Python numpy.e() 使用实例

The following are code examples for showing how to use . They are extracted from open source Python projects. You can vote up the examples you like or vote down the exmaples you don’t like. You can also save this page to your account.

Example 1

def rf(train_sample, validation_sample, features, seed):
    log_base = np.e
    rf_est = RandomForestRegressor(n_estimators=500,
                                   criterion='mse',
                                   max_features=4,
                                   max_depth=None,
                                   bootstrap=True,
                                   min_samples_split=4,
                                   min_samples_leaf=1,
                                   min_weight_fraction_leaf=0,
                                   max_leaf_nodes=None,
                                   random_state=seed
                                   ).fit(
        train_sample[features], np.log1p(train_sample['volume']) / np.log(log_base))
    rf_prob = np.power(log_base, rf_est.predict(validation_sample[features])) - 1
    print_mape(validation_sample['volume'], rf_prob, 'RF')
    return rf_prob 

Example 2

def exrf(train_sample, validation_sample, features, seed):
    log_base = np.e
    exrf_est = ExtraTreesRegressor(n_estimators=1000,
                                   criterion='mse',
                                   max_features='auto',
                                   max_depth=None,
                                   bootstrap=True,
                                   min_samples_split=4,
                                   min_samples_leaf=1,
                                   min_weight_fraction_leaf=0,
                                   max_leaf_nodes=None,
                                   random_state=seed
                                       ).fit(
        train_sample[features], np.log1p(train_sample['volume']) / np.log(log_base))
    exrf_prob = np.power(log_base, exrf_est.predict(validation_sample[features])) - 1
    print_mape(validation_sample['volume'], exrf_prob, 'EXTRA-RF')
    return exrf_prob 

Example 3

def test_closing_fid(self):
        # Test that issue #1517 (too many opened files) remains closed
        # It might be a "weak" test since failed to get triggered on
        # e.g. Debian sid of 2012 Jul 05 but was reported to
        # trigger the failure on Ubuntu 10.04:
        # http://projects.scipy.org/numpy/ticket/1517#comment:2
        with temppath(suffix='.npz') as tmp:
            np.savez(tmp, data='LOVELY LOAD')
            # We need to check if the garbage collector can properly close
            # numpy npz file returned by np.load when their reference count
            # goes to zero.  Python 3 running in debug mode raises a
            # ResourceWarning when file closing is left to the garbage
            # collector, so we catch the warnings.  Because ResourceWarning
            # is unknown in Python < 3.x, we take the easy way out and
            # catch all warnings.
            with warnings.catch_warnings():
                warnings.simplefilter("ignore")
                for i in range(1, 1025):
                    try:
                        np.load(tmp)["data"]
                    except Exception as e:
                        msg = "Failed to load data from a file: %s" % e
                        raise AssertionError(msg) 

Example 4

def test_invalid_raise(self):
        # Test invalid raise
        data = ["1, 1, 1, 1, 1"] * 50
        for i in range(5):
            data[10 * i] = "2, 2, 2, 2 2"
        data.insert(0, "a, b, c, d, e")
        mdata = TextIO("\n".join(data))
        #
        kwargs = dict(delimiter=",", dtype=None, names=True)
        # XXX: is there a better way to get the return value of the
        # callable in assert_warns ?
        ret = {}

        def f(_ret={}):
            _ret['mtest'] = np.ndfromtxt(mdata, invalid_raise=False, **kwargs)
        assert_warns(ConversionWarning, f, _ret=ret)
        mtest = ret['mtest']
        assert_equal(len(mtest), 45)
        assert_equal(mtest, np.ones(45, dtype=[(_, int) for _ in 'abcde']))
        #
        mdata.seek(0)
        assert_raises(ValueError, np.ndfromtxt, mdata,
                      delimiter=",", names=True) 

Example 5

def result_pretty(self, number_of_runs=0, time_str=None,
                      fbestever=None):
        """pretty print result.

        Returns ``self.result()``

        """
        if fbestever is None:
            fbestever = self.best.f
        s = (' after %i restart' + ('s' if number_of_runs > 1 else '')) \
            % number_of_runs if number_of_runs else ''
        for k, v in list(self.stop().items()):
            print('termination on %s=%s%s' % (k, str(v), s +
                  (' (%s)' % time_str if time_str else '')))

        print('final/bestever f-value = %e %e' % (self.best.last.f,
                                                  fbestever))
        if self.N < 9:
            print('incumbent solution: ' + str(list(self.gp.pheno(self.mean, into_bounds=self.boundary_handler.repair))))
            print('std deviation: ' + str(list(self.sigma * self.sigma_vec * sqrt(self.dC) * self.gp.scales)))
        else:
            print('incumbent solution: %s ...]' % (str(self.gp.pheno(self.mean, into_bounds=self.boundary_handler.repair)[:8])[:-1]))
            print('std deviations: %s ...]' % (str((self.sigma * self.sigma_vec * sqrt(self.dC) * self.gp.scales)[:8])[:-1]))
        return self.result() 

Example 6

def result_pretty(self, number_of_runs=0, time_str=None,
                      fbestever=None):
        """pretty print result.

