m such that
        m >= n
        m == 2**x * 3**y * 5**z
    where x, y, and z are integers.
    This is useful for ensuring fast FFT sizes.

    From https://gist.github.com/bhawkins/4479607 (Brian Hawkins)
    """
    if n < 7:
        return max (n, 1)
    # x, y, and z are all bounded from above by the formula of nextpower.
    # Compute all possible combinations for powers of 3 and 5.
    # (Not too many for reasonable FFT sizes.)
    def power_series (x, base):
        nmax = ceil (log (x) / log (base))
        return np.logspace (0.0, nmax, num=nmax+1, base=base)
    n35 = np.outer (power_series (n, 3.0), power_series (n, 5.0))
    n35 = n35[n35<=n]
    # Lump the powers of 3 and 5 together and solve for the powers of 2.
    n2 = nextpower (n / n35)
    return int (min (n2 * n35)) 

Example 19

def _generate_segments(self, n_segments, n_superpositions=5):
        # Assume that the actual surface is a superposition of sinusoid
        # functions from which sample n_segments points and connect those
        # linearly

        # Generate sinusoids of the form -5 * sin(a * x + b)
        a = np.logspace(0, 0.5, n_superpositions)
        b = (0.25 * self.random_state.rand(n_superpositions) - 0.125) * np.pi

        # Generate x and y components of segments
        x = np.hstack((np.sort(self.random_state.rand(n_segments) * 8.0)))
        y = (-5 * np.sin(a * x[:, None] + b)).mean(axis=1)

        # Start at (0, 0)
        x[0] = y[0] = 0
        # Planar segment at the end which is long enough to avoid shooting
        # over the border
        x[-1] = 100.0
        y[-1] = y[-2]

        return np.vstack((x, y)).T 

Example 20

def parameterChoosing(self):
        # Set the parameters by cross-validation
        tuned_parameters = [{'alpha': np.logspace(-5,5)
                             }
                            ]


        reg = GridSearchCV(linear_model.Ridge(alpha = 0.5), tuned_parameters, cv=5, scoring='mean_squared_error')
        reg.fit(self.X_train, self.y_train)

        print "Best parameters set found on development set:\n"
        print reg.best_params_

        print "Grid scores on development set:\n"
        for params, mean_score, scores in reg.grid_scores_:
            print "%0.3f (+/-%0.03f) for %r\n" % (mean_score, scores.std() * 2, params)

        print reg.scorer_

        print "MSE for test data set:"
        y_true, y_pred = self.y_test, reg.predict(self.X_test)
        print mean_squared_error(y_pred, y_true) 

Example 21

def parameterChoosing(self):
        # Set the parameters by cross-validation
        tuned_parameters = [{'kernel': ['rbf'],
                             'gamma': np.logspace(-4, 3, 30),
                             'C': [1e-3, 1e-2, 1e-1, 1, 10, 100, 1000]},
                             {'kernel': ['poly'],
                              'degree': [1, 2, 3, 4],
                              'C': [1e-3, 1e-2, 1e-1, 1, 10, 100, 1000],
                              'coef0': np.logspace(-4, 3, 30)},
                            {'kernel': ['linear'],
                             'C': [1e-3, 1e-2, 1e-1, 1, 10, 100, 1000]}]

        clf = GridSearchCV(svm.SVC(C=1), tuned_parameters, cv=5, scoring='precision_weighted')
        clf.fit(self.X_train, self.y_train.ravel())

        print "Best parameters set found on development set:\n"
        print clf.best_params_

        print "Grid scores on development set:\n"
        for params, mean_score, scores in clf.grid_scores_:
            print "%0.3f (+/-%0.03f) for %r\n" % (mean_score, scores.std() * 2, params)

        print "Detailed classification report:\n"
        y_true, y_pred = self.y_test, clf.predict(self.X_test)
        print classification_report(y_true, y_pred) 

