# Python numpy.inner() 使用实例

The following are code examples for showing how to use . They are extracted from open source Python projects. You can vote up the examples you like or vote down the exmaples you don’t like. You can also save this page to your account.

Example 1

```def word_sim_test(filename, pos_vectors):
delim = ','
actual_sim_list, pred_sim_list = [], []
missed = 0

with open(filename, 'r') as pairs:
for pair in pairs:
w1, w2, actual_sim = pair.strip().split(delim)

try:
w1_vec = create_word_vector(w1, pos_vectors)
w2_vec = create_word_vector(w2, pos_vectors)
pred = float(np.inner(w1_vec, w2_vec))
actual_sim_list.append(float(actual_sim))
pred_sim_list.append(pred)

except KeyError:
missed += 1

spearman, _ = st.spearmanr(actual_sim_list, pred_sim_list)
pearson, _ = st.pearsonr(actual_sim_list, pred_sim_list)

return spearman, pearson, missed ```

Example 2

```def vdot(a, b):
"""Returns the dot product of two vectors.

The input arrays are flattened into 1-D vectors and then it performs inner
product of these vectors.

Args:
a (cupy.ndarray): The first argument.
b (cupy.ndarray): The second argument.

Returns:
cupy.ndarray: Zero-dimensional array of the dot product result.

.. seealso:: :func:`numpy.vdot`

"""
if a.size != b.size:
raise ValueError('Axis dimension mismatch')
if a.dtype.kind == 'c':
a = a.conj()

return core.tensordot_core(a, b, None, 1, 1, a.size, ()) ```

Example 3

```def idot(arrays):
"""
Yields the cumulative array inner product (dot product) of arrays.

Parameters
----------
arrays : iterable
Arrays to be reduced.

Yields
------
online_dot : ndarray

--------
numpy.linalg.multi_dot : Compute the dot product of two or more arrays in a single function call,
while automatically selecting the fastest evaluation order.
"""
yield from _ireduce_linalg(arrays, np.dot) ```

Example 4

```def itensordot(arrays, axes = 2):
"""
Yields the cumulative array inner product (dot product) of arrays.

Parameters
----------
arrays : iterable
Arrays to be reduced.
axes : int or (2,) array_like
* integer_like: If an int N, sum over the last N axes of a
and the first N axes of b in order. The sizes of the corresponding axes must match.
* (2,) array_like: Or, a list of axes to be summed over, first sequence applying to a,
second to b. Both elements array_like must be of the same length.

Yields
------
online_tensordot : ndarray

--------
numpy.tensordot : Compute the tensordot on two tensors.
"""
yield from _ireduce_linalg(arrays, np.tensordot, axes = axes) ```

Example 5

```def spherical_noise(gridData=None, order_max=8, spherical_harmonic_bases=None):
''' Returns order-limited random weights on a spherical surface

Parameters
----------
gridData : io.SphericalGrid
SphericalGrid containing azimuth and colatitude
order_max : int, optional
Spherical order limit [Default: 8]

Returns
-------
noisy_weights : array_like, complex
Noisy weigths
'''

if spherical_harmonic_bases is None:
if gridData is None:
raise TypeError('Either a grid or the spherical harmonic bases have to be provided.')
gridData = SphericalGrid(*gridData)
spherical_harmonic_bases = sph_harm_all(order_max, gridData.azimuth, gridData.colatitude)
else:
order_max = _np.int(_np.sqrt(spherical_harmonic_bases.shape[1]) - 1)
return _np.inner(spherical_harmonic_bases, _np.random.randn((order_max + 1) ** 2) + 1j * _np.random.randn((order_max + 1) ** 2)) ```

Example 6

```def project_verteces(self, mesh, orientation):
"""Supplement the mesh array with scalars (max and median)
for each face projected onto the orientation vector.
Args:
mesh (np.array): with format face_count x 6 x 3.
orientation (np.array): with format 3 x 3.
Returns:
"""
mesh[:, 4, 0] = np.inner(mesh[:, 1, :], orientation)
mesh[:, 4, 1] = np.inner(mesh[:, 2, :], orientation)
mesh[:, 4, 2] = np.inner(mesh[:, 3, :], orientation)

mesh[:, 5, 1] = np.max(mesh[:, 4, :], axis=1)
mesh[:, 5, 2] = np.median(mesh[:, 4, :], axis=1)
sleep(0)  # Yield, so other threads get a bit of breathing space.
return mesh ```

Example 7

```def test_einsum_misc(self):
# This call used to crash because of a bug in
# PyArray_AssignZero
a = np.ones((1, 2))
b = np.ones((2, 2, 1))
assert_equal(np.einsum('ij...,j...->i...', a, b), [[[2], [2]]])

# The iterator had an issue with buffering this reduction
a = np.ones((5, 12, 4, 2, 3), np.int64)
b = np.ones((5, 12, 11), np.int64)
assert_equal(np.einsum('ijklm,ijn,ijn->', a, b, b),
np.einsum('ijklm,ijn->', a, b))

# Issue #2027, was a problem in the contiguous 3-argument
# inner loop implementation
a = np.arange(1, 3)
b = np.arange(1, 5).reshape(2, 2)
c = np.arange(1, 9).reshape(4, 2)
assert_equal(np.einsum('x,yx,zx->xzy', a, b, c),
[[[1,  3], [3,  9], [5, 15], [7, 21]],
[[8, 16], [16, 32], [24, 48], [32, 64]]]) ```

Example 8

