Python numpy.float16() 使用实例

The following are code examples for showing how to use . They are extracted from open source Python projects. You can vote up the examples you like or vote down the exmaples you don’t like. You can also save this page to your account.

Example 1

def prepare_style(self, scale=1.0):
        """Called each phase of the optimization, process the style image according to the scale, then run it
        through the model to extract intermediate outputs (e.g. sem4_1) and turn them into patches.
        """
        style_img = self.rescale_image(self.style_img_original, scale)
        self.style_img = self.model.prepare_image(style_img)

        style_map = self.rescale_image(self.style_map_original, scale)
        self.style_map = style_map.transpose((2, 0, 1))[np.newaxis].astype(np.float32)

        # Compile a function to run on the GPU to extract patches for all layers at once.
        layer_outputs = zip(self.style_layers, self.model.get_outputs('sem', self.style_layers))
        extractor = self.compile([self.model.tensor_img, self.model.tensor_map], self.do_extract_patches(layer_outputs))
        result = extractor(self.style_img, self.style_map)

        # Store all the style patches layer by layer, resized to match slice size and cast to 16-bit for size. 
        self.style_data = {}
        for layer, *data in zip(self.style_layers, result[0::3], result[1::3], result[2::3]):
            patches = data[0]
            l = self.model.network['nn'+layer]
            l.num_filters = patches.shape[0] // args.slices
            self.style_data[layer] = [d[:l.num_filters*args.slices].astype(np.float16) for d in data]\
                                   + [np.zeros((patches.shape[0],), dtype=np.float16)]
            print('  - Style layer {}: {} patches in {:,}kb.'.format(layer, patches.shape, patches.size//1000)) 

Example 2

def add_data_args(parser):
    data = parser.add_argument_group('Data', 'the input images')
    #data.add_argument('--data-train', type=str, help='the training data')
    #data.add_argument('--data-val', type=str, help='the validation data')
    data.add_argument('--rgb-mean', type=str, default='123.68,116.779,103.939',
                      help='a tuple of size 3 for the mean rgb')
    data.add_argument('--pad-size', type=int, default=0,
                      help='padding the input image')
    data.add_argument('--image-shape', type=str,
                      help='the image shape feed into the network, e.g. (3,224,224)')
    data.add_argument('--num-classes', type=int, help='the number of classes')
    data.add_argument('--num-examples', type=int, help='the number of training examples')
    data.add_argument('--data-nthreads', type=int, default=4,
                      help='number of threads for data decoding')
    data.add_argument('--benchmark', type=int, default=0,
                      help='if 1, then feed the network with synthetic data')
    data.add_argument('--dtype', type=str, default='float32',
                      help='data type: float32 or float16')
    return data 

Example 3

def test_tile_symmetry(self):
        '''
        Make sure that tiles are symmetric
        '''
        upload_file = open('data/Dixon2012-J1-NcoI-R1-filtered.100kb.multires.cool', 'rb')
        tileset = tm.Tileset.objects.create(
            datafile=dcfu.SimpleUploadedFile(upload_file.name, upload_file.read()),
            filetype='cooler',
            datatype='matrix',
            owner=self.user1,
            uuid='aa')

        ret = self.client.get('/api/v1/tiles/?d=aa.0.0.0')


        contents = json.loads(ret.content.decode('utf-8'))

        import base64
        r = base64.decodestring(contents['aa.0.0.0']['dense'].encode('utf-8'))
        q = np.frombuffer(r, dtype=np.float16)

        q = q.reshape((256,256)) 

Example 4

def __init__(self, config, model_dir, ob_shape_list):
    self.model_dir = model_dir

    self.cnn_format = config.cnn_format
    self.memory_size = config.memory_size
    self.actions = np.empty(self.memory_size, dtype = np.uint8)
    self.rewards = np.empty(self.memory_size, dtype = np.integer)
    # print(self.memory_size, config.screen_height, config.screen_width)
    # self.screens = np.empty((self.memory_size, config.screen_height, config.screen_width), dtype = np.float16)
    self.screens = np.empty([self.memory_size] + ob_shape_list, dtype = np.float16)
    self.terminals = np.empty(self.memory_size, dtype = np.bool)
    self.history_length = config.history_length
    # self.dims = (config.screen_height, config.screen_width)
    self.dims = tuple(ob_shape_list)
    self.batch_size = config.batch_size
    self.count = 0
    self.current = 0

    # pre-allocate prestates and poststates for minibatch
    self.prestates = np.empty((self.batch_size, self.history_length) + self.dims, dtype = np.float16)
    self.poststates = np.empty((self.batch_size, self.history_length) + self.dims, dtype = np.float16)
    # self.prestates = np.empty((self.batch_size, self.history_length, self.dims), dtype = np.float16)
    # self.poststates = np.empty((self.batch_size, self.history_length, self.dims), dtype = np.float16) 

Example 5

def test_sum(self):
        for dt in (np.int, np.float16, np.float32, np.float64, np.longdouble):
            for v in (0, 1, 2, 7, 8, 9, 15, 16, 19, 127,
                      128, 1024, 1235):
                tgt = dt(v * (v + 1) / 2)
                d = np.arange(1, v + 1, dtype=dt)
                assert_almost_equal(np.sum(d), tgt)
                assert_almost_equal(np.sum(d[::-1]), tgt)

            d = np.ones(500, dtype=dt)
            assert_almost_equal(np.sum(d[::2]), 250.)
            assert_almost_equal(np.sum(d[1::2]), 250.)
            assert_almost_equal(np.sum(d[::3]), 167.)
            assert_almost_equal(np.sum(d[1::3]), 167.)
            assert_almost_equal(np.sum(d[::-2]), 250.)
            assert_almost_equal(np.sum(d[-1::-2]), 250.)
            assert_almost_equal(np.sum(d[::-3]), 167.)
            assert_almost_equal(np.sum(d[-1::-3]), 167.)
            # sum with first reduction entry != 0
            d = np.ones((1,), dtype=dt)
            d += d
            assert_almost_equal(d, 2.) 

