The following are code examples for showing how to use . They are extracted from open source Python projects. You can vote up the examples you like or vote down the exmaples you don’t like. You can also save this page to your account.
Example 1
def normalize_array (solution, prediction): ''' Use min and max of solution as scaling factors to normalize prediction, then threshold it to [0, 1]. Binarize solution to {0, 1}. This allows applying classification scores to all cases. In principle, this should not do anything to properly formatted classification inputs and outputs.''' # Binarize solution sol=np.ravel(solution) # convert to 1-d array maxi = np.nanmax((filter(lambda x: x != float('inf'), sol))) # Max except NaN and Inf mini = np.nanmin((filter(lambda x: x != float('-inf'), sol))) # Mini except NaN and Inf if maxi == mini: print('Warning, cannot normalize') return [solution, prediction] diff = maxi - mini mid = (maxi + mini)/2. new_solution = np.copy(solution) new_solution[solution>=mid] = 1 new_solution[solution<mid] = 0 # Normalize and threshold predictions (takes effect only if solution not in {0, 1}) new_prediction = (np.copy(prediction) - float(mini))/float(diff) new_prediction[new_prediction>1] = 1 # and if predictions exceed the bounds [0, 1] new_prediction[new_prediction<0] = 0 # Make probabilities smoother #new_prediction = np.power(new_prediction, (1./10)) return [new_solution, new_prediction]
Example 2
def normalize_array (solution, prediction): ''' Use min and max of solution as scaling factors to normalize prediction, then threshold it to [0, 1]. Binarize solution to {0, 1}. This allows applying classification scores to all cases. In principle, this should not do anything to properly formatted classification inputs and outputs.''' # Binarize solution sol=np.ravel(solution) # convert to 1-d array maxi = np.nanmax((filter(lambda x: x != float('inf'), sol))) # Max except NaN and Inf mini = np.nanmin((filter(lambda x: x != float('-inf'), sol))) # Mini except NaN and Inf if maxi == mini: print('Warning, cannot normalize') return [solution, prediction] diff = maxi - mini mid = (maxi + mini)/2. new_solution = np.copy(solution) new_solution[solution>=mid] = 1 new_solution[solution<mid] = 0 # Normalize and threshold predictions (takes effect only if solution not in {0, 1}) new_prediction = (np.copy(prediction) - float(mini))/float(diff) new_prediction[new_prediction>1] = 1 # and if predictions exceed the bounds [0, 1] new_prediction[new_prediction<0] = 0 # Make probabilities smoother #new_prediction = np.power(new_prediction, (1./10)) return [new_solution, new_prediction]
Example 3
def normalize_array (solution, prediction): ''' Use min and max of solution as scaling factors to normalize prediction, then threshold it to [0, 1]. Binarize solution to {0, 1}. This allows applying classification scores to all cases. In principle, this should not do anything to properly formatted classification inputs and outputs.''' # Binarize solution sol=np.ravel(solution) # convert to 1-d array maxi = np.nanmax((filter(lambda x: x != float('inf'), sol))) # Max except NaN and Inf mini = np.nanmin((filter(lambda x: x != float('-inf'), sol))) # Mini except NaN and Inf if maxi == mini: print('Warning, cannot normalize') return [solution, prediction] diff = maxi - mini mid = (maxi + mini)/2. new_solution = np.copy(solution) new_solution[solution>=mid] = 1 new_solution[solution<mid] = 0 # Normalize and threshold predictions (takes effect only if solution not in {0, 1}) new_prediction = (np.copy(prediction) - float(mini))/float(diff) new_prediction[new_prediction>1] = 1 # and if predictions exceed the bounds [0, 1] new_prediction[new_prediction<0] = 0 # Make probabilities smoother #new_prediction = np.power(new_prediction, (1./10)) return [new_solution, new_prediction]
Example 4