```def test_einsum_all_contig_non_contig_output(self):
# Issue gh-5907, tests that the all contiguous special case
# actually checks the contiguity of the output
x = np.ones((5, 5))
out = np.ones(10)[::2]
correct_base = np.ones(10)
correct_base[::2] = 5
# Always worked (inner iteration is done with 0-stride):
np.einsum('mi,mi,mi->m', x, x, x, out=out)
assert_array_equal(out.base, correct_base)
# Example 1:
out = np.ones(10)[::2]
np.einsum('im,im,im->m', x, x, x, out=out)
assert_array_equal(out.base, correct_base)
# Example 2, buffering causes x to be contiguous but
# special cases do not catch the operation before:
out = np.ones((2, 2, 2))[..., 0]
correct_base = np.ones((2, 2, 2))
correct_base[..., 0] = 2
x = np.ones((2, 2), np.float32)
np.einsum('ij,jk->ik', x, x, out=out)
assert_array_equal(out.base, correct_base) ```

Example 9

```def test_TakeTransposeInnerOuter(self):
# Test of take, transpose, inner, outer products
x = arange(24)
y = np.arange(24)
x = x.reshape(2, 3, 4)
y = y.reshape(2, 3, 4)
assert_equal(np.transpose(y, (2, 0, 1)), transpose(x, (2, 0, 1)))
assert_equal(np.take(y, (2, 0, 1), 1), take(x, (2, 0, 1), 1))
assert_equal(np.inner(filled(x, 0), filled(y, 0)),
inner(x, y))
assert_equal(np.outer(filled(x, 0), filled(y, 0)),
outer(x, y))
y = array(['abc', 1, 'def', 2, 3], object)
t = take(y, [0, 3, 4])
assert_(t[0] == 'abc')
assert_(t[1] == 2)
assert_(t[2] == 3) ```

Example 10

```def test_4(self):
"""
Test of take, transpose, inner, outer products.

"""
x = self.arange(24)
y = np.arange(24)
x = x.reshape(2, 3, 4)
y = y.reshape(2, 3, 4)
assert self.allequal(np.transpose(y, (2, 0, 1)), self.transpose(x, (2, 0, 1)))
assert self.allequal(np.take(y, (2, 0, 1), 1), self.take(x, (2, 0, 1), 1))
assert self.allequal(np.inner(self.filled(x, 0), self.filled(y, 0)),
self.inner(x, y))
assert self.allequal(np.outer(self.filled(x, 0), self.filled(y, 0)),
self.outer(x, y))
y = self.array(['abc', 1, 'def', 2, 3], object)
t = self.take(y, [0, 3, 4])
assert t[0] == 'abc'
assert t[1] == 2
assert t[2] == 3 ```

Example 11

```def inner(a, b):
"""
Returns the inner product of a and b for arrays of floating point types.

Like the generic NumPy equivalent the product sum is over the last dimension
of a and b.

Notes
-----
The first argument is not conjugated.

"""
fa = filled(a, 0)
fb = filled(b, 0)
if len(fa.shape) == 0:
fa.shape = (1,)
if len(fb.shape) == 0:
fb.shape = (1,)
return np.inner(fa, fb).view(MaskedArray) ```

Example 12

```def test__compute_probabilities_loosely(self):
b = il.RoughlyOptimized(self.lists, sample_num=3)
is_success, p, minimum = b._compute_probabilities(
self.lists,
self.rankings,
)
assert is_success
self.assert_almost_equal(p[0], 0.0)
self.assert_almost_equal(p[1], 0.0)
self.assert_almost_equal(p[2], 1.0)
self.assert_almost_equal(b._lambdas[0], 0.5 - 1.0/3)
self.assert_almost_equal(b._lambdas[1], 0.5 - 1.0/3 + 1.0/3 - 0.0)
self.assert_almost_equal(
minimum,
np.sum(b._lambdas) + np.inner(p, b._sigmas),
)
_, _, minimum = b._compute_probabilities_loosely(
self.lists,
self.rankings,
bias_weight=10.0,
)
self.assert_almost_equal(
minimum,
10.0 * np.sum(b._lambdas) + np.inner(p, b._sigmas),
) ```