Example 6

def setUp(self):
        # An array of all possible float16 values
        self.all_f16 = np.arange(0x10000, dtype=uint16)
        self.all_f16.dtype = float16
        self.all_f32 = np.array(self.all_f16, dtype=float32)
        self.all_f64 = np.array(self.all_f16, dtype=float64)

        # An array of all non-NaN float16 values, in sorted order
        self.nonan_f16 = np.concatenate(
                                (np.arange(0xfc00, 0x7fff, -1, dtype=uint16),
                                 np.arange(0x0000, 0x7c01, 1, dtype=uint16)))
        self.nonan_f16.dtype = float16
        self.nonan_f32 = np.array(self.nonan_f16, dtype=float32)
        self.nonan_f64 = np.array(self.nonan_f16, dtype=float64)

        # An array of all finite float16 values, in sorted order
        self.finite_f16 = self.nonan_f16[1:-1]
        self.finite_f32 = self.nonan_f32[1:-1]
        self.finite_f64 = self.nonan_f64[1:-1] 

Example 7

def test_half_values(self):
        """Confirms a small number of known half values"""
        a = np.array([1.0, -1.0,
                      2.0, -2.0,
                      0.0999755859375, 0.333251953125,  # 1/10, 1/3
                      65504, -65504,           # Maximum magnitude
                      2.0**(-14), -2.0**(-14),  # Minimum normal
                      2.0**(-24), -2.0**(-24),  # Minimum subnormal
                      0, -1/1e1000,            # Signed zeros
                      np.inf, -np.inf])
        b = np.array([0x3c00, 0xbc00,
                      0x4000, 0xc000,
                      0x2e66, 0x3555,
                      0x7bff, 0xfbff,
                      0x0400, 0x8400,
                      0x0001, 0x8001,
                      0x0000, 0x8000,
                      0x7c00, 0xfc00], dtype=uint16)
        b.dtype = float16
        assert_equal(a, b) 

Example 8

def test_half_ordering(self):
        """Make sure comparisons are working right"""

        # All non-NaN float16 values in reverse order
        a = self.nonan_f16[::-1].copy()

        # 32-bit float copy
        b = np.array(a, dtype=float32)

        # Should sort the same
        a.sort()
        b.sort()
        assert_equal(a, b)

        # Comparisons should work
        assert_((a[:-1] <= a[1:]).all())
        assert_(not (a[:-1] > a[1:]).any())
        assert_((a[1:] >= a[:-1]).all())
        assert_(not (a[1:] < a[:-1]).any())
        # All != except for +/-0
        assert_equal(np.nonzero(a[:-1] < a[1:])[0].size, a.size-2)
        assert_equal(np.nonzero(a[1:] > a[:-1])[0].size, a.size-2) 

Example 9

def test_half_coercion(self):
        """Test that half gets coerced properly with the other types"""
        a16 = np.array((1,), dtype=float16)
        a32 = np.array((1,), dtype=float32)
        b16 = float16(1)
        b32 = float32(1)

        assert_equal(np.power(a16, 2).dtype, float16)
        assert_equal(np.power(a16, 2.0).dtype, float16)
        assert_equal(np.power(a16, b16).dtype, float16)
        assert_equal(np.power(a16, b32).dtype, float16)
        assert_equal(np.power(a16, a16).dtype, float16)
        assert_equal(np.power(a16, a32).dtype, float32)

        assert_equal(np.power(b16, 2).dtype, float64)
        assert_equal(np.power(b16, 2.0).dtype, float64)
        assert_equal(np.power(b16, b16).dtype, float16)
        assert_equal(np.power(b16, b32).dtype, float32)
        assert_equal(np.power(b16, a16).dtype, float16)
        assert_equal(np.power(b16, a32).dtype, float32)

        assert_equal(np.power(a32, a16).dtype, float32)
        assert_equal(np.power(a32, b16).dtype, float32)
        assert_equal(np.power(b32, a16).dtype, float16)
        assert_equal(np.power(b32, b16).dtype, float32) 

Example 10

def for_float_dtypes(name='dtype', no_float16=False):
    """Decorator that checks the fixture with all float dtypes.

    Args:
         name(str): Argument name to which specified dtypes are passed.
         no_float16(bool): If ``True``, ``numpy.float16`` is
             omitted from candidate dtypes.

    dtypes to be tested are ``numpy.float16`` (optional), ``numpy.float32``,
    and ``numpy.float64``.

    .. seealso:: :func:`cupy.testing.for_dtypes`,
        :func:`cupy.testing.for_all_dtypes`
    """
    if no_float16:
        return for_dtypes(_regular_float_dtypes, name=name)
    else:
        return for_dtypes(_float_dtypes, name=name) 

Example 11

def for_all_dtypes_combination(names=('dtyes',),
                               no_float16=False, no_bool=False, full=None,
                               no_complex=False):
    """Decorator that checks the fixture with a product set of all dtypes.

    Args:
         names(list of str): Argument names to which dtypes are passed.
         no_float16(bool): If ``True``, ``numpy.float16`` is
             omitted from candidate dtypes.
         no_bool(bool): If ``True``, ``numpy.bool_`` is
             omitted from candidate dtypes.
         full(bool): If ``True``, then all combinations of dtypes
             will be tested.
             Otherwise, the subset of combinations will be tested
             (see description in :func:`cupy.testing.for_dtypes_combination`).
         no_complex(bool): If, True, ``numpy.complex64`` and
             ``numpy.complex128`` are omitted from candidate dtypes.