Example 22

def b2t(tb, n=1e2, logger=None, **kwargs):
    tb = np.array(tb)
    if isinstance(tb, type(1.1)):
        return a2t(b2a(tb))
    if tb.shape == ():
        return a2t(b2a(tb))
    if len(tb) < n:
        n = len(tb)
    tbs = -1.*np.logspace(np.log10(-tb.min()),
                          np.log10(-tb.max()), n)
    ages = []
    for i, tbi in enumerate(tbs):
        ages += a2t(b2a(tbi)),
        if logger:
            logger(i)
    ages = np.array(ages)
    return tbs, ages 

Example 23

def run(n_seeds, n_jobs, _run, _seed):
    seed_list = check_random_state(_seed).randint(np.iinfo(np.uint32).max,
                                                  size=n_seeds)
    exps = []
    exps += [{'method': 'sgd',
              'step_size': step_size}
             for step_size in np.logspace(-3, 3, 7)]
    exps += [{'method': 'gram',
             'reduction': reduction}
            for reduction in [1, 4, 6, 8, 12, 24]]

    rundir = join(basedir, str(_run._id), 'run')
    if not os.path.exists(rundir):
        os.makedirs(rundir)

    Parallel(n_jobs=n_jobs,
             verbose=10)(delayed(single_run)(config_updates, rundir, i)
                         for i, config_updates in enumerate(exps)) 

Example 24

def run(n_seeds, n_jobs, _run, _seed):
    seed_list = check_random_state(_seed).randint(np.iinfo(np.uint32).max,
                                                  size=n_seeds)
    exps = []
    exps += [{'method': 'sgd',
              'step_size': step_size}
             for step_size in np.logspace(-7, -7, 1)]
    exps += [{'method': 'gram',
              'reduction': reduction}
             for reduction in [12]]

    rundir = join(basedir, str(_run._id), 'run')
    if not os.path.exists(rundir):
        os.makedirs(rundir)

    Parallel(n_jobs=n_jobs,
             verbose=10)(delayed(single_run)(config_updates, rundir, i)
                         for i, config_updates in enumerate(exps)) 

Example 25

def create_matrix_sparse_from_conf(conf):
    restypes = ['tdnn', 'lpfb']
    # tdnn res   weights = []
    if 'restype' not in conf or conf['restype'] not in restypes:
        return None
    else:
        if conf['restype'] == 'tdnn':
            w_ = spa.dia_matrix(np.diag(np.ones((conf['N']-1,)), k = -1))
            return w_
        elif conf['restype'] == 'lpfb':
            # w_ = spa.dia_matrix(np.diag(1 - (np.logspace(1e-3, 1e-1, conf['N']) - 1), k = 0))
            w_ = spa.dia_matrix(np.diag(1 - np.exp(np.linspace(-6, -0.69, conf['N'])), k = 0))
            return w_
    return None
            
################################################################################
# Standalone class for learning rules
# - Recursive Least Squares (RLS, depends on rlspy.py): the vanilla online supervised
#   reservoir training method
# - First-order reduced and controlled error or FORCE learning (Sussillo & Abbott, 2012)
# - FORCEmdn: Mixture density output layer using FORCE rule (Berthold, 2017)
# - Exploratory Hebbian learning (Legenstein & others, 2010) 

Example 26

def selectFixedOrLog(self):
        """
        Check fixed or log-linear asymmetry parameter
        """
        
        self.parameters['fixed_p'] = self.ui.radioButtonFixedP.isChecked()
        if self.parameters['fixed_p']:
            self.ui.radioButtonFixedP.setChecked(True)
            self.ui.radioButtonLogLinearP.setChecked(False)
            self.ui.frame_2.setEnabled(False)
            self.ui.frame.setEnabled(True)
#            self.p = lambda x: self.ui.spinBoxP.value()
            self.parameters['asym_param'] = self.ui.spinBoxP.value()
            
        else:
            self.ui.radioButtonFixedP.setChecked(False)
            self.ui.radioButtonLogLinearP.setChecked(True)
            self.ui.frame_2.setEnabled(True)
            self.ui.frame.setEnabled(False)
            self.parameters['asym_param'] = \
                lambda x: _np.logspace(_np.log10(self.parameters['asym_param_start']),
                                       _np.log10(self.parameters['asym_param_end']),x) 

        self.changed.emit() 