def sanitize_array(array): """ Replace NaN and Inf (there should not be any!) :param array: :return: """ a = np.ravel(array) #maxi = np.nanmax((filter(lambda x: x != float('inf'), a)) # ) # Max except NaN and Inf #mini = np.nanmin((filter(lambda x: x != float('-inf'), a)) # ) # Mini except NaN and Inf maxi = np.nanmax(a[np.isfinite(a)]) mini = np.nanmin(a[np.isfinite(a)]) array[array == float('inf')] = maxi array[array == float('-inf')] = mini mid = (maxi + mini) / 2 array[np.isnan(array)] = mid return array
Example 5
def min_max(self, mask=None): """Get the minimum and maximum value in this data. If a mask is provided we get the min and max value within the given mask. Infinities and NaN's are ignored by this algorithm. Args: mask (ndarray): the mask, we only include elements for which the mask > 0 Returns: tuple: (min, max) the minimum and maximum values """ if mask is not None: roi = mdt.create_roi(self.data, mask) return np.nanmin(roi), np.nanmax(roi) return np.nanmin(self.data), np.nanmax(self.data)
Example 6
def test_extrema(): for nprocs in [1, 2, 4, 8]: ds = fake_random_ds(16, nprocs = nprocs, fields = ("density", "velocity_x", "velocity_y", "velocity_z")) for sp in [ds.sphere("c", (0.25, 'unitary')), ds.r[0.5,:,:]]: mi, ma = sp.quantities["Extrema"]("density") assert_equal(mi, np.nanmin(sp["density"])) assert_equal(ma, np.nanmax(sp["density"])) dd = ds.all_data() mi, ma = dd.quantities["Extrema"]("density") assert_equal(mi, np.nanmin(dd["density"])) assert_equal(ma, np.nanmax(dd["density"])) sp = ds.sphere("max", (0.25, 'unitary')) assert_equal(np.any(np.isnan(sp["radial_velocity"])), False) mi, ma = dd.quantities["Extrema"]("radial_velocity") assert_equal(mi, np.nanmin(dd["radial_velocity"])) assert_equal(ma, np.nanmax(dd["radial_velocity"]))
Example 7
def local_entropy(ocl_ctx, img, window_radius, num_bins=8): """ compute local entropy using a sliding window """ mf = cl.mem_flags cl_queue = cl.CommandQueue(ocl_ctx) img_np = np.array(img).astype(np.float32) img_buf = cl.Buffer(ocl_ctx, mf.READ_ONLY | mf.COPY_HOST_PTR, hostbuf=img_np) min_val = np.nanmin(img) max_val = np.nanmax(img) entropy = np.zeros_like(img,dtype=np.float32) dest_buf = cl.Buffer(ocl_ctx, mf.WRITE_ONLY, entropy.nbytes) cl_dir = os.path.dirname(__file__) cl_filename = cl_dir + '/cl/local_entropy.cl' with open(cl_filename, 'r') as fd: clstr = fd.read() prg = cl.Program(ocl_ctx, clstr).build() prg.local_entropy(cl_queue, entropy.shape, None, img_buf, dest_buf, np.int32(img.shape[1]), np.int32(img.shape[0]), np.int32(window_radius), np.int32(num_bins), np.float32(min_val), np.float32(max_val)) cl.enqueue_copy(cl_queue, entropy, dest_buf) cl_queue.finish() return entropy
Example 8
def minmax(X): """ Returns the MinMax Semivariance of sample X. X has to be an even-length array of point pairs like: x1, x1+h, x2, x2+h, ..., xn, xn+h. :param X: :return: """ _X = np.asarray(X) if any([isinstance(_, list) or isinstance(_, np.ndarray) for _ in _X]): return [minmax(_) for _ in _X] # check even if len(_X) % 2 > 0: raise ValueError('The sample does not have an even length: {}'.format(_X)) return (np.nanmax(_X) - np.nanmin(_X)) / np.nanmean(_X)
Example 9
def test_FmtHeatmap__get_min_max_from_selected_cell_values_with_cache(): df_pn = df - 5. cache = {} fmt = pbtf.FmtHeatmap(cache=cache) res = fmt._get_min_max_from_selected_cell_values(None, None, df_pn) assert len(cache) == 1 and (None, None) in cache.keys() assert res == (np.nanmin(df_pn), np.nanmax(df_pn)) min_value, max_value = np.nanmin(df.loc[['a'], ['aa', 'bb']]), np.nanmax(df.loc[['a'], ['aa', 'bb']]) res = fmt._get_min_max_from_selected_cell_values(['a'], ['aa', 'bb'], df) assert len(cache) == 2 and (frozenset(['a']), frozenset(['aa', 'bb'])) in cache.keys() assert res == (min_value, max_value) res = fmt._get_min_max_from_selected_cell_values(['a'], ['aa', 'bb'], df) assert len(cache) == 2 and (frozenset(['a']), frozenset(['aa', 'bb'])) in cache.keys() assert res == (min_value, max_value)