    .. seealso:: :func:`cupy.testing.for_dtypes_combination`
    """
    types = _make_all_dtypes(no_float16, no_bool, no_complex)
    return for_dtypes_combination(types, names, full) 

Example 12

def convert_atoms(self, row):
        numbers = row.get('numbers')
        positions = row.get('positions').astype(self.floatX)
        pbc = row.get('pbc')
        cell = row.get('cell').astype(self.floatX)
        features = [numbers, positions, cell, pbc]

        for k in list(self.kvp.keys()):
            f = row[k]
            if np.isscalar(f):
                f = np.array([f])
            if f.dtype in [np.float16, np.float32, np.float64]:
                f = f.astype(self.floatX)
            features.append(f)
        for k in list(self.data.keys()):
            f = np.array(row.data[k])
            if np.isscalar(f):
                f = np.array([f])
            if f.dtype in [np.float16, np.float32, np.float64]:
                f = f.astype(self.floatX)
            features.append(f)
        return features 

Example 13

def numpy2bifrost(dtype):
    if   dtype == np.int8:       return _bf.BF_DTYPE_I8
    elif dtype == np.int16:      return _bf.BF_DTYPE_I16
    elif dtype == np.int32:      return _bf.BF_DTYPE_I32
    elif dtype == np.uint8:      return _bf.BF_DTYPE_U8
    elif dtype == np.uint16:     return _bf.BF_DTYPE_U16
    elif dtype == np.uint32:     return _bf.BF_DTYPE_U32
    elif dtype == np.float16:    return _bf.BF_DTYPE_F16
    elif dtype == np.float32:    return _bf.BF_DTYPE_F32
    elif dtype == np.float64:    return _bf.BF_DTYPE_F64
    elif dtype == np.float128:   return _bf.BF_DTYPE_F128
    elif dtype == ci8:           return _bf.BF_DTYPE_CI8
    elif dtype == ci16:          return _bf.BF_DTYPE_CI16
    elif dtype == ci32:          return _bf.BF_DTYPE_CI32
    elif dtype == cf16:          return _bf.BF_DTYPE_CF16
    elif dtype == np.complex64:  return _bf.BF_DTYPE_CF32
    elif dtype == np.complex128: return _bf.BF_DTYPE_CF64
    elif dtype == np.complex256: return _bf.BF_DTYPE_CF128
    else: raise ValueError("Unsupported dtype: " + str(dtype)) 

Example 14

def numpy2string(dtype):
    if   dtype == np.int8:       return 'i8'
    elif dtype == np.int16:      return 'i16'
    elif dtype == np.int32:      return 'i32'
    elif dtype == np.int64:      return 'i64'
    elif dtype == np.uint8:      return 'u8'
    elif dtype == np.uint16:     return 'u16'
    elif dtype == np.uint32:     return 'u32'
    elif dtype == np.uint64:     return 'u64'
    elif dtype == np.float16:    return 'f16'
    elif dtype == np.float32:    return 'f32'
    elif dtype == np.float64:    return 'f64'
    elif dtype == np.float128:   return 'f128'
    elif dtype == np.complex64:  return 'cf32'
    elif dtype == np.complex128: return 'cf64'
    elif dtype == np.complex256: return 'cf128'
    else: raise TypeError("Unsupported dtype: " + str(dtype)) 

Example 15

def render_rgb(self, camera_idx):
    cameraPos = [(0.0, 0.75, 0.75), (0.75, 0.0, 0.75)][camera_idx]
    targetPos = (0, 0, 0.3)
    cameraUp = (0, 0, 1)
    nearVal, farVal = 1, 20
    fov = 60
    _w, _h, rgba, _depth, _objects = p.renderImage(self.render_width, self.render_height,
                                                   cameraPos, targetPos, cameraUp,
                                                   nearVal, farVal, fov)
    # convert from 1d uint8 array to (H,W,3) hacky hardcode whitened float16 array.
    # TODO: for storage concerns could just store this as uint8 (which it is)
    # and normalise 0->1 + whiten later.
    rgba_img = np.reshape(np.asarray(rgba, dtype=np.float16),
                          (self.render_height, self.render_width, 4))
    rgb_img = rgba_img[:,:,:3]  # slice off alpha, always 1.0
    rgb_img /= 255
    return rgb_img 

Example 16

def _typename(t):
    if t == np.float16:
        return 'float16'
    elif t == np.float32:
        return 'float32'
    elif t == np.float64:
        return 'float64'
    elif t == np.uint8:
        return 'uint8'
    elif t == np.uint16:
        return 'uint16'
    elif t == np.int16:
        return 'int16'
    elif t == np.int32:
        return 'int32'
    elif t == np.int64:
        return 'int64'
    else:
        raise TypeError('unknown type') 

Example 17

def default(self, obj):
        # convert dates and numpy objects in a json serializable format
        if isinstance(obj, datetime):
            return obj.strftime('%Y-%m-%dT%H:%M:%SZ')
        elif isinstance(obj, date):
            return obj.strftime('%Y-%m-%d')
        elif type(obj) in (np.int_, np.intc, np.intp, np.int8, np.int16,
                           np.int32, np.int64, np.uint8, np.uint16,
                           np.uint32, np.uint64):
            return int(obj)
        elif type(obj) in (np.bool_,):
            return bool(obj)
        elif type(obj) in (np.float_, np.float16, np.float32, np.float64,
                           np.complex_, np.complex64, np.complex128):
            return float(obj)

        # Let the base class default method raise the TypeError
        return json.JSONEncoder.default(self, obj) 

Example 18

def test_sum(self):
        for dt in (np.int, np.float16, np.float32, np.float64, np.longdouble):
            for v in (0, 1, 2, 7, 8, 9, 15, 16, 19, 127,
                      128, 1024, 1235):
                tgt = dt(v * (v + 1) / 2)
                d = np.arange(1, v + 1, dtype=dt)
                assert_almost_equal(np.sum(d), tgt)
                assert_almost_equal(np.sum(d[::-1]), tgt)

            d = np.ones(500, dtype=dt)
            assert_almost_equal(np.sum(d[::2]), 250.)
            assert_almost_equal(np.sum(d[1::2]), 250.)
            assert_almost_equal(np.sum(d[::3]), 167.)
            assert_almost_equal(np.sum(d[1::3]), 167.)
            assert_almost_equal(np.sum(d[::-2]), 250.)
            assert_almost_equal(np.sum(d[-1::-2]), 250.)
            assert_almost_equal(np.sum(d[::-3]), 167.)
            assert_almost_equal(np.sum(d[-1::-3]), 167.)
            # sum with first reduction entry != 0
            d = np.ones((1,), dtype=dt)
            d += d
            assert_almost_equal(d, 2.) 