Example 27

def getOpts(opts):
    print("config opts...")

    opts['validation'] = 0.1
    opts['exemplarSize'] = 127
    opts['instanceSize'] = 255-2*8
    opts['lossRPos'] = 16
    opts['lossRNeg'] = 0
    opts['labelWeight'] = 'balanced'
    opts['numPairs'] = 53200
    opts['frameRange'] = 100
    opts['trainNumEpochs'] = 50
    opts['trainLr'] = np.logspace(-2, -5, opts['trainNumEpochs'])
    opts['trainWeightDecay'] = 5e-04
    opts['randomSeed'] = 1
    opts['momentum'] = 0.9
    opts['stddev'] = 0.01

    opts['start'] = 0
    opts['expName'] = '_20170511_s_tn_001'
    opts['summaryFile'] = './data_20170511/'+opts['expName']
    opts['ckptPath'] = './ckpt/'+opts['expName']
    return opts 

Example 28

def getOpts(opts):
    print("config opts...")

    opts['validation'] = 0.1
    opts['exemplarSize'] = 127
    opts['instanceSize'] = 255-2*8
    opts['lossRPos'] = 16
    opts['lossRNeg'] = 0
    opts['labelWeight'] = 'balanced'
    opts['numPairs'] = 53200
    opts['frameRange'] = 100
    opts['trainNumEpochs'] = 50
    opts['trainLr'] = np.logspace(-2, -5, opts['trainNumEpochs'])
    opts['trainWeightDecay'] = 5e-04
    opts['randomSeed'] = 1
    opts['momentum'] = 0.9
    opts['stddev'] = 0.01

    opts['start'] = 0
    opts['expName'] = '20170518_tn_o_001'
    opts['summaryFile'] = './data_20170518/'+opts['expName']
    opts['ckptPath'] = './ckpt/'+opts['expName']
    return opts 

Example 29

def CAL_v(name, label_p, label_n, oracle, n_features, ftype, test_x, test_y):
    online = OnlineBase(name, label_p, label_n, oracle, n_features, ftype, error=.5)
    x, y = online.collect_pts(100, -1)
    i = 0
    q = online.get_n_query()
    C_range = np.logspace(-2, 5, 10, base=10)
    gamma_range = np.logspace(-5, 1, 10, base=10)
    param_grid = dict(gamma=gamma_range, C=C_range)
    while q < 3500:
        i += 1
        # h_ = ex.fit(x, y)

        cv = StratifiedShuffleSplit(y, n_iter=5, test_size=0.2, random_state=42)
        grid = GridSearchCV(svm.SVC(), param_grid=param_grid, cv=cv, verbose=0, n_jobs=-1)
        grid.fit(x, y)
        h_ = grid.best_estimator_

        online_ = OnlineBase('', label_p, label_n, h_.predict, n_features, ftype, error=.1)
        x_, _ = online_.collect_pts(10, 200)
        if x_ is not None and len(x_) > 0:
            x.extend(x_)
            y.extend(oracle(x_))
        q += online_.get_n_query()
        pred_y = h_.predict(test_x)
        print len(x), q, sm.accuracy_score(test_y, pred_y) 

Example 30

def grid_retrain_in_f(self, n_dim=500):
        rbf_map = RBFSampler(n_dim, random_state=1)
        fourier_approx_svm = pipeline.Pipeline([("mapper", rbf_map),
                                                ("svm", LinearSVC())])

        # C_range = np.logspace(-5, 15, 21, base=2)
        # gamma_range = np.logspace(-15, 3, 19, base=2)
        # param_grid = dict(mapper__gamma=gamma_range, svm__C=C_range)
        # cv = StratifiedShuffleSplit(Y, n_iter=5, test_size=0.2, random_state=42)
        # grid = GridSearchCV(fourier_approx_svm, param_grid=param_grid, cv=cv)
        # grid.fit(X, Y)
        #
        # rbf_svc2 = grid.best_estimator_

        rbf_svc2 = fourier_approx_svm
        rbf_svc2.fit(self.X_ex, self.y_ex)

        self.set_clf2(rbf_svc2)
        return self.benchmark() 