Example 13

```def test__compute_probabilities(self):
lists = [[1, 2], [2, 3]]
b = il.Optimized(lists, sample_num=3)
rankings = []
r = CreditRanking(num_rankers=len(lists), contents=[1, 2])
r.credits = {0: {1: 1.0, 2: 0.5}, 1: {1: 1.0/3, 2: 1.0}}
rankings.append(r)
r = CreditRanking(num_rankers=len(lists), contents=[2, 1])
r.credits = {0: {1: 1.0, 2: 0.5}, 1: {1: 1.0/3, 2: 1.0}}
rankings.append(r)
r = CreditRanking(num_rankers=len(lists), contents=[2, 3])
r.credits = {0: {2: 0.5, 3: 1.0/3}, 1: {2: 1.0, 3: 0.5}}
rankings.append(r)
is_success, p, minimum = b._compute_probabilities(lists, rankings)
assert is_success
assert (p >= 0).all()
assert (p <= 1).all()
assert minimum >= 0
self.assert_almost_equal(np.sum(p), 1)
self.assert_almost_equal(np.inner([1-1.0/3, -0.5, -0.5], p), 0)
self.assert_almost_equal(np.inner([0.5-1.0/3, 0.5-1.0/3, -1+1.0/3], p), 0)
self.assert_almost_equal(p[0], 0.4285714273469387)
self.assert_almost_equal(p[1], 0.37142857025306114)
self.assert_almost_equal(p[2], 0.20000000240000002) ```

Example 14

```def find_nearest_instance_thread(test_instance_start_index, test_instance_end_index):

print test_instance_start_index, test_instance_end_index

for test_instance_index in range(test_instance_start_index, test_instance_end_index):

# find the nearest training instance with cosine similarity
maximal_cosine_similarity = -1
maximal_cosine_similarity_index = 0
for training_instance, training_instance_index in zip(training_data, range(len(training_data))):
# compute the cosine similarity
# first, compute the inner product
inner_product = np.inner(test_data[test_instance_index][0].reshape(-1), training_instance[0].reshape(-1))
normalized_inner_product = inner_product / test_data_lengths[test_instance_index] / training_data_lengths[training_instance_index]

if normalized_inner_product > maximal_cosine_similarity:
maximal_cosine_similarity = normalized_inner_product
maximal_cosine_similarity_index = training_instance_index

classified_results[test_instance_index] = maximal_cosine_similarity_index ```

Example 15

```def find_nearest_instance_subprocess(test_instance_start_index, test_instance_end_index,\
classified_results):
# print test_instance_start_index, test_instance_end_index
for test_instance_index in range(test_instance_start_index, test_instance_end_index):
# find the nearest training instance with cosine similarity
maximal_cosine_similarity = -1.0
maximal_cosine_similarity_index = 0
for training_instance, training_instance_index in\
zip(training_data_instances, range(len(training_data_instances))):
# compute the cosine similarity
# first, compute the inner product
inner_product = np.inner(test_data_instances[test_instance_index], training_instance)
# second, normalize the inner product
normalized_inner_product = inner_product / test_data_lengths[test_instance_index]\
/ training_data_lengths[training_instance_index]
if normalized_inner_product > maximal_cosine_similarity:
maximal_cosine_similarity = normalized_inner_product
maximal_cosine_similarity_index = training_instance_index
classified_results[test_instance_index] =\
training_data_labels[int(maximal_cosine_similarity_index)] ```

Example 16

```def calc_partial_factor_scores(Xscaled, Q, col_indices):
"""
Projects individual scores onto the group-level component.
"""

print("Calculating factor scores for datasets... ", end='')

pfs = []

for i, val in enumerate(col_indices):
pfs.append(np.inner(Xscaled[:, val], Q[val, :].T))

pfs = np.array(pfs)

print("Done!")

return pfs ```

Example 17

```def get_similar_vector(self, match_vector, match_type, num_similar,
oversample, normalize):
"""Get similar items from an input vector."""
if not match_vector:
return []

# search_k defaults to n * n_trees in Annoy - multiply by oversample
# don't allow oversample to go below 1, this causes errors in Annoy
if oversample < 1:
oversample = 1
search_k = int(num_similar * self._annoy_objects[match_type]._ntrees *
oversample)

similar_items = self._annoy_objects[match_type].get_nns_by_vector(
match_vector, num_similar, search_k)
# compute inner products, and sort
scores = self.get_scores_vector(
match_vector, match_type, similar_items, normalize)
scores = sorted(scores, key=lambda k: k['score'], reverse=True)
return scores[:num_similar] ```

Example 18

```def _get_Smatrices(self, X, y):

Sb = np.zeros((X.shape[1], X.shape[1]))

S = np.inner(X.T, X.T)
N = len(X)
mu = np.mean(X, axis=0)
classLabels = np.unique(y)
for label in classLabels:
classIdx = np.argwhere(y == label).T[0]
Nl = len(classIdx)
xL = X[classIdx]
muL = np.mean(xL, axis=0)
muLbar = muL - mu
Sb = Sb + Nl * np.outer(muLbar, muLbar)