Example 19

def setUp(self):
        # An array of all possible float16 values
        self.all_f16 = np.arange(0x10000, dtype=uint16)
        self.all_f16.dtype = float16
        self.all_f32 = np.array(self.all_f16, dtype=float32)
        self.all_f64 = np.array(self.all_f16, dtype=float64)

        # An array of all non-NaN float16 values, in sorted order
        self.nonan_f16 = np.concatenate(
                                (np.arange(0xfc00, 0x7fff, -1, dtype=uint16),
                                 np.arange(0x0000, 0x7c01, 1, dtype=uint16)))
        self.nonan_f16.dtype = float16
        self.nonan_f32 = np.array(self.nonan_f16, dtype=float32)
        self.nonan_f64 = np.array(self.nonan_f16, dtype=float64)

        # An array of all finite float16 values, in sorted order
        self.finite_f16 = self.nonan_f16[1:-1]
        self.finite_f32 = self.nonan_f32[1:-1]
        self.finite_f64 = self.nonan_f64[1:-1] 

Example 20

def test_half_values(self):
        """Confirms a small number of known half values"""
        a = np.array([1.0, -1.0,
                      2.0, -2.0,
                      0.0999755859375, 0.333251953125,  # 1/10, 1/3
                      65504, -65504,           # Maximum magnitude
                      2.0**(-14), -2.0**(-14),  # Minimum normal
                      2.0**(-24), -2.0**(-24),  # Minimum subnormal
                      0, -1/1e1000,            # Signed zeros
                      np.inf, -np.inf])
        b = np.array([0x3c00, 0xbc00,
                      0x4000, 0xc000,
                      0x2e66, 0x3555,
                      0x7bff, 0xfbff,
                      0x0400, 0x8400,
                      0x0001, 0x8001,
                      0x0000, 0x8000,
                      0x7c00, 0xfc00], dtype=uint16)
        b.dtype = float16
        assert_equal(a, b) 

Example 21

def test_half_ordering(self):
        """Make sure comparisons are working right"""

        # All non-NaN float16 values in reverse order
        a = self.nonan_f16[::-1].copy()

        # 32-bit float copy
        b = np.array(a, dtype=float32)

        # Should sort the same
        a.sort()
        b.sort()
        assert_equal(a, b)

        # Comparisons should work
        assert_((a[:-1] <= a[1:]).all())
        assert_(not (a[:-1] > a[1:]).any())
        assert_((a[1:] >= a[:-1]).all())
        assert_(not (a[1:] < a[:-1]).any())
        # All != except for +/-0
        assert_equal(np.nonzero(a[:-1] < a[1:])[0].size, a.size-2)
        assert_equal(np.nonzero(a[1:] > a[:-1])[0].size, a.size-2) 

Example 22

def test_half_coercion(self):
        """Test that half gets coerced properly with the other types"""
        a16 = np.array((1,), dtype=float16)
        a32 = np.array((1,), dtype=float32)
        b16 = float16(1)
        b32 = float32(1)

        assert_equal(np.power(a16, 2).dtype, float16)
        assert_equal(np.power(a16, 2.0).dtype, float16)
        assert_equal(np.power(a16, b16).dtype, float16)
        assert_equal(np.power(a16, b32).dtype, float16)
        assert_equal(np.power(a16, a16).dtype, float16)
        assert_equal(np.power(a16, a32).dtype, float32)

        assert_equal(np.power(b16, 2).dtype, float64)
        assert_equal(np.power(b16, 2.0).dtype, float64)
        assert_equal(np.power(b16, b16).dtype, float16)
        assert_equal(np.power(b16, b32).dtype, float32)
        assert_equal(np.power(b16, a16).dtype, float16)
        assert_equal(np.power(b16, a32).dtype, float32)

        assert_equal(np.power(a32, a16).dtype, float32)
        assert_equal(np.power(a32, b16).dtype, float32)
        assert_equal(np.power(b32, a16).dtype, float16)
        assert_equal(np.power(b32, b16).dtype, float32) 

Example 23

def test_values_single(self):
        time_delay_sec = 0.005
        tdg = TimeDelayedGenerator(generator=ConstantValueGenerator(21, dtype=np.uint16), time_delay_sec=time_delay_sec)

        start_time = datetime.datetime.now()
        for _ in range(100):
            tdg.get_single()
        end_time = datetime.datetime.now()
        elapsed_timedelta = (end_time - start_time)
        assert datetime.timedelta(seconds=.47) <= elapsed_timedelta <= datetime.timedelta(seconds=.53)

        tdg = TimeDelayedGenerator(generator=ConstantValueGenerator(21, dtype=np.uint16),
                                   time_delay_generator=ConstantValueGenerator(time_delay_sec, dtype=np.float16))

        start_time = datetime.datetime.now()
        for _ in range(100):
            tdg.get_single()
        end_time = datetime.datetime.now()
        elapsed_timedelta = (end_time - start_time)
        assert datetime.timedelta(seconds=.47) <= elapsed_timedelta <= datetime.timedelta(seconds=.53) 

Example 24

def test_values_batch(self):
        time_delay_sec = 0.0005
        tdg = TimeDelayedGenerator(generator=ConstantValueGenerator(21, dtype=np.uint16), time_delay_sec=time_delay_sec)

        start_time = datetime.datetime.now()
        for _ in range(10):
            tdg.get_batch(100)
        end_time = datetime.datetime.now()
        elapsed_timedelta = (end_time - start_time)
        assert datetime.timedelta(seconds=.47) <= elapsed_timedelta <= datetime.timedelta(seconds=.53)

        tdg = TimeDelayedGenerator(generator=ConstantValueGenerator(21, dtype=np.uint16),
                                   time_delay_generator=ConstantValueGenerator(time_delay_sec, dtype=np.float16))

        start_time = datetime.datetime.now()
        for _ in range(10):
            tdg.get_batch(100)
        end_time = datetime.datetime.now()
        elapsed_timedelta = (end_time - start_time)
        assert datetime.timedelta(seconds=.47) <= elapsed_timedelta <= datetime.timedelta(seconds=.53) 

Example 25

def _build_indicator(self, span, **kwds):
        """indicator????????????