Example 31

def grid_search(self):
        C_range = np.logspace(-5, 15, 21, base=2)
        param_grid = dict(C=C_range)
        cv = StratifiedShuffleSplit(self.y_ex, n_iter=5, test_size=0.2, random_state=42)
        grid = GridSearchCV(SVC(kernel='poly', max_iter=10000), param_grid=param_grid, cv=cv, n_jobs=1, verbose=0)

        logger.info('start grid search for Linear')
        grid.fit(self.X_ex, self.y_ex)
        logger.info('end grid search for Linear')

        scores = [x[1] for x in grid.grid_scores_]

        # final train
        clf = grid.best_estimator_

        pred_train = clf.predict(self.X_ex)
        pred_val = clf.predict(self.val_x)
        pred_test = clf.predict(self.test_x)

        r = Result(self.name + ' (X)', 'Poly', len(self.X_ex),
                   sm.accuracy_score(self.y_ex, pred_train),
                   sm.accuracy_score(self.val_y, pred_val),
                   sm.accuracy_score(self.test_y, pred_test))
        return r 

Example 32

def wage_data_linear():
    X, y = wage()

    gam = LinearGAM(n_splines=10)
    gam.gridsearch(X, y, lam=np.logspace(-5,3,50))

    XX = generate_X_grid(gam)

    plt.figure()
    fig, axs = plt.subplots(1,3)

    titles = ['year', 'age', 'education']
    for i, ax in enumerate(axs):
        ax.plot(XX[:, i], gam.partial_dependence(XX, feature=i+1))
        ax.plot(XX[:, i], *gam.partial_dependence(XX, feature=i+1, width=.95)[1],
                c='r', ls='--')
        if i == 0:
            ax.set_ylim(-30,30);
        ax.set_title(titles[i])

    fig.tight_layout()
    plt.savefig('imgs/pygam_wage_data_linear.png', dpi=300) 

Example 33

def plot_pdf_log2(x, nbins=10, **kwargs):
    '''
    Adds a log-log PDF plot to the current axes. The PDF is binned with
    logarithmic binning of base 2.

    Arguments
    ---------
    x : array_like
        The data to plot
    nbins : integer
        The number of bins to take

    Additional keyword arguments are passed to `matplotlib.pyplot.loglog`.
    '''
    x = np.asarray(x)
    exp_max = np.ceil(np.log2(x.max()))
    bins = np.logspace(0, exp_max, exp_max + 1, base=2)
    ax = plt.gca()
    hist, _ = np.histogram(x, bins=bins)
    binsize = np.diff(np.asfarray(bins))
    hist = hist / binsize
    ax.loglog(bins[1:], hist, 'ow', **kwargs)
    return ax 

Example 34

def get_model():
    if FLAGS.model == 'logistic':
        return linear_model.LogisticRegressionCV(class_weight='balanced',
                                                 scoring='roc_auc',
                                                 n_jobs=FLAGS.n_jobs,
                                                 max_iter=10000, verbose=1)
    elif FLAGS.model == 'random_forest':
        return ensemble.RandomForestClassifier(n_estimators=100,
                                               n_jobs=FLAGS.n_jobs,
                                               class_weight='balanced',
                                               verbose=1)
    elif FLAGS.model == 'svm':
        return grid_search.GridSearchCV(
            estimator=svm.SVC(kernel='rbf', gamma='auto',
                              class_weight='balanced'),
            param_grid={'C': np.logspace(-4, 4, 10)}, scoring='roc_auc',
            n_jobs=FLAGS.n_jobs, verbose=1)
    else:
        raise ValueError('Unrecognized model %s' % FLAGS.model) 

Example 35

def __init__(self, model, ax=None, alphas=None,
                 cv=None, scoring=None, **kwargs):

        # Check to make sure this is not a "RegressorCV"
        name = model.__class__.__name__
        if name.endswith("CV"):
            raise YellowbrickTypeError((
                "'{}' is a CV regularization model;"
                " try AlphaSelection instead."
            ).format(name))