Example 10
def test_FmtHeatmap__get_min_max_from_selected_cell_values_without_cache(): df_pn = df - 5. cache = None fmt = pbtf.FmtHeatmap(cache=cache) res = fmt._get_min_max_from_selected_cell_values(None, None, df_pn) assert cache is None assert res == (np.nanmin(df_pn), np.nanmax(df_pn)) min_value, max_value = np.nanmin(df.loc[['a'], ['aa', 'bb']]), np.nanmax(df.loc[['a'], ['aa', 'bb']]) res = fmt._get_min_max_from_selected_cell_values(['a'], ['aa', 'bb'], df) assert cache is None assert res == (min_value, max_value) res = fmt._get_min_max_from_selected_cell_values(['a'], ['aa', 'bb'], df) assert cache is None assert res == (min_value, max_value)
Example 11
def depth_callback(self,data): try: self.depth_image= self.br.imgmsg_to_cv2(data, desired_encoding="passthrough") except CvBridgeError as e: print(e) # print "depth" depth_min = np.nanmin(self.depth_image) depth_max = np.nanmax(self.depth_image) depth_img = self.depth_image.copy() depth_img[np.isnan(self.depth_image)] = depth_min depth_img = ((depth_img - depth_min) / (depth_max - depth_min) * 255).astype(np.uint8) cv2.imshow("Depth Image", depth_img) cv2.waitKey(5) # stream = open("/home/chentao/depth_test.yaml", "w") # data = {'img':depth_img.tolist()} # yaml.dump(data, stream)
Example 12
def depth_callback(self,data): try: self.depth_image= self.br.imgmsg_to_cv2(data, desired_encoding="passthrough") except CvBridgeError as e: print(e) # print "depth" depth_min = np.nanmin(self.depth_image) depth_max = np.nanmax(self.depth_image) depth_img = self.depth_image.copy() depth_img[np.isnan(self.depth_image)] = depth_min depth_img = ((depth_img - depth_min) / (depth_max - depth_min) * 255).astype(np.uint8) cv2.imshow("Depth Image", depth_img) cv2.waitKey(5) # stream = open("/home/chentao/depth_test.yaml", "w") # data = {'img':depth_img.tolist()} # yaml.dump(data, stream)
Example 13
def depth_callback(self,data): try: self.depth_image= self.br.imgmsg_to_cv2(data, desired_encoding="passthrough") except CvBridgeError as e: print(e) # print "depth" depth_min = np.nanmin(self.depth_image) depth_max = np.nanmax(self.depth_image) depth_img = self.depth_image.copy() depth_img[np.isnan(self.depth_image)] = depth_min depth_img = ((depth_img - depth_min) / (depth_max - depth_min) * 255).astype(np.uint8) cv2.imshow("Depth Image", depth_img) cv2.waitKey(5)
Example 14
def basemap_raster_mercator(lon, lat, grid, cmin, cmax, cmap_name): # longitude/latitude extent lons = (np.amin(lon), np.amax(lon)) lats = (np.amin(lat), np.amax(lat)) # construct spherical mercator projection for region of interest m = Basemap(projection='merc',llcrnrlat=lats[0], urcrnrlat=lats[1], llcrnrlon=lons[0],urcrnrlon=lons[1]) #vmin,vmax = np.nanmin(grid),np.nanmax(grid) masked_grid = np.ma.array(grid,mask=np.isnan(grid)) fig = plt.figure(frameon=False,figsize=(12,8),dpi=72) plt.axis('off') cmap = mpl.cm.get_cmap(cmap_name) m.pcolormesh(lon,lat,masked_grid,latlon=True,cmap=cmap,vmin=cmin,vmax=cmax) str_io = StringIO.StringIO() plt.savefig(str_io,bbox_inches='tight',format='png',pad_inches=0,transparent=True) plt.close() numpy_bounds = [ (lons[0],lats[0]),(lons[1],lats[0]),(lons[1],lats[1]),(lons[0],lats[1]) ] float_bounds = [ (float(x), float(y)) for x,y in numpy_bounds ] return str_io.getvalue(), float_bounds
Example 15
def basemap_barbs_mercator(u,v,lat,lon): # lon/lat extents lons = (np.amin(lon), np.amax(lon)) lats = (np.amin(lat), np.amax(lat)) # construct spherical mercator projection for region of interest m = Basemap(projection='merc',llcrnrlat=lats[0], urcrnrlat=lats[1], llcrnrlon=lons[0],urcrnrlon=lons[1]) #vmin,vmax = np.nanmin(grid),np.nanmax(grid) fig = plt.figure(frameon=False,figsize=(12,8),dpi=72*4) plt.axis('off') m.quiver(lon,lat,u,v,latlon=True) str_io = StringIO.StringIO() plt.savefig(str_io,bbox_inches='tight',format='png',pad_inches=0,transparent=True) plt.close() numpy_bounds = [ (lons[0],lats[0]),(lons[1],lats[0]),(lons[1],lats[1]),(lons[0],lats[1]) ] float_bounds = [ (float(x), float(y)) for x,y in numpy_bounds ] return str_io.getvalue(), float_bounds