        Args:
            span: ??????????
        """
        def get_direction(val1, val2):
            if np.isnan(val1) or np.isnan(val1):
                return np.nan
            elif val1 < val2:
                return const.INDI_DIRECTION_UP  # ???
            elif val1 > val2:
                return const.INDI_DIRECTION_DOWN  # ???
            else:
                return const.INDI_DIRECTION_HR  # ??

        ma = MovingAverageIndicator(stock=self.stock, span=span)
        arr1 = ma.shifted(-1)  # ???????????
        arr2 = ma.data  # ???????
        return np.array([get_direction(a, b) for a, b
                         in zip(arr1, arr2)], dtype=np.float16) 

Example 26

def __init__(self, config, model_dir):
    self.model_dir = model_dir

    self.cnn_format = config.cnn_format
    self.memory_size = config.memory_size
    self.actions = np.empty(self.memory_size, dtype = np.uint8)
    self.rewards = np.empty(self.memory_size, dtype = np.integer)
    self.screens = np.empty((self.memory_size, config.screen_height, config.screen_width), dtype = np.float16)
    self.terminals = np.empty(self.memory_size, dtype = np.bool)
    self.history_length = config.history_length
    self.dims = (config.screen_height, config.screen_width)
    self.batch_size = config.batch_size
    self.count = 0
    self.current = 0

    # pre-allocate prestates and poststates for minibatch
    self.prestates = np.empty((self.batch_size, self.history_length) + self.dims, dtype = np.float16)
    self.poststates = np.empty((self.batch_size, self.history_length) + self.dims, dtype = np.float16) 

Example 27

def for_float_dtypes(name='dtype', no_float16=False):
    """Decorator that checks the fixture with all float dtypes.

    Args:
         name(str): Argument name to which specified dtypes are passed.
         no_float16(bool): If, True, ``numpy.float16`` is
             omitted from candidate dtypes.

    dtypes to be tested are ``numpy.float16`` (optional), ``numpy.float32``,
    and ``numpy.float64``.

    .. seealso:: :func:`cupy.testing.for_dtypes`,
        :func:`cupy.testing.for_all_dtypes`
    """
    if no_float16:
        return for_dtypes(_regular_float_dtypes, name=name)
    else:
        return for_dtypes(_float_dtypes, name=name) 

Example 28

def for_all_dtypes_combination(names=['dtyes'],
                               no_float16=False, no_bool=False, full=None):
    """Decorator that checks the fixture with a product set of all dtypes.

    Args:
         names(list of str): Argument names to which dtypes are passed.
         no_float16(bool): If ``True``, ``numpy.float16`` is
             omitted from candidate dtypes.
         no_bool(bool): If ``True``, ``numpy.bool_`` is
             omitted from candidate dtypes.
         full(bool): If ``True``, then all combinations of dtypes
             will be tested.
             Otherwise, the subset of combinations will be tested
             (see description in :func:`cupy.testing.for_dtypes_combination`).

    .. seealso:: :func:`cupy.testing.for_dtypes_combination`
    """
    types = _make_all_dtypes(no_float16, no_bool)
    return for_dtypes_combination(types, names, full) 

Example 29

def forward(self, x):
        xp = cuda.get_array_module(*x)
        if (xp != numpy and cuda.cudnn_enabled and self.use_cudnn and
                (_cudnn_version >= 3000 or x[0].dtype != numpy.float16)):
            oz_dtype = 'd' if x[0].dtype == 'd' else 'f'
            one = numpy.array(1, dtype=oz_dtype).ctypes
            zero = numpy.array(0, dtype=oz_dtype).ctypes
            handle = cudnn.get_handle()
            x_cube = x[0].reshape(x[0].shape[:2] + (-1, 1))
            desc = cudnn.create_tensor_descriptor(x_cube)
            self.y = xp.empty_like(x[0])
            libcudnn.softmaxForward(
                handle, _algorithm, _mode, one.data, desc.value,
                x_cube.data.ptr, zero.data, desc.value,
                self.y.data.ptr)
        else:
            self.y = x[0] - x[0].max(axis=1, keepdims=True)
            xp.exp(self.y, out=self.y)
            self.y /= self.y.sum(axis=1, keepdims=True)

        return self.y, 

Example 30

def check_forward(self, op, x_data, gpu, positive):
        value = self.value
        if positive:
            value = numpy.abs(value)
        v = value
        if gpu:
            v = cuda.to_gpu(v)
        x = chainer.Variable(x_data)
        y = op(x, v)
        if self.dtype == numpy.float16:
            tol = 1e-3
        else:
            tol = 1e-6

        gradient_check.assert_allclose(
            op(self.x, value), y.data, atol=tol, rtol=tol) 

Example 31

def setUp(self):
        if self.shape is None:
            if self.dtype == numpy.float16:
                self.x = numpy.array([[-5, 1]], dtype=self.dtype)
            else:
                self.x = numpy.array([[-1000, 1]], dtype=self.dtype)
            self.t = numpy.array([0], dtype=numpy.int32)
        else:
            self.x = numpy.random.uniform(-1, 1, self.shape).astype(self.dtype)
            out_shape = (self.shape[0],) + self.shape[2:]
            self.t = numpy.random.randint(0, 3, out_shape).astype(numpy.int32)
            if (self.ignore_index is not None and
                    len(self.ignore_index) <= self.t.ndim):
                self.t[self.ignore_index] = -1
        self.check_forward_options = {}
        self.check_backward_options = {'atol': 1e-4, 'rtol': 1e-3}
        if self.dtype == numpy.float16:
            self.check_forward_options = {'atol': 1e-4, 'rtol': 1e-3}
            self.check_backward_options = {'atol': 5e-2, 'rtol': 1e-1} 