Sbar = S - N * np.outer(mu, mu)
Sw = Sbar - Sb
self.mean_ = mu

return (Sw, Sb) ```

Example 19

```def convex_hull(points, vind, nind, tind, obj):
"super ineffective"
cnt = len(points)
for a in range(cnt):
for b in range(a+1,cnt):
for c in range(b+1,cnt):
vec1 = points[a] - points[b]
vec2 = points[a] - points[c]
n  = np.cross(vec1, vec2)
n /= np.linalg.norm(n)
C = np.dot(n, points[a])
inner = np.inner(n, points)
pos = (inner <= C+0.0001).all()
neg = (inner >= C-0.0001).all()
if not pos and not neg: continue
obj.out.write("f %i//%i %i//%i %i//%i\n" % (
(vind[a], nind[a], vind[b], nind[b], vind[c], nind[c])
if (inner - C).sum() < 0 else
(vind[a], nind[a], vind[c], nind[c], vind[b], nind[b]) ) )
#obj.out.write("f %i/%i/%i %i/%i/%i %i/%i/%i\n" % (
#	(vind[a], tind[a], nind[a], vind[b], tind[b], nind[b], vind[c], tind[c], nind[c])
#	if (inner - C).sum() < 0 else
#	(vind[a], tind[a], nind[a], vind[c], tind[c], nind[c], vind[b], tind[b], nind[b]) ) ) ```

Example 20

```def test_einsum_misc(self):
# This call used to crash because of a bug in
# PyArray_AssignZero
a = np.ones((1, 2))
b = np.ones((2, 2, 1))
assert_equal(np.einsum('ij...,j...->i...', a, b), [[[2], [2]]])

# The iterator had an issue with buffering this reduction
a = np.ones((5, 12, 4, 2, 3), np.int64)
b = np.ones((5, 12, 11), np.int64)
assert_equal(np.einsum('ijklm,ijn,ijn->', a, b, b),
np.einsum('ijklm,ijn->', a, b))

# Issue #2027, was a problem in the contiguous 3-argument
# inner loop implementation
a = np.arange(1, 3)
b = np.arange(1, 5).reshape(2, 2)
c = np.arange(1, 9).reshape(4, 2)
assert_equal(np.einsum('x,yx,zx->xzy', a, b, c),
[[[1,  3], [3,  9], [5, 15], [7, 21]],
[[8, 16], [16, 32], [24, 48], [32, 64]]]) ```

Example 21

```def test_einsum_all_contig_non_contig_output(self):
# Issue gh-5907, tests that the all contiguous special case
# actually checks the contiguity of the output
x = np.ones((5, 5))
out = np.ones(10)[::2]
correct_base = np.ones(10)
correct_base[::2] = 5
# Always worked (inner iteration is done with 0-stride):
np.einsum('mi,mi,mi->m', x, x, x, out=out)
assert_array_equal(out.base, correct_base)
# Example 1:
out = np.ones(10)[::2]
np.einsum('im,im,im->m', x, x, x, out=out)
assert_array_equal(out.base, correct_base)
# Example 2, buffering causes x to be contiguous but
# special cases do not catch the operation before:
out = np.ones((2, 2, 2))[..., 0]
correct_base = np.ones((2, 2, 2))
correct_base[..., 0] = 2
x = np.ones((2, 2), np.float32)
np.einsum('ij,jk->ik', x, x, out=out)
assert_array_equal(out.base, correct_base) ```

Example 22

```def test_TakeTransposeInnerOuter(self):
# Test of take, transpose, inner, outer products
x = arange(24)
y = np.arange(24)
x = x.reshape(2, 3, 4)
y = y.reshape(2, 3, 4)
assert_equal(np.transpose(y, (2, 0, 1)), transpose(x, (2, 0, 1)))
assert_equal(np.take(y, (2, 0, 1), 1), take(x, (2, 0, 1), 1))
assert_equal(np.inner(filled(x, 0), filled(y, 0)),
inner(x, y))
assert_equal(np.outer(filled(x, 0), filled(y, 0)),
outer(x, y))
y = array(['abc', 1, 'def', 2, 3], object)
t = take(y, [0, 3, 4])
assert_(t[0] == 'abc')
assert_(t[1] == 2)
assert_(t[2] == 3) ```

Example 23

```def test_4(self):
"""
Test of take, transpose, inner, outer products.

"""
x = self.arange(24)
y = np.arange(24)
x = x.reshape(2, 3, 4)
y = y.reshape(2, 3, 4)
assert self.allequal(np.transpose(y, (2, 0, 1)), self.transpose(x, (2, 0, 1)))
assert self.allequal(np.take(y, (2, 0, 1), 1), self.take(x, (2, 0, 1), 1))
assert self.allequal(np.inner(self.filled(x, 0), self.filled(y, 0)),
self.inner(x, y))
assert self.allequal(np.outer(self.filled(x, 0), self.filled(y, 0)),
self.outer(x, y))
y = self.array(['abc', 1, 'def', 2, 3], object)
t = self.take(y, [0, 3, 4])
assert t[0] == 'abc'
assert t[1] == 2
assert t[2] == 3 ```

Example 24

```def inner(a, b):
"""
Returns the inner product of a and b for arrays of floating point types.