        Returns ``self.result()``

        """
        if fbestever is None:
            fbestever = self.best.f
        s = (' after %i restart' + ('s' if number_of_runs > 1 else '')) \
            % number_of_runs if number_of_runs else ''
        for k, v in list(self.stop().items()):
            print('termination on %s=%s%s' % (k, str(v), s +
                  (' (%s)' % time_str if time_str else '')))

        print('final/bestever f-value = %e %e' % (self.best.last.f,
                                                  fbestever))
        if self.N < 9:
            print('incumbent solution: ' + str(list(self.gp.pheno(self.mean, into_bounds=self.boundary_handler.repair))))
            print('std deviation: ' + str(list(self.sigma * self.sigma_vec * sqrt(self.dC) * self.gp.scales)))
        else:
            print('incumbent solution: %s ...]' % (str(self.gp.pheno(self.mean, into_bounds=self.boundary_handler.repair)[:8])[:-1]))
            print('std deviations: %s ...]' % (str((self.sigma * self.sigma_vec * sqrt(self.dC) * self.gp.scales)[:8])[:-1]))
        return self.result() 

Example 7

def build_graph(self, actor, critic, cfg):
        self.ph_action = graph.Placeholder(np.float32, shape=(None, actor.action_size), name="ph_action")
        self.ph_advantage = graph.Placeholder(np.float32, shape=(None,), name="ph_adv")
        self.ph_discounted_reward = graph.Placeholder(np.float32, shape=(None,), name="ph_edr")

        mu, sigma2 = actor.node
        sigma2 += tf.constant(1e-8)

        log_std_dev = tf.log(sigma2)
        self.entropy = tf.reduce_mean(log_std_dev + tf.constant(0.5 * np.log(2. * np.pi * np.e), tf.float32))

        l2_dist = tf.square(self.ph_action.node - mu)
        sqr_std_dev = tf.constant(2.) * tf.square(sigma2) + tf.constant(1e-6)
        log_std_dev = tf.log(sigma2)
        log_prob = -l2_dist / sqr_std_dev - tf.constant(.5) * tf.log(tf.constant(2 * np.pi)) - log_std_dev

        self.policy_loss = -(tf.reduce_mean(tf.reduce_sum(log_prob, axis=1) * self.ph_advantage.node)
                             + cfg.entropy_beta * self.entropy)

        # Learning rate for the Critic is sized by critic_scale parameter
        self.value_loss = cfg.critic_scale * tf.reduce_mean(tf.square(self.ph_discounted_reward.node - critic.node)) 

Example 8

def result_pretty(self, number_of_runs=0, time_str=None,
                      fbestever=None):
        """pretty print result.

        Returns ``self.result()``

        """
        if fbestever is None:
            fbestever = self.best.f
        s = (' after %i restart' + ('s' if number_of_runs > 1 else '')) \
            % number_of_runs if number_of_runs else ''
        for k, v in self.stop().items():
            print('termination on %s=%s%s' % (k, str(v), s +
                  (' (%s)' % time_str if time_str else '')))

        print('final/bestever f-value = %e %e' % (self.best.last.f,
                                                  fbestever))
        if self.N < 9:
            print('incumbent solution: ' + str(list(self.gp.pheno(self.mean, into_bounds=self.boundary_handler.repair))))
            print('std deviation: ' + str(list(self.sigma * self.sigma_vec * sqrt(self.dC) * self.gp.scales)))
        else:
            print('incumbent solution: %s ...]' % (str(self.gp.pheno(self.mean, into_bounds=self.boundary_handler.repair)[:8])[:-1]))
            print('std deviations: %s ...]' % (str((self.sigma * self.sigma_vec * sqrt(self.dC) * self.gp.scales)[:8])[:-1]))
        return self.result() 

Example 9

def test_closing_fid(self):
        # Test that issue #1517 (too many opened files) remains closed
        # It might be a "weak" test since failed to get triggered on
        # e.g. Debian sid of 2012 Jul 05 but was reported to
        # trigger the failure on Ubuntu 10.04:
        # http://projects.scipy.org/numpy/ticket/1517#comment:2
        with temppath(suffix='.npz') as tmp:
            np.savez(tmp, data='LOVELY LOAD')
            # We need to check if the garbage collector can properly close
            # numpy npz file returned by np.load when their reference count
            # goes to zero.  Python 3 running in debug mode raises a
            # ResourceWarning when file closing is left to the garbage
            # collector, so we catch the warnings.  Because ResourceWarning
            # is unknown in Python < 3.x, we take the easy way out and
            # catch all warnings.
            with warnings.catch_warnings():
                warnings.simplefilter("ignore")
                for i in range(1, 1025):
                    try:
                        np.load(tmp)["data"]
                    except Exception as e:
                        msg = "Failed to load data from a file: %s" % e
                        raise AssertionError(msg) 