Example 32

def setUp(self):
        self.N = 2
        self.n_channels = 3
        inh, inw = 2, 1
        self.x = numpy.arange(
            self.N * self.n_channels * inh * inw,
            dtype=self.dtype).reshape(self.N, self.n_channels, inh, inw)
        numpy.random.shuffle(self.x)
        self.x = 2 * self.x / self.x.size - 1

        self.ksize = 2
        outh, outw = self.outsize or self.expected_outsize
        self.gy = numpy.random.uniform(
            -1, 1, (self.N, self.n_channels, outh, outw)).astype(self.dtype)
        self.check_backward_options = {}
        if self.dtype == numpy.float16:
            self.check_backward_options = {'atol': 0.05, 'rtol': 0.05} 

Example 33

def setUp(self):
        self.expander = (None, Ellipsis) + (None,) * self.ndim
        self.aggr_axes = (0,) + tuple(six.moves.range(2, self.ndim + 2))
        self.eps = 1e-5

        self.gamma = numpy.random.uniform(.5, 1, (3,)).astype(self.dtype)
        self.beta = numpy.random.uniform(-1, 1, (3,)).astype(self.dtype)

        shape = (7, 3) + (2,) * self.ndim
        self.x = numpy.random.uniform(-1, 1, shape).astype(self.dtype)
        self.gy = numpy.random.uniform(-1, 1, shape).astype(self.dtype)

        self.args = [self.x, self.gamma, self.beta]
        self.mean = self.x.mean(axis=self.aggr_axes)
        self.var = self.x.var(axis=self.aggr_axes) + self.eps
        self.check_forward_optionss = {'atol': 1e-4, 'rtol': 1e-3}
        self.check_backward_optionss = {'atol': 1e-4, 'rtol': 1e-3}
        if self.dtype == numpy.float16:
            self.check_forward_optionss = {'atol': 1e-3, 'rtol': 1e-2}
            self.check_backward_optionss = {'atol': 5e-1, 'rtol': 1e-1} 

Example 34

def setUp(self):
        self.gamma = numpy.random.uniform(.5, 1, (3,)).astype(self.dtype)
        self.beta = numpy.random.uniform(-1, 1, (3,)).astype(self.dtype)
        self.expander = (None, Ellipsis) + (None,) * self.ndim

        shape = (7, 3) + (2,) * self.ndim
        self.x = numpy.random.uniform(-1, 1, shape).astype(self.dtype)
        self.gy = numpy.random.uniform(-1, 1, shape).astype(self.dtype)
        self.eps = 1e-5
        self.aggr_axes = (0,) + tuple(six.moves.range(2, self.ndim + 2))

        self.mean = numpy.random.uniform(-1, 1, (3,)).astype(self.dtype)
        self.var = numpy.random.uniform(
            0.5, 1, (3,)).astype(self.dtype)
        self.args = [self.x, self.gamma, self.beta, self.mean, self.var]
        self.check_forward_optionss = {'atol': 1e-4, 'rtol': 1e-3}
        self.check_backward_optionss = {'atol': 1e-4, 'rtol': 1e-3}
        if self.dtype == numpy.float16:
            self.check_forward_optionss = {'atol': 1e-3, 'rtol': 1e-2}
            self.check_backward_optionss = {'atol': 5e-2, 'rtol': 1e-1} 

Example 35

def setUp(self):
        self.c_prev1 = numpy.random.uniform(-1,
                                            1, (3, 2, 4)).astype(self.dtype)
        self.c_prev2 = numpy.random.uniform(-1,
                                            1, (3, 2, 4)).astype(self.dtype)
        self.x1 = numpy.random.uniform(-1, 1, (3, 8, 4)).astype(self.dtype)
        self.x2 = numpy.random.uniform(-1, 1, (3, 8, 4)).astype(self.dtype)

        self.gc = numpy.random.uniform(-1, 1, (3, 2, 4)).astype(self.dtype)
        self.gh = numpy.random.uniform(-1, 1, (3, 2, 4)).astype(self.dtype)

        self.check_forward_options = {}
        self.check_backward_options = {'eps': 1e-2}
        if self.dtype == numpy.float16:
            self.check_forward_options = {'atol': 5e-4, 'rtol': 5e-3}
            self.check_backward_options = {
                'eps': 2 ** -4, 'atol': 5e-3, 'rtol': 5e-2} 

Example 36

def load_test_data(phone, dped_dir, IMAGE_SIZE):

    test_directory_phone = dped_dir + str(phone) + '/test_data/patches/' + str(phone) + '/'
    test_directory_dslr = dped_dir + str(phone) + '/test_data/patches/canon/'

    NUM_TEST_IMAGES = len([name for name in os.listdir(test_directory_phone)
                           if os.path.isfile(os.path.join(test_directory_phone, name))])

    test_data = np.zeros((NUM_TEST_IMAGES, IMAGE_SIZE))
    test_answ = np.zeros((NUM_TEST_IMAGES, IMAGE_SIZE))

    for i in range(0, NUM_TEST_IMAGES):
        
        I = np.asarray(misc.imread(test_directory_phone + str(i) + '.jpg'))
        I = np.float16(np.reshape(I, [1, IMAGE_SIZE]))/255
        test_data[i, :] = I
        
        I = np.asarray(misc.imread(test_directory_dslr + str(i) + '.jpg'))
        I = np.float16(np.reshape(I, [1, IMAGE_SIZE]))/255
        test_answ[i, :] = I

        if i % 100 == 0:
            print(str(round(i * 100 / NUM_TEST_IMAGES)) + "% done", end="\r")

    return test_data, test_answ 

Example 37

def add_data_args(parser):
    data = parser.add_argument_group('Data', 'the input images')
    data.add_argument('--data-train', type=str, help='the training data')
    data.add_argument('--data-val', type=str, help='the validation data')
    data.add_argument('--rgb-mean', type=str, default='123.68,116.779,103.939',
                      help='a tuple of size 3 for the mean rgb')
    data.add_argument('--pad-size', type=int, default=0,
                      help='padding the input image')
    data.add_argument('--image-shape', type=str,
                      help='the image shape feed into the network, e.g. (3,224,224)')
    data.add_argument('--num-classes', type=int, help='the number of classes')
    data.add_argument('--num-examples', type=int, help='the number of training examples')
    data.add_argument('--data-nthreads', type=int, default=4,
                      help='number of threads for data decoding')
    data.add_argument('--benchmark', type=int, default=0,
                      help='if 1, then feed the network with synthetic data')
    data.add_argument('--dtype', type=str, default='float32',
                      help='data type: float32 or float16')
    return data 