Example 16
def setSymColormap(self): cmap = {'ticks': [[0, (106, 0, 31, 255)], [.5, (255, 255, 255, 255)], [1., (8, 54, 104, 255)]], 'mode': 'rgb'} cmap = {'ticks': [[0, (172, 56, 56)], [.5, (255, 255, 255)], [1., (51, 53, 120)]], 'mode': 'rgb'} lvl_min = lvl_max = 0 for plot in self.plots: plt_min = num.nanmin(plot.data) plt_max = num.nanmax(plot.data) lvl_max = lvl_max if plt_max < lvl_max else plt_max lvl_min = lvl_min if plt_min > lvl_min else plt_min abs_range = max(abs(lvl_min), abs(lvl_max)) self.gradient.restoreState(cmap) self.setLevels(-abs_range, abs_range)
Example 17
def setSymColormap(self): cmap = {'ticks': [[0., (0, 0, 0, 255)], [1e-3, (106, 0, 31, 255)], [.5, (255, 255, 255, 255)], [1., (8, 54, 104, 255)]], 'mode': 'rgb'} cmap = {'ticks': [[0., (0, 0, 0)], [1e-3, (172, 56, 56)], [.5, (255, 255, 255)], [1., (51, 53, 120)]], 'mode': 'rgb'} lvl_min = num.nanmin(self._plot.data) lvl_max = num.nanmax(self._plot.data) abs_range = max(abs(lvl_min), abs(lvl_max)) self.gradient.restoreState(cmap) self.setLevels(-abs_range, abs_range)
Example 18
def setArray(self, incomingArray, copy=False): """ You can use the self.array directly but if you want to copy from one array into a raster we suggest you do it this way :param incomingArray: :return: """ masked = isinstance(self.array, np.ma.MaskedArray) if copy: if masked: self.array = np.ma.copy(incomingArray) else: self.array = np.ma.masked_invalid(incomingArray, copy=True) else: if masked: self.array = incomingArray else: self.array = np.ma.masked_invalid(incomingArray) self.rows = self.array.shape[0] self.cols = self.array.shape[1] self.min = np.nanmin(self.array) self.max = np.nanmax(self.array)
Example 19
def _choose_cov(self, cov_type, **cov_config): """Return covariance estimator reformat clusters""" cov_est = self._cov_estimators[cov_type] if cov_type != 'clustered': return cov_est, cov_config cov_config_upd = {k: v for k, v in cov_config.items()} clusters = cov_config.get('clusters', None) if clusters is not None: clusters = self.reformat_clusters(clusters).copy() cluster_max = np.nanmax(clusters.values3d, axis=1) delta = cluster_max - np.nanmin(clusters.values3d, axis=1) if np.any(delta != 0): raise ValueError('clusters must not vary within an entity') index = clusters.panel.minor_axis reindex = clusters.entities clusters = pd.DataFrame(cluster_max.T, index=index, columns=clusters.vars) clusters = clusters.loc[reindex].astype(np.int64) cov_config_upd['clusters'] = clusters return cov_est, cov_config_upd
Example 20
def get_bbox(self): """ Returns boundary box for the coordinates. Useful for setting up the map extent for plotting on a map. :return tuple: corner coordinates (llcrnrlat, urcrnrlat, llcrnrlon, urcrnrlon) """ x, y, z = zip(self) llcrnrlat = np.nanmin(y) urcrnrlat = np.nanmax(y) llcrnrlon = np.nanmin(x) urcrnrlon = np.nanmax(x) return (llcrnrlat, urcrnrlat, llcrnrlon, urcrnrlon)
Example 21
def visRenderedViews(self,outDir,nViews=0): pt = Imath.PixelType(Imath.PixelType.FLOAT) renders = sorted(glob.glob(outDir + '/render_*.png')) if (nViews > 0) and (nViews < len(renders)): renders = [renders[ix] for ix in range(nViews)] for render in renders: print render rgbIm = scipy.misc.imread(render) dMap = loadDepth(render.replace('render_','depth_')) plt.figure(figsize=(12,6)) plt.subplot(121) plt.imshow(rgbIm) dMap[dMap>=10] = np.nan plt.subplot(122) plt.imshow(dMap) print(np.nanmax(dMap),np.nanmin(dMap)) plt.show()
Example 22