Like the generic NumPy equivalent the product sum is over the last dimension
of a and b.

Notes
-----
The first argument is not conjugated.

"""
fa = filled(a, 0)
fb = filled(b, 0)
if len(fa.shape) == 0:
fa.shape = (1,)
if len(fb.shape) == 0:
fb.shape = (1,)
return np.inner(fa, fb).view(MaskedArray) ```

Example 25

```def vdot(a, b):
"""Returns the dot product of two vectors.

The input arrays are flattened into 1-D vectors and then it performs inner
product of these vectors.

Args:
a (cupy.ndarray): The first argument.
b (cupy.ndarray): The second argument.

Returns:
cupy.ndarray: Zero-dimensional array of the dot product result.

.. seealso:: :func:`numpy.vdot`

"""
if a.size != b.size:
raise ValueError('Axis dimension mismatch')

return core.tensordot_core(a, b, None, 1, 1, a.size, ()) ```

Example 26

```def transform(self, X):
"""
Project the data so as to maximize class separation (large separation
between projected class means and small variance within each class).

Parameters
----------
X : array-like, shape = [n_samples, n_features]

Returns
-------
X_new : array, shape = [n_samples, n_components_found_]
"""

#X = np.asarray(X)
#ts = time.time()
k = self._get_kernel(X, self.X_fit_)
#if self.print_timing: print 'KernelFisher.transform: k took', time.time() - ts

#ts = time.time()
z = np.inner(self.Z, (k-self.K_mean) ).T
#if self.print_timing: print 'KernelFisher.transform: z took', time.time() - ts

return z ```

Example 27

```def test_einsum_misc(self):
# This call used to crash because of a bug in
# PyArray_AssignZero
a = np.ones((1, 2))
b = np.ones((2, 2, 1))
assert_equal(np.einsum('ij...,j...->i...', a, b), [[[2], [2]]])

# The iterator had an issue with buffering this reduction
a = np.ones((5, 12, 4, 2, 3), np.int64)
b = np.ones((5, 12, 11), np.int64)
assert_equal(np.einsum('ijklm,ijn,ijn->', a, b, b),
np.einsum('ijklm,ijn->', a, b))

# Issue #2027, was a problem in the contiguous 3-argument
# inner loop implementation
a = np.arange(1, 3)
b = np.arange(1, 5).reshape(2, 2)
c = np.arange(1, 9).reshape(4, 2)
assert_equal(np.einsum('x,yx,zx->xzy', a, b, c),
[[[1,  3], [3,  9], [5, 15], [7, 21]],
[[8, 16], [16, 32], [24, 48], [32, 64]]]) ```

Example 28

```def test_TakeTransposeInnerOuter(self):
# Test of take, transpose, inner, outer products
x = arange(24)
y = np.arange(24)
x = x.reshape(2, 3, 4)
y = y.reshape(2, 3, 4)
assert_equal(np.transpose(y, (2, 0, 1)), transpose(x, (2, 0, 1)))
assert_equal(np.take(y, (2, 0, 1), 1), take(x, (2, 0, 1), 1))
assert_equal(np.inner(filled(x, 0), filled(y, 0)),
inner(x, y))
assert_equal(np.outer(filled(x, 0), filled(y, 0)),
outer(x, y))
y = array(['abc', 1, 'def', 2, 3], object)
t = take(y, [0, 3, 4])
assert_(t[0] == 'abc')
assert_(t[1] == 2)
assert_(t[2] == 3) ```

Example 29

```def test_testTakeTransposeInnerOuter(self):
# Test of take, transpose, inner, outer products
x = arange(24)
y = np.arange(24)
x = x.reshape(2, 3, 4)
y = y.reshape(2, 3, 4)
assert_(eq(np.transpose(y, (2, 0, 1)), transpose(x, (2, 0, 1))))
assert_(eq(np.take(y, (2, 0, 1), 1), take(x, (2, 0, 1), 1)))
assert_(eq(np.inner(filled(x, 0), filled(y, 0)),
inner(x, y)))
assert_(eq(np.outer(filled(x, 0), filled(y, 0)),
outer(x, y)))
y = array(['abc', 1, 'def', 2, 3], object)
t = take(y, [0, 3, 4])
assert_(t[0] == 'abc')
assert_(t[1] == 2)
assert_(t[2] == 3) ```

Example 30

```def test_4(self):
"""
Test of take, transpose, inner, outer products.