        # Call super to initialize the class
        super(ManualAlphaSelection, self).__init__(model, ax=ax, **kwargs)

        # Set manual alpha selection parameters
        self.alphas = alphas or np.logspace(-10, -2, 200)
        self.errors = None
        self.score_method = partial(cross_val_score, cv=cv, scoring=scoring) 

Example 36

def create_grid(self,abins=None,zbins=None):
        if abins is None and zbins is None:
            filenames = glob.glob(self.get_dirname()+'/%s_*.dat'%(self._prefix))
            data = np.array([self.filename2params(f) for f in filenames])
            if not len(data):
                msg = "No isochrone files found in: %s"%self.get_dirname()
                raise Exception(msg)
            arange = np.unique(data[:,0])
            zrange = np.unique(data[:,1])
        elif abins is not None and zbins is not None:            
            # Age in units of Gyr
            arange = np.linspace(abins[0],abins[1],abins[2]+1)
            # Metallicity sampled logarithmically
            zrange = np.logspace(np.log10(zbins[0]),np.log10(zbins[1]),zbins[2]+1)
        else:
            msg = "Must specify both `abins` and `zbins` or neither"
            raise Exception(msg)
        aa,zz = np.meshgrid(arange,zrange)
        return aa.flatten(),zz.flatten() 

Example 37

def search_queue_params():
    df = []

    data_batch_sizes = np.logspace(0, 8, num=9, base=2, dtype=int)
    capacities = np.logspace(0, 12, num=13, base=2, dtype=int)
    nthreads = np.logspace(0, 5, num=6, base=2, dtype=int)

    for nth in nthreads:
        for data_batch_size in data_batch_sizes:
            for capacity in capacities:
                cap = nth * capacity

                tf.reset_default_graph()
                d = DataHDF5(batch_size=data_batch_size)
                queue = data.Queue(d.node, d,
                                   queue_type='fifo',
                                   batch_size=BATCH_SIZE,
                                   capacity=cap,
                                   n_threads=nth)
                queue.kind = '{} / {} / {}'.format(nth, data_batch_size, capacity)
                durs = time_tf(queue)
                durs['data batch size'] = data_batch_size
                durs['queue capacity'] = cap
                durs['nthreads'] = nth
                df.append(durs)
                d.cleanup()

    df = pandas.concat(df, ignore_index=True)
    df.kind = df.kind.astype('category', ordered=True, categories=df.kind.unique())
    df.to_pickle('/home/qbilius/mh17/computed/search_queue_params.pkl')
    print(df.groupby(['nthreads', 'data batch size', 'queue capacity']).dur.mean()) 

Example 38

def scaled_histogram(data, num_points, scale):
    if scale == 'linear':
        hist, edges = np.histogram(data, bins=max([5, int(num_points / 50)]))
    else:
        # Conditional catches an empty data input.
        h1, h2 = ((np.log10(min(data)), np.log10(max(data))) if len(data) > 0 else (0, 1))
        hist, edges = np.histogram(data, bins=np.logspace(h1, h2, 1 + max([5, int(num_points / 50)])))
    hist_max = max(hist) * 1.1
    return hist, edges, hist_max 

Example 39

def bernoulli_gaussian_trial(M=250,N=500,L=1000,pnz=.1,kappa=None,SNR=40):

    A = np.random.normal(size=(M, N), scale=1.0 / math.sqrt(M)).astype(np.float32)
    if kappa >= 1:
        # create a random operator with a specific condition number
        U,_,V = la.svd(A,full_matrices=False)
        s = np.logspace( 0, np.log10( 1/kappa),M)
        A = np.dot( U*(s*np.sqrt(N)/la.norm(s)),V).astype(np.float32)
    A_ = tf.constant(A,name='A')
    prob = TFGenerator(A=A,A_=A_,pnz=pnz,kappa=kappa,SNR=SNR)
    prob.name = 'Bernoulli-Gaussian, random A'

    bernoulli_ = tf.to_float( tf.random_uniform( (N,L) ) < pnz)
    xgen_ = bernoulli_ * tf.random_normal( (N,L) )
    noise_var = pnz*N/M * math.pow(10., -SNR / 10.)
    ygen_ = tf.matmul( A_,xgen_) + tf.random_normal( (M,L),stddev=math.sqrt( noise_var ) )