def find_bbox(t): # given a table t find the bounding box of the ellipses for the regions boxes=[] for r in t: a=r['Maj']/scale b=r['Min']/scale th=(r['PA']+90)*np.pi/180.0 dx=np.sqrt((a*np.cos(th))**2.0+(b*np.sin(th))**2.0) dy=np.sqrt((a*np.sin(th))**2.0+(b*np.cos(th))**2.0) boxes.append([r['RA']-dx/np.cos(r['DEC']*np.pi/180.0), r['RA']+dx/np.cos(r['DEC']*np.pi/180.0), r['DEC']-dy, r['DEC']+dy]) boxes=np.array(boxes) minra=np.nanmin(boxes[:,0]) maxra=np.nanmax(boxes[:,1]) mindec=np.nanmin(boxes[:,2]) maxdec=np.nanmax(boxes[:,3]) ra=np.mean((minra,maxra)) dec=np.mean((mindec,maxdec)) size=1.2*3600.0*np.max((maxdec-mindec,(maxra-minra)*np.cos(dec*np.pi/180.0))) return ra,dec,size
Example 23
def VshGR(GRlog,itmin,itmax): # Usando o perfil GR GRmin = np.nanmin(GRlog) GRminInt = GRlog[(GRlog<=(GRmin*(1+itmin/100)))] # Valores do GRmin GRminm = np.mean(GRminInt) # Media dos valores de GRmin GRmax = np.nanmax(GRlog) GRmaxInt = GRlog[(GRlog>=(GRmax*(1-itmax/100)))] # Valores de GRmax GRmaxm = np.mean(GRmaxInt) # Media dos valores de GRmax Vsh = 100*(GRlog-GRminm)/(GRmaxm-GRminm) # Volume de argila for i in range(len(Vsh)): if (Vsh[i] > 100): Vsh[i] = 100 elif (Vsh[i] < 0): Vsh[i] = 0 print GRmin, GRminm, GRmax, GRmaxm, np.nanmin(Vsh), np.nanmax(Vsh) return Vsh
Example 24
def VshGR(GRlog,itmin,itmax): # Usando o perfil GR GRmin = np.nanmin(GRlog) GRminInt = GRlog[(GRlog<=(GRmin*(1+itmin/100)))] # Valores do GRmin GRminm = np.mean(GRminInt) # Media dos valores de GRmin GRmax = np.nanmax(GRlog) GRmaxInt = GRlog[(GRlog>=(GRmax*(1-itmax/100)))] # Valores de GRmax GRmaxm = np.mean(GRmaxInt) # Media dos valores de GRmax Vsh = 100*(GRlog-GRminm)/(GRmaxm-GRminm) # Volume de argila for i in range(len(Vsh)): if (Vsh[i] > 100): Vsh[i] = 100 elif (Vsh[i] < 0): Vsh[i] = 0 print GRmin, GRminm, GRmax, GRmaxm, np.nanmin(Vsh), np.nanmax(Vsh) return Vsh
Example 25
def distance_curves(x, ys, q1): """ Distances to the curves. :param x: x values of curves (they have to be sorted). :param ys: y values of multiple curves sharing x values. :param q1: a point to measure distance to. :return: """ # convert curves into a series of startpoints and endpoints xp = rolling_window(x, 2) ysp = rolling_window(ys, 2) r = np.nanmin(distance_line_segment(xp[:, 0], ysp[:, :, 0], xp[:, 1], ysp[:, :, 1], q1[0], q1[1]), axis=1) return r
Example 26
def set_marker_size(self, attr, update=True): try: self._size_attr = variable = self.data.domain[attr] if len(self.data) == 0: raise Exception except Exception: self._size_attr = None self._legend_sizes = [] else: assert variable.is_continuous self._raw_sizes = values = self.data.get_column_view(variable)[0].astype(float) # Note, [5, 60] is also hardcoded in legend-size-indicator.svg self._sizes = scale(values, 5, 60).astype(np.uint8) min = np.nanmin(values) self._legend_sizes = self._legend_values(variable, [min, np.nanmax(values)]) if not np.isnan(min) else [] finally: if update: self.redraw_markers_overlay_image(new_image=True)
Example 27
def sanitize_array(array): ''' Replace NaN and Inf (there should not be any!)''' a=np.ravel(array) maxi = np.nanmax((filter(lambda x: x != float('inf'), a))) # Max except NaN and Inf mini = np.nanmin((filter(lambda x: x != float('-inf'), a))) # Mini except NaN and Inf array[array==float('inf')]=maxi array[array==float('-inf')]=mini mid = (maxi + mini)/2 array[np.isnan(array)]=mid return array
Example 28
def frame_to_series(self, field, frame, columns=None): """ Convert a frame with a DatetimeIndex and sid columns into a series with a sid index, using the aggregator defined by the given field. """ if isinstance(frame, pd.DataFrame): columns = frame.columns frame = frame.values if not len(frame): return pd.Series( data=(0 if field == 'volume' else np.nan), index=columns, ).values if field in ['price', 'close']: # shortcircuit for full last row vals = frame[-1] if np.all(~np.isnan(vals)): return vals return ffill(frame)[-1] elif field == 'open': return bfill(frame)[0] elif field == 'volume': return np.nansum(frame, axis=0) elif field == 'high': return np.nanmax(frame, axis=0) elif field == 'low': return np.nanmin(frame, axis=0) else: raise ValueError("Unknown field {}".format(field))