"""
x = self.arange(24)
y = np.arange(24)
x = x.reshape(2, 3, 4)
y = y.reshape(2, 3, 4)
assert self.allequal(np.transpose(y, (2, 0, 1)), self.transpose(x, (2, 0, 1)))
assert self.allequal(np.take(y, (2, 0, 1), 1), self.take(x, (2, 0, 1), 1))
assert self.allequal(np.inner(self.filled(x, 0), self.filled(y, 0)),
self.inner(x, y))
assert self.allequal(np.outer(self.filled(x, 0), self.filled(y, 0)),
self.outer(x, y))
y = self.array(['abc', 1, 'def', 2, 3], object)
t = self.take(y, [0, 3, 4])
assert t[0] == 'abc'
assert t[1] == 2
assert t[2] == 3 ```

Example 31

```def inner(a, b):
"""
Returns the inner product of a and b for arrays of floating point types.

Like the generic NumPy equivalent the product sum is over the last dimension
of a and b.

Notes
-----
The first argument is not conjugated.

"""
fa = filled(a, 0)
fb = filled(b, 0)
if len(fa.shape) == 0:
fa.shape = (1,)
if len(fb.shape) == 0:
fb.shape = (1,)
return np.inner(fa, fb).view(MaskedArray) ```

Example 32

```def find_starters(self):
"""
This function finds a pair of instances. One positive and one negative
:param clf: classifier being extracted
:return: (x+, x-) a pair of instances
"""
# perdict = 1 ? inner(x, coef) + intercept_ > 0 : 0

x_n, x_p = (None, None)
x_n_found = False
x_p_found = False
for d in self.X_test:
if x_n_found and x_p_found:
break

if self.query(d) == 1 and (not x_p_found):
x_p = d
x_p_found = True
elif self.query(d) == self.NEG and (not x_n_found):
x_n = d
x_n_found = True
return x_p, x_n ```

Example 33

```def run(self, peaks, weights=None):
"""Get smeared values.

Args:
peaks:
weights:
Weight factors for "peaks".
Now this can be one-dimeansional and multi-dimensional arrays.
The last dimension must have the same order as the "peaks".
"""
smearing_function = self._smearing_function
xs = self._xs
sigma = self._sigma

tmp = smearing_function(xs[:, None], peaks[None, :], sigma)
if weights is not None:
values = np.inner(tmp, weights)
else:
values = np.sum(tmp, axis=1)

return values ```

Example 34

```def _create_rotational_weights_for_elements(self, kpoint, transformation_matrix, vectors):
"""

Parameters
----------
kpoint : 1d array
Reciprocal space point in fractional coordinates for PC.
vectors : (..., natoms_p * ndims, nbands) array
Vectors for SC after translational projection.
"""
projected_vectors = self._rotational_projector.project_vectors(
vectors, kpoint, transformation_matrix)

nirreps, natoms_p, nelms, tmp, nbands = projected_vectors.shape

shape = (nirreps, natoms_p, nelms, natoms_p, nelms, nbands)
weights = np.zeros(shape, dtype=complex)
for i in range(nirreps):
for j in range(nbands):
weights[i, ..., j] = np.inner(
np.conj(projected_vectors[i, ..., j]), projected_vectors[i, ..., j])

return weights, projected_vectors ```

Example 35

```def test_einsum_misc(self):
# This call used to crash because of a bug in
# PyArray_AssignZero
a = np.ones((1, 2))
b = np.ones((2, 2, 1))
assert_equal(np.einsum('ij...,j...->i...', a, b), [[[2], [2]]])

# The iterator had an issue with buffering this reduction
a = np.ones((5, 12, 4, 2, 3), np.int64)
b = np.ones((5, 12, 11), np.int64)
assert_equal(np.einsum('ijklm,ijn,ijn->', a, b, b),
np.einsum('ijklm,ijn->', a, b))

# Issue #2027, was a problem in the contiguous 3-argument
# inner loop implementation
a = np.arange(1, 3)
b = np.arange(1, 5).reshape(2, 2)
c = np.arange(1, 9).reshape(4, 2)
assert_equal(np.einsum('x,yx,zx->xzy', a, b, c),
[[[1,  3], [3,  9], [5, 15], [7, 21]],
[[8, 16], [16, 32], [24, 48], [32, 64]]]) ```

Example 36

```def test_TakeTransposeInnerOuter(self):
# Test of take, transpose, inner, outer products
x = arange(24)
y = np.arange(24)
x = x.reshape(2, 3, 4)
y = y.reshape(2, 3, 4)
assert_equal(np.transpose(y, (2, 0, 1)), transpose(x, (2, 0, 1)))
assert_equal(np.take(y, (2, 0, 1), 1), take(x, (2, 0, 1), 1))
assert_equal(np.inner(filled(x, 0), filled(y, 0)),
inner(x, y))
assert_equal(np.outer(filled(x, 0), filled(y, 0)),
outer(x, y))
y = array(['abc', 1, 'def', 2, 3], object)
t = take(y, [0, 3, 4])
assert_(t[0] == 'abc')
assert_(t[1] == 2)
assert_(t[2] == 3) ```

Example 37

```def test_testTakeTransposeInnerOuter(self):
# Test of take, transpose, inner, outer products
x = arange(24)
y = np.arange(24)
x = x.reshape(2, 3, 4)
y = y.reshape(2, 3, 4)
assert_(eq(np.transpose(y, (2, 0, 1)), transpose(x, (2, 0, 1))))
assert_(eq(np.take(y, (2, 0, 1), 1), take(x, (2, 0, 1), 1)))
assert_(eq(np.inner(filled(x, 0), filled(y, 0)),
inner(x, y)))
assert_(eq(np.outer(filled(x, 0), filled(y, 0)),
outer(x, y)))
y = array(['abc', 1, 'def', 2, 3], object)
t = take(y, [0, 3, 4])
assert_(t[0] == 'abc')
assert_(t[1] == 2)
assert_(t[2] == 3) ```

Example 38

```def test_4(self):
"""
Test of take, transpose, inner, outer products.