    prob.xval = ((np.random.uniform( 0,1,(N,L))<pnz) * np.random.normal(0,1,(N,L))).astype(np.float32)
    prob.yval = np.matmul(A,prob.xval) + np.random.normal(0,math.sqrt( noise_var ),(M,L))
    prob.xinit = ((np.random.uniform( 0,1,(N,L))<pnz) * np.random.normal(0,1,(N,L))).astype(np.float32)
    prob.yinit = np.matmul(A,prob.xinit) + np.random.normal(0,math.sqrt( noise_var ),(M,L))
    prob.xgen_ = xgen_
    prob.ygen_ = ygen_
    prob.noise_var = noise_var

    return prob 

Example 40

def test_gradE(adjcube):
    """Tests the gradient of `E` using finite difference methods.
    """
    from pydft.bases.fourier import gradE, E
    from numpy.matlib import randn
    cell = adjcube
    V = QHO(cell)

    Ns=4
    #He set the random seed; we could do the same, but the
    #implementation is probably different between numpy and matlab:
    #randn('seed', 0.2004)
    W = np.array(randn(np.prod(cell.S), Ns) + 1j*randn(np.prod(cell.S), Ns))

    # Compute intial energy and gradient
    E0 = E(V, W, cell)
    g0 = gradE(V, W, cell)

    # Choose a random direction to explore
    dW = np.array(randn(W.shape) + 1j*randn(W.shape))

    # Explore a range of step sizes decreasing by powers of ten
    steps = np.logspace(np.log10(1e-3), np.log10(1e-7), 8)
    for delta in steps:
        # Directional derivative formula
        dE = 2*np.real(np.trace(np.dot(g0.conjugate().T, delta*dW)))

        # Print ratio of actual change to expected change, along with estimate
        # of the error in this quantity due to rounding
        ratio = abs(1.-(E(V, W+delta*dW, cell)-E0)/dE)
        print(int(np.log10(ratio)), int(np.log10(delta)), ratio)
        assert abs(int(np.log10(ratio)) - int(np.log10(delta))) <= 2 

Example 41

def fcn_FDEM_InductionSpherePlaneWidget(xtx,ytx,ztx,m,orient,x0,y0,z0,a,sig,mur,xrx,yrx,zrx,logf,Comp,Phase):

    sig = 10**sig
    f = 10**logf

    fvec = np.logspace(0,8,41)

    xmin, xmax, dx, ymin, ymax, dy = -30., 30., 0.3, -30., 30., 0.4
    X,Y = np.mgrid[xmin:xmax+dx:dx, ymin:ymax+dy:dy]
    X = np.transpose(X)
    Y = np.transpose(Y)

    Obj = SphereFEM(m,orient,xtx,ytx,ztx)

    Hx,Hy,Hz,Habs = Obj.fcn_ComputeFrequencyResponse(f,sig,mur,a,x0,y0,z0,X,Y,zrx)
    Hxi,Hyi,Hzi,Habsi = Obj.fcn_ComputeFrequencyResponse(fvec,sig,mur,a,x0,y0,z0,xrx,yrx,zrx)

    fig1 = plt.figure(figsize=(17,6))
    Ax1 = fig1.add_axes([0.04,0,0.43,1])
    Ax2 = fig1.add_axes([0.6,0,0.4,1])