Example 29
def extract_img_background(img_array, custom_limits=None, median_diffbelow=200.0, image_min=None): ''' This extracts the background of the image array provided: - masks the array to only values between the median and the min of flux - then returns the median value in 3 x 3 stamps. img_array = image to find the background for custom_limits = use this to provide custom median and min limits for the background extraction median_diffbelow = subtract this value from the median to get the upper bound for background extraction image_min = use this value as the lower bound for background extraction ''' if not custom_limits: backmax = np.median(img_array)-median_diffbelow backmin = image_min if image_min is not None else np.nanmin(img_array) else: backmin, backmax = custom_limits masked = npma.masked_outside(img_array, backmin, backmax) backmasked = npma.median(masked) return backmasked ## IMAGE SECTION FUNCTIONS ##
Example 30
def quickMinMax(self, data): """ Estimate the min/max values of *data* by subsampling. """ while data.size > 1e6: ax = np.argmax(data.shape) sl = [slice(None)] * data.ndim sl[ax] = slice(None, None, 2) data = data[sl] return nanmin(data), nanmax(data)
Example 31
def dataBounds(self, ax, frac=1.0, orthoRange=None): if frac >= 1.0 and orthoRange is None and self.bounds[ax] is not None: return self.bounds[ax] #self.prepareGeometryChange() if self.data is None or len(self.data) == 0: return (None, None) if ax == 0: d = self.data['x'] d2 = self.data['y'] elif ax == 1: d = self.data['y'] d2 = self.data['x'] if orthoRange is not None: mask = (d2 >= orthoRange[0]) * (d2 <= orthoRange[1]) d = d[mask] d2 = d2[mask] if frac >= 1.0: self.bounds[ax] = (np.nanmin(d) - self._maxSpotWidth*0.7072, np.nanmax(d) + self._maxSpotWidth*0.7072) return self.bounds[ax] elif frac <= 0.0: raise Exception("Value for parameter 'frac' must be > 0. (got %s)" % str(frac)) else: mask = np.isfinite(d) d = d[mask] return np.percentile(d, [50 * (1 - frac), 50 * (1 + frac)])
Example 32
def quickMinMax(self, data): """ Estimate the min/max values of *data* by subsampling. """ while data.size > 1e6: ax = np.argmax(data.shape) sl = [slice(None)] * data.ndim sl[ax] = slice(None, None, 2) data = data[sl] return nanmin(data), nanmax(data)
Example 33
def normalize_data(self, values): normalized_values = copy.deepcopy(values) data = np.array(values, dtype=float)[:, 0:5] data_min = np.nanmin(data, 0) data_max = np.nanmax(data, 0) print data_min print data_max for i in range(len(values)): for j in range(5): normalized_values[i][j] = np.abs(values[i][j] - data_min[j]) / np.abs(data_max[j] - data_min[j]) return normalized_values, data_min, data_max
Example 34
def writeBinData(out_file, i, GenotypeData, ScoreList, NumInfoSites): num_lines = len(GenotypeData.accessions) (likeliScore, likeliHoodRatio) = snpmatch.calculate_likelihoods(ScoreList, NumInfoSites) if len(likeliScore) > 0: NumAmb = np.where(likeliHoodRatio < snpmatch.lr_thres)[0] if len(NumAmb) >= 1 and len(NumAmb) < num_lines: try: nextLikeli = np.nanmin(likeliHoodRatio[np.where(likeliHoodRatio > snpmatch.lr_thres)[0]]) except: nextLikeli = 1 for k in NumAmb: score = float(ScoreList[k])/NumInfoSites[k] out_file.write("%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\n" % (GenotypeData.accessions[k], int(ScoreList[k]), NumInfoSites[k], score, likeliScore[k], nextLikeli, len(NumAmb), i+1))
Example 35