"""
x = self.arange(24)
y = np.arange(24)
x = x.reshape(2, 3, 4)
y = y.reshape(2, 3, 4)
assert self.allequal(np.transpose(y, (2, 0, 1)), self.transpose(x, (2, 0, 1)))
assert self.allequal(np.take(y, (2, 0, 1), 1), self.take(x, (2, 0, 1), 1))
assert self.allequal(np.inner(self.filled(x, 0), self.filled(y, 0)),
self.inner(x, y))
assert self.allequal(np.outer(self.filled(x, 0), self.filled(y, 0)),
self.outer(x, y))
y = self.array(['abc', 1, 'def', 2, 3], object)
t = self.take(y, [0, 3, 4])
assert t[0] == 'abc'
assert t[1] == 2
assert t[2] == 3 ```

Example 39

```def inner(a, b):
"""
Returns the inner product of a and b for arrays of floating point types.

Like the generic NumPy equivalent the product sum is over the last dimension
of a and b.

Notes
-----
The first argument is not conjugated.

"""
fa = filled(a, 0)
fb = filled(b, 0)
if len(fa.shape) == 0:
fa.shape = (1,)
if len(fb.shape) == 0:
fb.shape = (1,)
return np.inner(fa, fb).view(MaskedArray) ```

Example 40

```def _hard_monochrome(self, sample):
"""
Return the monochrome colors corresponding to `sample`, if any.
A boolean is also returned, specifying whether or not the saturation is
sufficient for non monochrome colors.
"""
gray_proj = np.inner(sample, Name._GRAY_UNIT) * Name._GRAY_UNIT
gray_dist = norm(sample - gray_proj)

if gray_dist > 15:
return []

colors = []
luminance = np.sum(sample * Name._GRAY_COEFF)
if luminance > 45 and luminance < 170:
colors.append(self._settings['gray_name'])
if luminance <= 50:
colors.append(self._settings['black_name'])
if luminance >= 170:
colors.append(self._settings['white_name'])

return colors

# Normalized identity (BGR gray) vector. ```

Example 41

```def test_einsum_misc(self):
# This call used to crash because of a bug in
# PyArray_AssignZero
a = np.ones((1, 2))
b = np.ones((2, 2, 1))
assert_equal(np.einsum('ij...,j...->i...', a, b), [[[2], [2]]])

# The iterator had an issue with buffering this reduction
a = np.ones((5, 12, 4, 2, 3), np.int64)
b = np.ones((5, 12, 11), np.int64)
assert_equal(np.einsum('ijklm,ijn,ijn->', a, b, b),
np.einsum('ijklm,ijn->', a, b))

# Issue #2027, was a problem in the contiguous 3-argument
# inner loop implementation
a = np.arange(1, 3)
b = np.arange(1, 5).reshape(2, 2)
c = np.arange(1, 9).reshape(4, 2)
assert_equal(np.einsum('x,yx,zx->xzy', a, b, c),
[[[1,  3], [3,  9], [5, 15], [7, 21]],
[[8, 16], [16, 32], [24, 48], [32, 64]]]) ```

Example 42

```def test_einsum_all_contig_non_contig_output(self):
# Issue gh-5907, tests that the all contiguous special case
# actually checks the contiguity of the output
x = np.ones((5, 5))
out = np.ones(10)[::2]
correct_base = np.ones(10)
correct_base[::2] = 5
# Always worked (inner iteration is done with 0-stride):
np.einsum('mi,mi,mi->m', x, x, x, out=out)
assert_array_equal(out.base, correct_base)
# Example 1:
out = np.ones(10)[::2]
np.einsum('im,im,im->m', x, x, x, out=out)
assert_array_equal(out.base, correct_base)
# Example 2, buffering causes x to be contiguous but
# special cases do not catch the operation before:
out = np.ones((2, 2, 2))[..., 0]
correct_base = np.ones((2, 2, 2))
correct_base[..., 0] = 2
x = np.ones((2, 2), np.float32)
np.einsum('ij,jk->ik', x, x, out=out)
assert_array_equal(out.base, correct_base) ```

Example 43

```def test_TakeTransposeInnerOuter(self):
# Test of take, transpose, inner, outer products
x = arange(24)
y = np.arange(24)
x = x.reshape(2, 3, 4)
y = y.reshape(2, 3, 4)
assert_equal(np.transpose(y, (2, 0, 1)), transpose(x, (2, 0, 1)))
assert_equal(np.take(y, (2, 0, 1), 1), take(x, (2, 0, 1), 1))
assert_equal(np.inner(filled(x, 0), filled(y, 0)),
inner(x, y))
assert_equal(np.outer(filled(x, 0), filled(y, 0)),
outer(x, y))
y = array(['abc', 1, 'def', 2, 3], object)
t = take(y, [0, 3, 4])
assert_(t[0] == 'abc')
assert_(t[1] == 2)
assert_(t[2] == 3) ```

Example 44

```def test_4(self):
"""
Test of take, transpose, inner, outer products.