Example 10

def test_invalid_raise(self):
        # Test invalid raise
        data = ["1, 1, 1, 1, 1"] * 50
        for i in range(5):
            data[10 * i] = "2, 2, 2, 2 2"
        data.insert(0, "a, b, c, d, e")
        mdata = TextIO("\n".join(data))
        #
        kwargs = dict(delimiter=",", dtype=None, names=True)
        # XXX: is there a better way to get the return value of the
        # callable in assert_warns ?
        ret = {}

        def f(_ret={}):
            _ret['mtest'] = np.ndfromtxt(mdata, invalid_raise=False, **kwargs)
        assert_warns(ConversionWarning, f, _ret=ret)
        mtest = ret['mtest']
        assert_equal(len(mtest), 45)
        assert_equal(mtest, np.ones(45, dtype=[(_, int) for _ in 'abcde']))
        #
        mdata.seek(0)
        assert_raises(ValueError, np.ndfromtxt, mdata,
                      delimiter=",", names=True) 

Example 11

def Entropy(self, tau, mean, std, sigman=1.0):
        """
        Predictive entropy acquisition function

        Parameters
        ----------
        tau: float
            Best observed function evaluation.
        mean: float
            Point mean of the posterior process.
        std: float
            Point std of the posterior process.
        sigman: float
            Noise variance

        Returns
        -------
        float:
            Predictive entropy.
        """
        sp2 = std **2 + sigman
        return 0.5 * np.log(2 * np.pi * np.e * sp2) 

Example 12

def load_flux(self, parameters):
        '''
        Load just the flux from the grid, with possibly an index truncation.

        :param parameters: the stellar parameters
        :type parameters: dict

        :raises KeyError: if spectrum is not found in the HDF5 file.

        :returns: flux array
        '''

        key = self.flux_name.format(**parameters)
        with h5py.File(self.filename, "r") as hdf5:
            try:
                if self.ind is not None:
                    fl = hdf5['flux'][key][self.ind[0]:self.ind[1]]
                else:
                    fl = hdf5['flux'][key][:]
            except KeyError as e:
                raise GridError(e)

        # Note: will raise a KeyError if the file is not found.

        return fl 

Example 13

def __call__(self, value):
        '''
        Evaluate the interpolator at a parameter.

        :param value:
        :type value: float
        :raises C.InterpolationError: if *value* is out of bounds.

        :returns: ((low_val, high_val), (frac_low, frac_high)), the lower and higher bounding points in the grid
        and the fractional distance (0 - 1) between them and the value.
        '''
        try:
            index = self.index_interpolator(value)
        except ValueError as e:
            raise InterpolationError("Requested value {} is out of bounds. {}".format(value, e))
        high = np.ceil(index)
        low = np.floor(index)
        frac_index = index - low
        return ((self.parameter_list[low], self.parameter_list[high]), ((1 - frac_index), frac_index)) 

Example 14

def HelCorr(header, observatory="CTIO", idlpath="/Applications/exelis/idl83/bin/idl", debug=False):
    """
    Similar to HelCorr_IRAF, but attempts to use an IDL library.
    See HelCorr_IRAF docstring for details.
    """
    ra = 15.0 * convert(header['RA'])
    dec = convert(header['DEC'])
    jd = float(header['jd'])

    cmd_list = [idlpath,
                '-e',
                ("print, barycorr({:.8f}, {:.8f}, {:.8f}, 0,"
                 " obsname='{}')".format(jd, ra, dec, observatory)),
    ]
    if debug:
        print("RA: ", ra)
        print("DEC: ", dec)
        print("JD: ", jd)
    output = subprocess.check_output(cmd_list).split("\n")
    if debug:
        for line in output:
            print(line)
    return float(output[-2]) 

Example 15

def FF_Yang_Dou_residual(vbyu, *args):
    """
    The Yang_Dou residual function; to be used by numerical root finder
    """
    (Re, rough) = args

    Rstar = Re / (2 * vbyu * rough)
    theta = np.pi * np.log( Rstar / 1.25) / np.log(100 / 1.25)
    alpha = (1 - np.cos(theta)) / 2
    beta = 1 - (1 - 0.107) * (alpha + theta/np.pi) / 2
    R = Re / (2 * vbyu)

    rt = 1.
    for i in range(1,5):
        rt = rt - 1. / np.e * ( i / factorial(i) * (67.8 / R) ** (2 * i))

    return vbyu - (1 - rt) * R / 4. - rt * (2.5 * np.log(R) - 66.69 * R**-0.72 + 1.8 - (2.5 * np.log(
        (1 + alpha * Rstar / 5) / (1 + alpha * beta * Rstar / 5)) + (5.8 + 1.25) * (alpha * Rstar / (
        5 + alpha * Rstar)) ** 2 + 2.5 * (alpha * Rstar / (5 + alpha * Rstar)) - (5.8 + 1.25)
        * (alpha * beta * Rstar / (5 + alpha * beta * Rstar)) ** 2 - 2.5 * (alpha * beta * Rstar / (
        5 + alpha * beta * Rstar)))) 