def image_as_uint8(im): """ Convert the given image to uint8 If the dtype is already uint8, it is returned as-is. If the image is float, and all values are between 0 and 1, the values are multiplied by 255. In all other situations, the values are scaled such that the minimum value becomes 0 and the maximum value becomes 255. """ if not isinstance(im, np.ndarray): raise ValueError('image must be a numpy array') dtype_str = str(im.dtype) # Already uint8? if dtype_str == 'uint8': return im # Handle float mi, ma = np.nanmin(im), np.nanmax(im) if dtype_str.startswith('float'): if mi >= 0 and ma <= 1: mi, ma = 0, 1 # Now make float copy before we scale im = im.astype('float32') # Scale the values between 0 and 255 if np.isfinite(mi) and np.isfinite(ma): if mi: im -= mi if ma != 255: im *= 255.0 / (ma - mi) assert np.nanmax(im) < 256 return im.astype(np.uint8) # currently not used ... the only use it to easly provide the global meta info
Example 36
def test_masked(self): mat = np.ma.fix_invalid(_ndat) msk = mat._mask.copy() for f in [np.nanmin]: res = f(mat, axis=1) tgt = f(_ndat, axis=1) assert_equal(res, tgt) assert_equal(mat._mask, msk) assert_(not np.isinf(mat).any())
Example 37
def test_nanmin(self): tgt = np.min(self.mat) for mat in self.integer_arrays(): assert_equal(np.nanmin(mat), tgt)
Example 38
def data(self, data): """ :type: numppy.ndarray """ self._assert_shape(data, self._x_indexes, self._y_indexes) data[data == -np.inf] = 0.0 data[data == np.inf] = 0.0 self._data = data self._min_value = np.nanmin(self.data) self._max_value = np.nanmax(self.data) self._data_x_indexes = list(range(data.shape[0])) self._data_y_indexes = list(range(data.shape[1])) self._dirty = False
Example 39
def sanitize_array(array): ''' Replace NaN and Inf (there should not be any!)''' a=np.ravel(array) maxi = np.nanmax((filter(lambda x: x != float('inf'), a))) # Max except NaN and Inf mini = np.nanmin((filter(lambda x: x != float('-inf'), a))) # Mini except NaN and Inf array[array==float('inf')]=maxi array[array==float('-inf')]=mini mid = (maxi + mini)/2 array[np.isnan(array)]=mid return array
Example 40
def sanitize_array(array): ''' Replace NaN and Inf (there should not be any!)''' a=np.ravel(array) maxi = np.nanmax((filter(lambda x: x != float('inf'), a))) # Max except NaN and Inf mini = np.nanmin((filter(lambda x: x != float('-inf'), a))) # Mini except NaN and Inf array[array==float('inf')]=maxi array[array==float('-inf')]=mini mid = (maxi + mini)/2 array[np.isnan(array)]=mid return array
Example 41
def _evaluate(self,x): ''' Returns the level of the function at each value in x as the minimum among all of the functions. Only called internally by HARKinterpolator1D.__call__. ''' if _isscalar(x): y = np.nanmin([f(x) for f in self.functions]) else: m = len(x) fx = np.zeros((m,self.funcCount)) for j in range(self.funcCount): fx[:,j] = self.functions[j](x) y = np.nanmin(fx,axis=1) return y
Example 42
def _evaluate(self,x,y): ''' Returns the level of the function at each value in (x,y) as the minimum among all of the functions. Only called internally by HARKinterpolator2D.__call__. ''' if _isscalar(x): f = np.nanmin([f(x,y) for f in self.functions]) else: m = len(x) temp = np.zeros((m,self.funcCount)) for j in range(self.funcCount): temp[:,j] = self.functions[j](x,y) f = np.nanmin(temp,axis=1) return f
Example 43
def _evaluate(self,x,y,z): ''' Returns the level of the function at each value in (x,y,z) as the minimum among all of the functions. Only called internally by HARKinterpolator3D.__call__. ''' if _isscalar(x): f = np.nanmin([f(x,y,z) for f in self.functions]) else: m = len(x) temp = np.zeros((m,self.funcCount)) for j in range(self.funcCount): temp[:,j] = self.functions[j](x,y,z) f = np.nanmin(temp,axis=1) return f
Example 44