Example 38

def json_encode(obj):
    try:
        serial = obj.to_json()
        serial['classname'] = obj.__class__.__qualname__
        return serial
    except AttributeError:
        pass

    # Convert numpy types:
    if type(obj) in [np.int8, np.int16, np.int32, np.int64]:
        return int(obj)
    elif type(obj) in [np.float16, np.float32, np.float64, np.float128]:
        return float(obj)
    elif isinstance(obj, np.ndarray):
        return obj.tolist()

    if isinstance(obj, datetime.datetime):
        return obj.isoformat()
    raise TypeError('Type not serialisable') 

Example 39

def preprocess_image(self, im_data: np.ndarray) -> np.ndarray:
        # mean = np.mean(im_data, axis=(0, 1))
        # std = np.std(im_data, axis=(0, 1))
        std = np.array([
            62.00827863,  46.65453694,  24.7612776,   54.50255552,
            13.48645938,  24.76103598,  46.52145521,  62.36207267,
            61.54443128,  59.2848377,   85.72930307,  68.62678882,
            448.43441827, 634.79572682, 567.21509273, 523.10079804,
            530.42441592, 461.8304455,  486.95994727, 478.63768386],
            dtype=np.float32)
        mean = np.array([
            413.62140162,  459.99189475,  325.6722122,   502.57730746,
            294.6884949,   325.82117752,  460.0356966,   482.39001004,
            413.79388678,  527.57681818,  678.22878001,  529.64198655,
            4243.25847972, 4473.47956815, 4178.84648439, 3708.16482918,
            2887.49330138, 2589.61786722, 2525.53347208, 2417.23798598],
            dtype=np.float32)
        scaled = ((im_data - mean) / std).astype(np.float16)
        return scaled.transpose([2, 0, 1])  # torch order 

Example 40

def inside_triangle(point,triangles):
    v0 = triangles[:,2]-triangles[:,0]
    v1 = triangles[:,1]-triangles[:,0]
    v2 = point-triangles[:,0]

    dot00 = np.einsum('ij,ij->i',v0,v0)
    dot01 = np.einsum('ij,ij->i',v0,v1)
    dot02 = np.einsum('ij,ij->i',v0,v2)
    dot11 = np.einsum('ij,ij->i',v1,v1)
    dot12 = np.einsum('ij,ij->i',v1,v2)
    
    invDenom = 1./(dot00 * dot11-dot01*dot01)
    u = np.float16((dot11 * dot02 - dot01 * dot12)*invDenom)
    v = np.float16((dot00 * dot12 - dot01 * dot02)*invDenom)

    return (u>=0) & (v>=0) & (u+v<=1) 

Example 41

def test_sum(self):
        for dt in (np.int, np.float16, np.float32, np.float64, np.longdouble):
            for v in (0, 1, 2, 7, 8, 9, 15, 16, 19, 127,
                      128, 1024, 1235):
                tgt = dt(v * (v + 1) / 2)
                d = np.arange(1, v + 1, dtype=dt)
                assert_almost_equal(np.sum(d), tgt)
                assert_almost_equal(np.sum(d[::-1]), tgt)

            d = np.ones(500, dtype=dt)
            assert_almost_equal(np.sum(d[::2]), 250.)
            assert_almost_equal(np.sum(d[1::2]), 250.)
            assert_almost_equal(np.sum(d[::3]), 167.)
            assert_almost_equal(np.sum(d[1::3]), 167.)
            assert_almost_equal(np.sum(d[::-2]), 250.)
            assert_almost_equal(np.sum(d[-1::-2]), 250.)
            assert_almost_equal(np.sum(d[::-3]), 167.)
            assert_almost_equal(np.sum(d[-1::-3]), 167.)
            # sum with first reduction entry != 0
            d = np.ones((1,), dtype=dt)
            d += d
            assert_almost_equal(d, 2.) 

Example 42

def setUp(self):
        # An array of all possible float16 values
        self.all_f16 = np.arange(0x10000, dtype=uint16)
        self.all_f16.dtype = float16
        self.all_f32 = np.array(self.all_f16, dtype=float32)
        self.all_f64 = np.array(self.all_f16, dtype=float64)

        # An array of all non-NaN float16 values, in sorted order
        self.nonan_f16 = np.concatenate(
                                (np.arange(0xfc00, 0x7fff, -1, dtype=uint16),
                                 np.arange(0x0000, 0x7c01, 1, dtype=uint16)))
        self.nonan_f16.dtype = float16
        self.nonan_f32 = np.array(self.nonan_f16, dtype=float32)
        self.nonan_f64 = np.array(self.nonan_f16, dtype=float64)

        # An array of all finite float16 values, in sorted order
        self.finite_f16 = self.nonan_f16[1:-1]
        self.finite_f32 = self.nonan_f32[1:-1]
        self.finite_f64 = self.nonan_f64[1:-1] 

Example 43

def _is_class_a_primitive(cls):
    '''
    Check if class is a number or string including numpy numbers
    :param cls: any class
    :return: True if class is a primitive class, else False
    '''
    primitives = [
        np.float16, np.float32, np.float64, np.float128,
        np.int8, np.int16, np.int32, np.int64,
        bool, str, np.uint8, np.uint16, np.uint32, np.uint64,
        int, float
    ]
    return cls in primitives 