Example 16

def take_step(self):
        curr_best = self.current_best

        nn = self.random_move(self.node)

        score = self.utility_function(nn)

        if np.random.uniform() < np.e ** ((self.current_best - score) / self.temperature):
            self.node = nn
            self.current_best = score

        self.temperature *= self.alpha

        # If no improvement return false
        if self.current_best == curr_best:
            return False

        return True 

Example 17

def test_invalid_raise(self):
        # Test invalid raise
        data = ["1, 1, 1, 1, 1"] * 50
        for i in range(5):
            data[10 * i] = "2, 2, 2, 2 2"
        data.insert(0, "a, b, c, d, e")
        mdata = TextIO("\n".join(data))
        #
        kwargs = dict(delimiter=",", dtype=None, names=True)
        # XXX: is there a better way to get the return value of the
        # callable in assert_warns ?
        ret = {}

        def f(_ret={}):
            _ret['mtest'] = np.ndfromtxt(mdata, invalid_raise=False, **kwargs)
        assert_warns(ConversionWarning, f, _ret=ret)
        mtest = ret['mtest']
        assert_equal(len(mtest), 45)
        assert_equal(mtest, np.ones(45, dtype=[(_, int) for _ in 'abcde']))
        #
        mdata.seek(0)
        assert_raises(ValueError, np.ndfromtxt, mdata,
                      delimiter=",", names=True) 

Example 18

def lccor(rc,bs=0,fs=1,step=1,kind='int'):
   import numpy as np
   from AnalysisFunctions import fcorr 
   ie=1/np.e
   rc.vars2load(['bx','by','bz'])
   tt  = np.zeros((fs-bs)/step)
   lxc = np.zeros((fs-bs)/step)
   lyc = np.zeros((fs-bs)/step)
   lc  = np.zeros((fs-bs)/step)
   for i in range(bs,fs,step):
      print i; idx = (i-bs)/step
      rc.loadslice(i); 
      tt[idx] = rc.time
      rx,bxcor=fcorr(rc.bx,rc.bx,ax=0,dx=rc.dx)
      ry,bycor=fcorr(rc.by,rc.by,ax=1,dx=rc.dy)
      if kind == "ie":
         lxc[idx]=rx[abs(bxcor-ie).argmin()]
         lyc[idx]=ry[abs(bycor-ie).argmin()]
      elif kind == "int":
         lxc[idx]=np.sum(bxcor)*rc.dx
         lyc[idx]=np.sum(bycor)*rc.dy
      lc[idx] = 0.5*(lxc[idx]+lyc[idx])
      print tt[idx],lxc[idx],lyc[idx],lc[idx]
   return tt,lxc,lyc,lc 

Example 19

def QFT(self,nqbits):
		N = 2**nqbits # number of rows and cols
		theta = 2.0 * np.pi / N
		opmat = [None]*N
		for i in range(N):
			# print "row",i,"--------------------"
			row = []
			for j in range(N):
				pow = i * j
				pow = pow % N
				# print "w^",pow
				row.append(np.e**(1.j*theta*pow))
			opmat[i] = row
		# print opmat
		opmat = np.matrix(opmat,dtype=complex) / np.sqrt(N)
		oper = ["QFT({:d})".format(nqbits),opmat]
		return oper 

Example 20

def gain_factor(theta):
        gain = np.empty_like(theta)

        mask = theta <= 87.541
        gain[mask] = (58 + 4 / np.cos(np.deg2rad(theta[mask]))) / 5

        mask = np.logical_and(theta <= 96, 87.541 < theta)
        gain[mask] = (123 * np.exp(1.06 * (theta[mask] - 89.589)) *
                      ((theta[mask] - 93)**2 / 18 + 0.5))

        mask = np.logical_and(96 < theta, theta <= 101)
        gain[mask] = 123 * np.exp(1.06 * (theta[mask] - 89.589))

        mask = np.logical_and(101 < theta, theta <= 103.49)
        gain[mask] = (123 * np.exp(1.06 * (101 - 89.589)) *
                      np.log(theta[mask] - (101 - np.e)) ** 2)

        gain[theta > 103.49] = 6.0e7

        return gain 

Example 21

def log_bf(p, s):
	"""
	log10 of the multi-way Bayes factor, see eq.(18)

	p: separations matrix (NxN matrix of arrays)
	s: errors (list of N arrays)
	"""
	n = len(s)
	# precision parameter w = 1/sigma^2
	w = [numpy.asarray(si, dtype=numpy.float)**-2. for si in s]
	norm = (n - 1) * log(2) + 2 * (n - 1) * log_arcsec2rad
	
	wsum = numpy.sum(w, axis=0)
	s = numpy.sum(log(w), axis=0) - log(wsum)
	q = 0
	for i, wi in enumerate(w):
		for j, wj in enumerate(w):
			if i < j:
				q += wi * wj * p[i][j]**2
	exponent = - q / 2 / wsum
	return (norm + s + exponent) * log10(e) 