    if Comp == 'x':
        Ax1 = plotAnomalyXYplane(Ax1,f,X,Y,ztx,Hx,Comp,Phase)
        Ax1 = plotPlaceTxRxSphereXY(Ax1,xtx,ytx,xrx,yrx,x0,y0,a)
        Ax2 = plotResponseFEM(Ax2,f,fvec,Hxi,Comp)
    elif Comp == 'y':
        Ax1 = plotAnomalyXYplane(Ax1,f,X,Y,ztx,Hy,Comp,Phase)
        Ax1 = plotPlaceTxRxSphereXY(Ax1,xtx,ytx,xrx,yrx,x0,y0,a)
        Ax2 = plotResponseFEM(Ax2,f,fvec,Hyi,Comp)
    elif Comp == 'z':
        Ax1 = plotAnomalyXYplane(Ax1,f,X,Y,ztx,Hz,Comp,Phase)
        Ax1 = plotPlaceTxRxSphereXY(Ax1,xtx,ytx,xrx,yrx,x0,y0,a)
        Ax2 = plotResponseFEM(Ax2,f,fvec,Hzi,Comp)
    elif Comp == 'abs':
        Ax1 = plotAnomalyXYplane(Ax1,f,X,Y,ztx,Habs,Comp,Phase)
        Ax1 = plotPlaceTxRxSphereXY(Ax1,xtx,ytx,xrx,yrx,x0,y0,a)
        Ax2 = plotResponseFEM(Ax2,f,fvec,Habsi,Comp)

    plt.show(fig1) 

Example 42

def calc_IndCurrent_TD_offtime(self):
        """Gives FD induced current spectrum"""

        #INITIALIZE ATTRIBUTES
        Bpx = self.Bpx
        Bpz = self.Bpz
        a2  = self.a2
        azm = np.pi*self.azm/180.
        R   = self.R
        L   = self.L

        t = np.logspace(-6,0,101)

        Ax = np.pi*a2**2*np.sin(azm)
        Az = np.pi*a2**2*np.cos(azm)

        Phi = (Ax*Bpx + Az*Bpz)
        Is = (Phi/L)*np.exp(-(R/L)*t)
        V = (Phi*R/L)*np.exp(-(R/L)*t) - (Phi*R/L**2)*np.exp(-(R/L)*t)

        return V,Is




       ###########################################
       #    PLOTTING FUNCTIONS
       ########################################### 

Example 43

def plot_InducedCurrent_FD(self,Ax,Is,fi):

        FS = 20

        R = self.R
        L = self.L

        Imax = np.max(-np.real(Is))

        f = np.logspace(0,8,101)


        Ax.grid('both', linestyle='-', linewidth=0.8, color=[0.8, 0.8, 0.8])
        Ax.semilogx(f,-np.real(Is),color='k',linewidth=4,label="$I_{Re}$")
        Ax.semilogx(f,-np.imag(Is),color='k',ls='--',linewidth=4,label="$I_{Im}$")
        Ax.semilogx(fi*np.array([1.,1.]),np.array([0,1.1*Imax]),color='r',ls='-',linewidth=3)
        handles, labels = Ax.get_legend_handles_labels()
        Ax.legend(handles, labels, loc='upper left', fontsize=FS)

        Ax.set_xlabel('Frequency [Hz]',fontsize=FS+2)
        Ax.set_ylabel('$\mathbf{- \, I_s (\omega)}$ [A]',fontsize=FS+2,labelpad=-10)
        Ax.set_title('Frequency Response',fontsize=FS)
        Ax.set_ybound(0,1.1*Imax)
        Ax.tick_params(labelsize=FS-2)
        Ax.yaxis.set_major_formatter(FormatStrFormatter('%.1e'))

        #R_str    = '{:.3e}'.format(R)
        #L_str    = '{:.3e}'.format(L)
        #f_str    = '{:.3e}'.format(fi)
        #EMF_str  = '{:.2e}j'.format(EMFi.imag)
        #I_str    = '{:.2e} - {:.2e}j'.format(float(np.real(Isi)),np.abs(float(np.imag(Isi))))

        #Ax.text(1.4,1.01*Imax,'$R$ = '+R_str+' $\Omega$',fontsize=FS)
        #Ax.text(1.4,0.94*Imax,'$L$ = '+L_str+' H',fontsize=FS)
        #Ax.text(1.4,0.87*Imax,'$f$ = '+f_str+' Hz',fontsize=FS,color='r')
        #Ax.text(1.4,0.8*Imax,'$V$ = '+EMF_str+' V',fontsize=FS,color='r')
        #Ax.text(1.4,0.73*Imax,'$I_s$ = '+I_str+' A',fontsize=FS,color='r')

        return Ax 

Example 44

def plot_InducedCurrent_TD(self,Ax,Is,ti,Vi,Isi):