Example 44

def floatX(x):
    """
    Convert `x` to the numpy type specified in `theano.config.floatX`.
    """
    if theano.config.floatX == 'float16':
        return numpy.float16(x)
    elif theano.config.floatX == 'float32':
        return numpy.float32(x)
    else: # Theano's default float type is float64
        print "Warning: lib.floatX using float64"
        return numpy.float64(x) 

Example 45

def check_tile(self, z, x, y):
        returned = json.loads(
            self.client.get(
                '/api/v1/tiles/?d={uuid}.{z}.{x}.{y}'.format(
                    uuid=self.cooler.uuid, x=x, y=y, z=z
                )
            ).content.decode('utf-8')
        )

        r = base64.decodestring(returned[list(returned.keys())[0]]['dense'].encode('utf-8'))
        q = np.frombuffer(r, dtype=np.float16)

        with h5py.File(self.cooler.datafile.url) as f:
            tileset_info = cch.get_info(self.cooler.datafile.url)
            tileset_file = f

            mat = [tileset_file, tileset_info]

            zoom_level = z
            BINS_PER_TILE = 256

            hdf_for_resolution = tileset_file[str(zoom_level)]
            resolution = (tileset_info['max_width'] / 2**zoom_level) / BINS_PER_TILE

            t = tt.make_tiles(hdf_for_resolution, resolution, x, y)[(x,y)]

            # test the base64 encoding
            self.assertTrue(np.isclose(sum(q), sum(t), rtol=1e-3))

            # make sure we're returning actual data
            self.assertGreater(sum(q), 0) 

Example 46

def _normalize(self, image):
        return np.float16(image / 255.0) 

Example 47

def csv_to_array(csv_filedir):
    """
    save array to scv
    """
    csv_table = pd.read_csv(csv_filedir)
    sorted_table = csv_table.sort_values(by='VideoId')
    sorted_table = sorted_table.reset_index(drop=True)
    label_array = np.zeros((len(sorted_table), 4716), dtype=np.float16)
    label_pair = sorted_table['LabelConfidencePairs']
    videoid = sorted_table['VideoId']
    for i in range(len(label_pair)):
        example = label_pair[i].split(' ')
        for j in range(0, len(example), 2):
            label_array[i, int(example[j])] = float(example[j + 1])
    return label_array, videoid 

Example 48

def test_scalar_format():
    """Test the str.format method with NumPy scalar types"""
    tests = [('{0}', True, np.bool_),
            ('{0}', False, np.bool_),
            ('{0:d}', 130, np.uint8),
            ('{0:d}', 50000, np.uint16),
            ('{0:d}', 3000000000, np.uint32),
            ('{0:d}', 15000000000000000000, np.uint64),
            ('{0:d}', -120, np.int8),
            ('{0:d}', -30000, np.int16),
            ('{0:d}', -2000000000, np.int32),
            ('{0:d}', -7000000000000000000, np.int64),
            ('{0:g}', 1.5, np.float16),
            ('{0:g}', 1.5, np.float32),
            ('{0:g}', 1.5, np.float64),
            ('{0:g}', 1.5, np.longdouble)]
    # Python 2.6 doesn't implement complex.__format__
    if sys.version_info[:2] > (2, 6):
        tests += [('{0:g}', 1.5+0.5j, np.complex64),
                ('{0:g}', 1.5+0.5j, np.complex128),
                ('{0:g}', 1.5+0.5j, np.clongdouble)]

    for (fmat, val, valtype) in tests:
        try:
            assert_equal(fmat.format(val), fmat.format(valtype(val)),
                    "failed with val %s, type %s" % (val, valtype))
        except ValueError as e:
            assert_(False,
               "format raised exception (fmt='%s', val=%s, type=%s, exc='%s')" %
                            (fmat, repr(val), repr(valtype), str(e)))


# Locale tests: scalar types formatting should be independent of the locale 

Example 49

def test_half_conversions(self):
        """Checks that all 16-bit values survive conversion
           to/from 32-bit and 64-bit float"""
        # Because the underlying routines preserve the NaN bits, every
        # value is preserved when converting to/from other floats.

        # Convert from float32 back to float16
        b = np.array(self.all_f32, dtype=float16)
        assert_equal(self.all_f16.view(dtype=uint16),
                     b.view(dtype=uint16))

        # Convert from float64 back to float16
        b = np.array(self.all_f64, dtype=float16)
        assert_equal(self.all_f16.view(dtype=uint16),
                     b.view(dtype=uint16))

        # Convert float16 to longdouble and back
        # This doesn't necessarily preserve the extra NaN bits,
        # so exclude NaNs.
        a_ld = np.array(self.nonan_f16, dtype=np.longdouble)
        b = np.array(a_ld, dtype=float16)
        assert_equal(self.nonan_f16.view(dtype=uint16),
                     b.view(dtype=uint16))

        # Check the range for which all integers can be represented
        i_int = np.arange(-2048, 2049)
        i_f16 = np.array(i_int, dtype=float16)
        j = np.array(i_f16, dtype=np.int)
        assert_equal(i_int, j) 

Example 50

def test_half_rounding(self):
        """Checks that rounding when converting to half is correct"""
        a = np.array([2.0**-25 + 2.0**-35,  # Rounds to minimum subnormal
                      2.0**-25,       # Underflows to zero (nearest even mode)
                      2.0**-26,       # Underflows to zero
                      1.0+2.0**-11 + 2.0**-16,  # rounds to 1.0+2**(-10)
                      1.0+2.0**-11,   # rounds to 1.0 (nearest even mode)
                      1.0+2.0**-12,   # rounds to 1.0
                      65519,          # rounds to 65504
                      65520],         # rounds to inf
                      dtype=float64)
        rounded = [2.0**-24,
                   0.0,
                   0.0,
                   1.0+2.0**(-10),
                   1.0,
                   1.0,
                   65504,
                   np.inf]

        # Check float64->float16 rounding
        b = np.array(a, dtype=float16)
        assert_equal(b, rounded)

        # Check float32->float16 rounding
        a = np.array(a, dtype=float32)
        b = np.array(a, dtype=float16)
        assert_equal(b, rounded) 
点赞