Example 22

def aggregate_kvis(self):
        kvis_list = [(k.ref_temp_k, (k.m_2_s, False))
                     for k in self.culled_kvis()]

        if hasattr(self.record, 'dvis'):
            dvis_list = [(d.ref_temp_k,
                          (est.dvis_to_kvis(d.kg_ms,
                                            self.density_at_temp(d.ref_temp_k)
                                            ),
                           True)
                          )
                         for d in list(self.non_redundant_dvis())]

            agg = dict(dvis_list)
            agg.update(kvis_list)
        else:
            agg = dict(kvis_list)

        out_items = sorted([(i[0], i[1][0], i[1][1])
                            for i in agg.iteritems()])

        kvis_out, estimated = zip(*[(KVis(m_2_s=k, ref_temp_k=t), e)
                                    for t, k, e in out_items])

        return kvis_out, estimated 

Example 23

def test_closing_fid(self):
        # Test that issue #1517 (too many opened files) remains closed
        # It might be a "weak" test since failed to get triggered on
        # e.g. Debian sid of 2012 Jul 05 but was reported to
        # trigger the failure on Ubuntu 10.04:
        # http://projects.scipy.org/numpy/ticket/1517#comment:2
        with temppath(suffix='.npz') as tmp:
            np.savez(tmp, data='LOVELY LOAD')
            # We need to check if the garbage collector can properly close
            # numpy npz file returned by np.load when their reference count
            # goes to zero.  Python 3 running in debug mode raises a
            # ResourceWarning when file closing is left to the garbage
            # collector, so we catch the warnings.  Because ResourceWarning
            # is unknown in Python < 3.x, we take the easy way out and
            # catch all warnings.
            with warnings.catch_warnings():
                warnings.simplefilter("ignore")
                for i in range(1, 1025):
                    try:
                        np.load(tmp)["data"]
                    except Exception as e:
                        msg = "Failed to load data from a file: %s" % e
                        raise AssertionError(msg) 

Example 24

def test_invalid_raise(self):
        # Test invalid raise
        data = ["1, 1, 1, 1, 1"] * 50
        for i in range(5):
            data[10 * i] = "2, 2, 2, 2 2"
        data.insert(0, "a, b, c, d, e")
        mdata = TextIO("\n".join(data))
        #
        kwargs = dict(delimiter=",", dtype=None, names=True)
        # XXX: is there a better way to get the return value of the
        # callable in assert_warns ?
        ret = {}

        def f(_ret={}):
            _ret['mtest'] = np.ndfromtxt(mdata, invalid_raise=False, **kwargs)
        assert_warns(ConversionWarning, f, _ret=ret)
        mtest = ret['mtest']
        assert_equal(len(mtest), 45)
        assert_equal(mtest, np.ones(45, dtype=[(_, int) for _ in 'abcde']))
        #
        mdata.seek(0)
        assert_raises(ValueError, np.ndfromtxt, mdata,
                      delimiter=",", names=True) 

Example 25

def test_closing_fid(self):
        # Test that issue #1517 (too many opened files) remains closed
        # It might be a "weak" test since failed to get triggered on
        # e.g. Debian sid of 2012 Jul 05 but was reported to
        # trigger the failure on Ubuntu 10.04:
        # http://projects.scipy.org/numpy/ticket/1517#comment:2
        with temppath(suffix='.npz') as tmp:
            np.savez(tmp, data='LOVELY LOAD')
            # We need to check if the garbage collector can properly close
            # numpy npz file returned by np.load when their reference count
            # goes to zero.  Python 3 running in debug mode raises a
            # ResourceWarning when file closing is left to the garbage
            # collector, so we catch the warnings.  Because ResourceWarning
            # is unknown in Python < 3.x, we take the easy way out and
            # catch all warnings.
            with suppress_warnings() as sup:
                sup.filter(Warning)  # TODO: specify exact message
                for i in range(1, 1025):
                    try:
                        np.load(tmp)["data"]
                    except Exception as e:
                        msg = "Failed to load data from a file: %s" % e
                        raise AssertionError(msg) 

Example 26

def test_invalid_raise(self):
        # Test invalid raise
        data = ["1, 1, 1, 1, 1"] * 50
        for i in range(5):
            data[10 * i] = "2, 2, 2, 2 2"
        data.insert(0, "a, b, c, d, e")
        mdata = TextIO("\n".join(data))
        #
        kwargs = dict(delimiter=",", dtype=None, names=True)
        # XXX: is there a better way to get the return value of the
        # callable in assert_warns ?
        ret = {}

        def f(_ret={}):
            _ret['mtest'] = np.ndfromtxt(mdata, invalid_raise=False, **kwargs)
        assert_warns(ConversionWarning, f, _ret=ret)
        mtest = ret['mtest']
        assert_equal(len(mtest), 45)
        assert_equal(mtest, np.ones(45, dtype=[(_, int) for _ in 'abcde']))
        #
        mdata.seek(0)
        assert_raises(ValueError, np.ndfromtxt, mdata,
                      delimiter=",", names=True) 

Example 27

def gaussian_entropy(sigma):
  """Get the entropy of a multivariate Gaussian distribution with
  ALL DIMENSIONS INDEPENDENT.

  C.f. eq.(8.7) of [here](http://www.biopsychology.org/norwich/isp/\
  chap8.pdf).

  NOTE:
    Gaussian entropy is independent of its center `mu`.

  Args:
    sigma:
      Tensor of shape `[None]`.

  Returns:
    Scalar.
  """
  n_dims = np.prod(sigma.get_shape().as_list())
  return 0.5 * n_dims * tf.log(2. * np.pi * np.e) \
         + tf.reduce_sum(tf.log(sigma)) 

Example 28

def result_pretty(self, number_of_runs=0, time_str=None,
                      fbestever=None):
        """pretty print result.