def replot(self, val): ''' ''' # Update plot self.cadence = int(val) self.implot.set_data(self.images[int(val)]) self.implot.set_clim(vmin = np.nanmin(self.images[int(val)]), vmax = np.nanmax(self.images[int(val)])) self.tracker1.set_xdata([self.time[self.cadence], self.time[self.cadence]]) self.tracker2.set_xdata([self.time[self.cadence], self.time[self.cadence]]) self.update_bkg() self.update_lc() self.update_lcbkg() self.fig.canvas.draw()
Example 45
def vmin(self): return self._vmin if self._vmin else np.nanmin(self.hic_matrix)
Example 46
def _plot(self, region=None, cax=None): da_sub, regions_sub = sub_data_regions(self.da, self.regions, region) da_sub_masked = np.ma.MaskedArray(da_sub, mask=np.isnan(da_sub)) bin_coords = np.r_[[(x.start - 1) for x in regions_sub], regions_sub[-1].end] x, y = np.meshgrid(bin_coords, self.window_sizes) self.mesh = self.ax.pcolormesh(x, y, da_sub_masked, cmap=self.colormap, vmax=self.vmax) self.colorbar = plt.colorbar(self.mesh, cax=cax, orientation="vertical") self.window_size_line = self.ax.axhline(self.current_window_size, color='red') if self.log_y: self.ax.set_yscale("log") self.ax.set_ylim((np.nanmin(self.window_sizes), np.nanmax(self.window_sizes)))
Example 47
def _plot(self, region=None, cax=None): self._new_region(region) bin_coords = [(x.start - 1) for x in self.sr] ds = self.da_sub[self.init_row] self.line, = self.ax.plot(bin_coords, ds) if not self.is_symmetric: self.current_cutoff = (self.ax.get_ylim()[1] - self.ax.get_ylim()[0]) / 2 + self.ax.get_ylim()[0] else: self.current_cutoff = self.ax.get_ylim()[1]/ 2 self.ax.axhline(0.0, linestyle='dashed', color='grey') self.cutoff_line = self.ax.axhline(self.current_cutoff, color='r') if self.is_symmetric: self.cutoff_line_mirror = self.ax.axhline(-1*self.current_cutoff, color='r') self.ax.set_ylim((np.nanmin(ds), np.nanmax(ds)))
Example 48
def update(self, ix=None, cutoff=None, region=None, update_canvas=True): if region is not None: self._new_region(region) if ix is not None and ix != self.current_ix: ds = self.da_sub[ix] self.current_ix = ix self.line.set_ydata(ds) self.ax.set_ylim((np.nanmin(ds), np.nanmax(ds))) if cutoff is None: if not self.is_symmetric: self.update(cutoff=(self.ax.get_ylim()[1]-self.ax.get_ylim()[0])/2 + self.ax.get_ylim()[0], update_canvas=False) else: self.update(cutoff=self.ax.get_ylim()[1] / 2, update_canvas=False) if update_canvas: self.fig.canvas.draw() if cutoff is not None and cutoff != self.current_cutoff: if self.is_symmetric: self.current_cutoff = abs(cutoff) else: self.current_cutoff = cutoff self.cutoff_line.set_ydata(self.current_cutoff) if self.is_symmetric: self.cutoff_line_mirror.set_ydata(-1*self.current_cutoff) if update_canvas: self.fig.canvas.draw()
Example 49
def define_levels(self, nb_class, disc_func): pot = self.pot _min = np.nanmin(pot) if not nb_class: nb_class = int(get_opt_nb_class(len(pot)) - 2) if not disc_func or "prog_geom" in disc_func: levels = [_min] + [ np.nanmax(pot) / i for i in range(1, nb_class + 1)][::-1] elif "equal_interval" in disc_func: _bin = np.nanmax(pot) / nb_class levels = [_min] + [_bin * i for i in range(1, nb_class+1)] elif "percentiles" in disc_func: levels = np.percentile( np.concatenate((pot[pot.nonzero()], np.array([_min]))), np.linspace(0.0, 100.0, nb_class+1)) elif "jenks" in disc_func: levels = list(jenks_breaks(np.concatenate( ([_min], pot[pot.nonzero()])), nb_class)) levels[0] = levels[0] - _min * 0.01 elif "head_tail" in disc_func: levels = head_tail_breaks(np.concatenate( ([_min], pot[pot.nonzero()]))) elif "maximal_breaks" in disc_func: levels = maximal_breaks(np.concatenate( ([_min], pot[pot.nonzero()])), nb_class) else: raise ValueError return levels
Example 50
def set_range(self, x_data, y_data): min_x, max_x = np.nanmin(x_data), np.nanmax(x_data) min_y, max_y = np.nanmin(y_data), np.nanmax(y_data) self.plotview.setRange( QRectF(min_x, min_y, max_x - min_x, max_y - min_y), padding=0.025) self.plotview.replot()