        FS = 20

        R = self.R
        L = self.L

        Imax = np.max(Is)

        t = np.logspace(-6,0,101)

        Ax.grid('both', linestyle='-', linewidth=0.8, color=[0.8, 0.8, 0.8])
        Ax.semilogx(t,Is,color='k',linewidth=4)
        Ax.semilogx(ti*np.array([1.,1.]),np.array([0,1.3*Imax]),color='r',ls='-',linewidth=3)

        Ax.set_xlabel('Time [s]',fontsize=FS+2)
        Ax.set_ylabel('$\mathbf{I_s (\omega)}$ [A]',fontsize=FS+2,labelpad=-10)
        Ax.set_title('Transient Induced Current',fontsize=FS)
        Ax.set_ybound(0,1.2*Imax)
        Ax.tick_params(labelsize=FS-2)
        Ax.yaxis.set_major_formatter(FormatStrFormatter('%.1e'))

        #R_str    = '{:.3e}'.format(R)
        #L_str    = '{:.3e}'.format(L)
        #t_str    = '{:.3e}'.format(ti)
        #V_str    = '{:.3e}'.format(Vi)
        #I_str    = '{:.3e}'.format(Isi)

        #Ax.text(1.4e-6,1.12*Imax,'$R$ = '+R_str+' $\Omega$',fontsize=FS)
        #Ax.text(1.4e-6,1.04*Imax,'$L$ = '+L_str+' H',fontsize=FS)
        #Ax.text(4e-2,1.12*Imax,'$t$ = '+t_str+' s',fontsize=FS,color='r')
        #Ax.text(4e-2,1.04*Imax,'$V$ = '+V_str+' V',fontsize=FS,color='r')
        #Ax.text(4e-2,0.96*Imax,'$I_s$ = '+I_str+' A',fontsize=FS,color='r')

        return Ax 

Example 45

def __init__(self):
        self.genMesh()
        self.getCoreDomain()
        # url = "http://em.geosci.xyz/_images/disc_dipole.png"
        # response = requests.get(url)
        # self.im = Image.open(StringIO(response.content))
        self.time = np.logspace(-5, -2, 41) 

Example 46

def test_from_float_hex(self):
        # IEEE doubles and floats only, otherwise the float32
        # conversion may fail.
        tgt = np.logspace(-10, 10, 5).astype(np.float32)
        tgt = np.hstack((tgt, -tgt)).astype(np.float)
        inp = '\n'.join(map(float.hex, tgt))
        c = TextIO()
        c.write(inp)
        for dt in [np.float, np.float32]:
            c.seek(0)
            res = np.loadtxt(c, dtype=dt)
            assert_equal(res, tgt, err_msg="%s" % dt) 

Example 47

def FrequencyAxis(Fmin, Fmax, Fnum, Log=True):
  """
  Compute a lin/log spaced frequency axis.
  """

  # Computing frequency axis
  if Log:
    Freq = _np.logspace(_np.log10(Fmin), _np.log10(Fmax), Fnum)
  else:
    Freq = _np.linspace(Fmin, Fmax, Fnum)

  return Freq 

Example 48

def test_call(self):
        """Test that the bump EOS can be called
        """
        bump_eos = EOSBump()

        vol = np.logspace(np.log10(.1), np.log10(1), 50)

        pressure = bump_eos(vol)

        self.assertIsInstance(pressure, np.ndarray)
        self.assertEqual(50, len(pressure)) 

Example 49

def test_derivative(self):
        """Test the derivative function
        """
        bump_eos = EOSBump()

        vol = np.logspace(np.log10(.1), np.log10(1), 50)

        pressure = bump_eos.derivative()(vol)

        self.assertIsInstance(pressure, np.ndarray)
        self.assertEqual(50, len(pressure)) 

Example 50

def test_bad_derivative(self):
        """Tests that derivative errors are caught
        """
        bump_eos = EOSBump()

        vol = np.logspace(np.log10(.1), np.log10(1), 50)

        with self.assertRaises(IOError):
            pressure = bump_eos.derivative(order=2)(vol)
        # end

        p_fun = lambda v: 2.56e9 / v**3 
点赞