        Returns ``self.result()``

        """
        if fbestever is None:
            fbestever = self.best.f
        s = (' after %i restart' + ('s' if number_of_runs > 1 else '')) \
            % number_of_runs if number_of_runs else ''
        for k, v in list(self.stop().items()):
            print('termination on %s=%s%s' % (k, str(v), s +
                  (' (%s)' % time_str if time_str else '')))

        print('final/bestever f-value = %e %e' % (self.best.last.f,
                                                  fbestever))
        if self.N < 9:
            print('incumbent solution: ' + str(list(self.gp.pheno(self.mean, into_bounds=self.boundary_handler.repair))))
            print('std deviation: ' + str(list(self.sigma * self.sigma_vec * sqrt(self.dC) * self.gp.scales)))
        else:
            print('incumbent solution: %s ...]' % (str(self.gp.pheno(self.mean, into_bounds=self.boundary_handler.repair)[:8])[:-1]))
            print('std deviations: %s ...]' % (str((self.sigma * self.sigma_vec * sqrt(self.dC) * self.gp.scales)[:8])[:-1]))
        return self.result() 

Example 29

def xgboost(train_sample, validation_sample, features, model_param):
    def evalmape(preds, dtrain):
        labels = dtrain.get_label()
        preds = np.power(log_base, preds) - 1
        # return a pair metric_name, result
        # since preds are margin(before logistic transformation, cutoff at 0)
        return 'mape', np.abs((labels - preds) / labels).sum() / len(labels)

    param = {'max_depth': model_param['depth'], 'eta': model_param['lr'], 'silent': 1, 'objective': 'reg:linear', 'booster': 'gbtree',
             'subsample': model_param['sample'],
             'seed':model_param['seed'],
             'colsample_bytree':1, 'min_child_weight':1, 'gamma':0}
    param['eval_metric'] = 'mae'
    num_round = model_param['tree']
    log_base = np.e
    plst = param.items()
    dtrain = xgb.DMatrix(train_sample[features], np.log1p(train_sample['volume'])/np.log(log_base))
    dtest = xgb.DMatrix(validation_sample[features], validation_sample['volume'])
    watchlist = [(dtest, 'eval'), (dtrain, 'train')]
    bst = xgb.train(plst, dtrain, num_round, watchlist, feval=evalmape)
    xgboost_prob = np.power(log_base, bst.predict(dtest)) - 1
    # MAPE
    print_mape(validation_sample['volume'], xgboost_prob, 'XGBOOST')
    return xgboost_prob 

Example 30

def result_pretty(self, number_of_runs=0, time_str=None,
                      fbestever=None):
        """pretty print result.

        Returns ``self.result()``

        """
        if fbestever is None:
            fbestever = self.best.f
        s = (' after %i restart' + ('s' if number_of_runs > 1 else '')) \
            % number_of_runs if number_of_runs else ''
        for k, v in list(self.stop().items()):
            print('termination on %s=%s%s' % (k, str(v), s +
                  (' (%s)' % time_str if time_str else '')))

        print('final/bestever f-value = %e %e' % (self.best.last.f,
                                                  fbestever))
        if self.N < 9:
            print('incumbent solution: ' + str(list(self.gp.pheno(self.mean, into_bounds=self.boundary_handler.repair))))
            print('std deviation: ' + str(list(self.sigma * self.sigma_vec * sqrt(self.dC) * self.gp.scales)))
        else:
            print('incumbent solution: %s ...]' % (str(self.gp.pheno(self.mean, into_bounds=self.boundary_handler.repair)[:8])[:-1]))
            print('std deviations: %s ...]' % (str((self.sigma * self.sigma_vec * sqrt(self.dC) * self.gp.scales)[:8])[:-1]))
        return self.result() 

Example 31

def define_assignment_operator(parser):
    """Define assignment and reading of simple variables."""

    parser.calculator_symbol_dict = {} # Store symbol dict as a new parser attribute.
    symbol_dict = parser.calculator_symbol_dict

    symbol_dict["pi"] = np.pi # Predefine pi.
    symbol_dict["e"] = np.e # Predefine e.

    # Note that on_ties for identifiers is set to -1, so that when string
    # lengths are equal defined function names will take precedence over generic
    # identifiers (which are only defined as a group regex).
    parser.def_token("k_identifier", r"[a-zA-Z_](?:\w*)", on_ties=-1)
    parser.def_literal("k_identifier", eval_fun=lambda t: symbol_dict.get(t.value, 0.0))

    def eval_assign(t):
        """Evaluate the identifier token `t` and save the value in `symbol_dict`."""
        rhs = t[1].eval_subtree()
        symbol_dict[t[0].value] = rhs
        return rhs

    parser.def_infix_op("k_equals", 5, "right",
                precond_fun=lambda tok, lex: lex.peek(-1).token_label == "k_identifier",
                eval_fun=eval_assign) 

Example 32

def test_closing_fid(self):
        # Test that issue #1517 (too many opened files) remains closed
        # It might be a "weak" test since failed to get triggered on
        # e.g. Debian sid of 2012 Jul 05 but was reported to
        # trigger the failure on Ubuntu 10.04:
        # http://projects.scipy.org/numpy/ticket/1517#comment:2
        with temppath(suffix='.npz') as tmp:
            np.savez(tmp, data='LOVELY LOAD')
            # We need to check if the garbage collector can properly close
            # numpy npz file returned by np.load when their reference count
            # goes to zero.  Python 3 running in debug mode raises a
            # ResourceWarning when file closing is left to the garbage
            # collector, so we catch the warnings.  Because ResourceWarning
            # is unknown in Python < 3.x, we take the easy way out and
            # catch all warnings.
            with warnings.catch_warnings():
                warnings.simplefilter("ignore")
                for i in range(1, 1025):
                    try:
                        np.load(tmp)["data"]
                    except Exception as e:
                        msg = "Failed to load data from a file: %s" % e
                        raise AssertionError(msg) 

Example 33

def test_invalid_raise(self):
        # Test invalid raise
        data = ["1, 1, 1, 1, 1"] * 50
        for i in range(5):
            data[10 * i] = "2, 2, 2, 2 2"
        data.insert(0, "a, b, c, d, e")
        mdata = TextIO("\n".join(data))
        #
        kwargs = dict(delimiter=",", dtype=None, names=True)
        # XXX: is there a better way to get the return value of the
        # callable in assert_warns ?
        ret = {}

        def f(_ret={}):
            _ret['mtest'] = np.ndfromtxt(mdata, invalid_raise=False, **kwargs)
        assert_warns(ConversionWarning, f, _ret=ret)
        mtest = ret['mtest']
        assert_equal(len(mtest), 45)
        assert_equal(mtest, np.ones(45, dtype=[(_, int) for _ in 'abcde']))
        #
        mdata.seek(0)
        assert_raises(ValueError, np.ndfromtxt, mdata,
                      delimiter=",", names=True) 

Example 34

def test_real(self):
        val = ng.get_data('const.e')
        assert type(val) == np.ndarray
        assert len(val) == 1
        assert val.dtype == 'float64'
        assert val[0] == pytest.approx(np.e) 

Example 35

def entropy(self):
        return U.sum(self.logstd + .5 * np.log(2.0 * np.pi * np.e), -1) 

Example 36

def test_uniformfloat_to_integer(self):
        f1 = UniformFloatHyperparameter("param", 1, 10, q=0.1, log=True)
        with warnings.catch_warnings():
            f2 = f1.to_integer()
            warnings.simplefilter("ignore")
            # TODO is this a useful rounding?
            # TODO should there be any rounding, if e.g. lower=0.1
            self.assertEqual("param, Type: UniformInteger, Range: [1, 10], "
                             "Default: 3, on log-scale", str(f2)) 

Example 37

def gl_quad3d(fun,n,x_lim = None,y_lim = None,z_lim = None,args=()):
    if x_lim is None:
        a,b = -1, 1
    else:
        a,b= x_lim[0],x_lim[1]
    
    if y_lim is None:
        c ,d = -1,1
    else:
        c ,d = y_lim[0],y_lim[1]
    if z_lim is None:
        e,f= -1,1
    else:
        e ,f = z_lim[0],z_lim[1]

    if not callable(fun):
        return (b-a)*(d-c)*(f-e)*fun
    else:
        loc,w = np.polynomial.legendre.leggauss(n)
        s = (1/8.*(b-a)*(d-c)*(f-e)*fun(((b-a)*v1/2.+(a+b)/2.,
                                     (d-c)*v2/2.+(c+d)/2.,
                                     (f-e)*v3/2.+(e+f)/2.),*args)*w[i]*w[j]*w[k]
             for i,v1 in enumerate(loc)
             for j,v2 in enumerate(loc)
             for k,v3 in enumerate(loc))
        return sum(s) 

Example 38

def fun2(x,a,b):
    return a*x[0]*x[1]*np.e**(b*x[2]) 

Example 39

def __iadd__(self, other):
        '''add an instance (e.g., from another sentence).'''

        if type(other) is tuple:
            ## avoid creating new CiderScorer instances
            self.cook_append(other[0], other[1])
        else:
            self.ctest.extend(other.ctest)
            self.crefs.extend(other.crefs)

        return self 

Example 40

def __iadd__(self, other):
        '''add an instance (e.g., from another sentence).'''

        if type(other) is tuple:
            ## avoid creating new CiderScorer instances
            self.cook_append(other[0], other[1])
        else:
            self.ctest.extend(other.ctest)
            self.crefs.extend(other.crefs)

        return self 

Example 41

def __iadd__(self, other):
        '''add an instance (e.g., from another sentence).'''

        if type(other) is tuple:
            ## avoid creating new CiderScorer instances
            self.cook_append(other[0], other[1])
        else:
            self.ctest.extend(other.ctest)
            self.crefs.extend(other.crefs)

        return self 

Example 42

def test_complex_arrays(self):
        ncols = 2
        nrows = 2
        a = np.zeros((ncols, nrows), dtype=np.complex128)
        re = np.pi
        im = np.e
        a[:] = re + 1.0j * im

        # One format only
        c = BytesIO()
        np.savetxt(c, a, fmt=' %+.3e')
        c.seek(0)
        lines = c.readlines()
        assert_equal(
            lines,
            [b' ( +3.142e+00+ +2.718e+00j)  ( +3.142e+00+ +2.718e+00j)\n',
             b' ( +3.142e+00+ +2.718e+00j)  ( +3.142e+00+ +2.718e+00j)\n'])

        # One format for each real and imaginary part
        c = BytesIO()
        np.savetxt(c, a, fmt='  %+.3e' * 2 * ncols)
        c.seek(0)
        lines = c.readlines()
        assert_equal(
            lines,
            [b'  +3.142e+00  +2.718e+00  +3.142e+00  +2.718e+00\n',
             b'  +3.142e+00  +2.718e+00  +3.142e+00  +2.718e+00\n'])

        # One format for each complex number
        c = BytesIO()
        np.savetxt(c, a, fmt=['(%.3e%+.3ej)'] * ncols)
        c.seek(0)
        lines = c.readlines()
        assert_equal(
            lines,
            [b'(3.142e+00+2.718e+00j) (3.142e+00+2.718e+00j)\n',
             b'(3.142e+00+2.718e+00j) (3.142e+00+2.718e+00j)\n']) 

Example 43

def test_invalid_raise_with_usecols(self):
        # Test invalid_raise with usecols
        data = ["1, 1, 1, 1, 1"] * 50
        for i in range(5):
            data[10 * i] = "2, 2, 2, 2 2"
        data.insert(0, "a, b, c, d, e")
        mdata = TextIO("\n".join(data))
        kwargs = dict(delimiter=",", dtype=None, names=True,
                      invalid_raise=False)
        # XXX: is there a better way to get the return value of the
        # callable in assert_warns ?
        ret = {}

        def f(_ret={}):
            _ret['mtest'] = np.ndfromtxt(mdata, usecols=(0, 4), **kwargs)
        assert_warns(ConversionWarning, f, _ret=ret)
        mtest = ret['mtest']
        assert_equal(len(mtest), 45)
        assert_equal(mtest, np.ones(45, dtype=[(_, int) for _ in 'ae']))
        #
        mdata.seek(0)
        mtest = np.ndfromtxt(mdata, usecols=(0, 1), **kwargs)
        assert_equal(len(mtest), 50)
        control = np.ones(50, dtype=[(_, int) for _ in 'ab'])
        control[[10 * _ for _ in range(5)]] = (2, 2)
        assert_equal(mtest, control) 

Example 44

def e() -> Float:
    return np.e 

Example 45

def __call__(self, samples, x):
        z = T.log(self.sigma * T.sqrt(2 * pi)).sum()
        d_s = (samples[:, None, :] - x[None, :, :]) / self.sigma[None, None, :]
        e = log_mean_exp((-.5 * d_s ** 2).sum(axis=2), axis=0)
        return (e - z).mean() 

Example 46

def entropy(self, dist_info):
        log_stds = dist_info["log_std"]
        return np.sum(log_stds + np.log(np.sqrt(2 * np.pi * np.e)), axis=-1) 

Example 47

def entropy_sym(self, dist_info_var):
        log_std_var = dist_info_var["log_std"]
        return TT.sum(log_std_var + TT.log(np.sqrt(2 * np.pi * np.e)), axis=-1) 

Example 48

def shift_or_mirror_into_invertible_domain(self, solution_genotype):
        """return the reference solution that has the same ``box_constraints_transformation(solution)``
        value, i.e. ``tf.shift_or_mirror_into_invertible_domain(x) = tf.inverse(tf.transform(x))``.
        This is an idempotent mapping (leading to the same result independent how often it is
        repeatedly applied).

        """
        return self.inverse(self(solution_genotype))
        raise NotImplementedError('this is an abstract method that should be implemented in the derived class') 

Example 49

def repair_genotype(self, x, copy_if_changed=False):
        """make sure that solutions fit to the sample distribution, this interface will probably change.

        In particular the frequency of x - self.mean being long is limited.

        """
        x = array(x, copy=False)
        mold = array(self.mean, copy=False)
        if 1 < 3:  # hard clip at upper_length
            upper_length = self.N**0.5 + 2 * self.N / (self.N + 2)  # should become an Option, but how? e.g. [0, 2, 2]
            fac = self.mahalanobis_norm(x - mold) / upper_length

            if fac > 1:
                if copy_if_changed:
                    x = (x - mold) / fac + mold
                else:  # should be 25% faster:
                    x -= mold
                    x /= fac
                    x += mold
                # print self.countiter, k, fac, self.mahalanobis_norm(pop[k] - mold)
                # adapt also sigma: which are the trust-worthy/injected solutions?
        else:
            if 'checktail' not in self.__dict__:  # hasattr(self, 'checktail')
                raise NotImplementedError
                # from check_tail_smooth import CheckTail  # for the time being
                # self.checktail = CheckTail()
                # print('untested feature checktail is on')
            fac = self.checktail.addchin(self.mahalanobis_norm(x - mold))

            if fac < 1:
                x = fac * (x - mold) + mold

        return x 

Example 50

def __init__(self, fitness_function, *args, **kwargs):
            """`fitness_function` must be callable (e.g. a function
            or a callable class instance)"""
            # the original fitness to be called
            self.inner_fitness = fitness_function
            # self.condition_number = ... 
点赞