"""
x = self.arange(24)
y = np.arange(24)
x = x.reshape(2, 3, 4)
y = y.reshape(2, 3, 4)
assert self.allequal(np.transpose(y, (2, 0, 1)), self.transpose(x, (2, 0, 1)))
assert self.allequal(np.take(y, (2, 0, 1), 1), self.take(x, (2, 0, 1), 1))
assert self.allequal(np.inner(self.filled(x, 0), self.filled(y, 0)),
self.inner(x, y))
assert self.allequal(np.outer(self.filled(x, 0), self.filled(y, 0)),
self.outer(x, y))
y = self.array(['abc', 1, 'def', 2, 3], object)
t = self.take(y, [0, 3, 4])
assert t[0] == 'abc'
assert t[1] == 2
assert t[2] == 3 ```

Example 45

```def inner(a, b):
"""
Returns the inner product of a and b for arrays of floating point types.

Like the generic NumPy equivalent the product sum is over the last dimension
of a and b.

Notes
-----
The first argument is not conjugated.

"""
fa = filled(a, 0)
fb = filled(b, 0)
if len(fa.shape) == 0:
fa.shape = (1,)
if len(fb.shape) == 0:
fb.shape = (1,)
return np.inner(fa, fb).view(MaskedArray) ```

Example 46

```def _solve_hessian(G, Y, thY, precon, lambda_min):
N, T = Y.shape
# Compute the derivative of the score
psidY = ne.evaluate('(- thY ** 2 + 1.) / 2.')  # noqa
# Build the diagonal of the Hessian, a.
Y_squared = Y ** 2
if precon == 2:
a = np.inner(psidY, Y_squared) / float(T)
elif precon == 1:
sigma2 = np.mean(Y_squared, axis=1)
psidY_mean = np.mean(psidY, axis=1)
a = psidY_mean[:, None] * sigma2[None, :]
diagonal_term = np.mean(Y_squared * psidY) + 1.
a[np.diag_indices_from(a)] = diagonal_term
else:
raise ValueError('precon should be 1 or 2')
# Compute the eigenvalues of the Hessian
eigenvalues = 0.5 * (a + a.T - np.sqrt((a - a.T) ** 2 + 4.))
# Regularize
problematic_locs = eigenvalues < lambda_min
np.fill_diagonal(problematic_locs, False)
i_pb, j_pb = np.where(problematic_locs)
a[i_pb, j_pb] += lambda_min - eigenvalues[i_pb, j_pb]
# Invert the transform
return (G * a.T - G.T) / (a * a.T - 1.) ```

Example 47

```def test_picard():
N, T = 2, 10000
rng = np.random.RandomState(42)
S = rng.laplace(size=(N, T))
A = rng.randn(N, N)
X = np.dot(A, S)
for precon in [1, 2]:
Y, W = picard(X, precon=precon, verbose=True)
# Get the final gradient norm
G = np.inner(np.tanh(Y / 2.), Y) / float(T) - np.eye(N)
assert_allclose(G, np.zeros((N, N)), atol=1e-7)
assert_equal(Y.shape, X.shape)
assert_equal(W.shape, A.shape)
WA = np.dot(W, A)
WA = get_perm(WA)[1]  # Permute and scale
assert_allclose(WA, np.eye(N), rtol=1e-2, atol=1e-2) ```

Example 48

```def test_picardo():
N, T = 2, 10000
rng = np.random.RandomState(42)
S = rng.laplace(size=(N, T))
A = rng.randn(N, N)
X = np.dot(A, S)

Y, W = picardo(X, verbose=2)
# Get the final gradient norm
G = np.inner(np.tanh(Y), Y) / float(T) - np.eye(N)
G = (G - G.T)  # take skew-symmetric part
assert_allclose(G, np.zeros((N, N)), atol=1e-7)
assert_equal(Y.shape, X.shape)
assert_equal(W.shape, A.shape)
WA = np.dot(W, A)
WA = get_perm(WA)[1]  # Permute and scale
assert_allclose(WA, np.eye(N), rtol=1e-2, atol=1e-2) ```

Example 49

```def interpolate_learned_policy(old_policy, new_policy, interpolate, old_coeff, new_coeff, weight, method):
if method is "stack_vel_pos":
learned_trajectory = np.zeros(human.shape)
for item in inPlay:
for index in np.arange(item[0],item[0]+tao):
learned_trajectory[index] = human[index]
for index in np.arange(item[0]+tao,item[1]+1):
feature = autoreg_game_context[index,:]
for i in range(tao-1):
feature = np.append(feature, learned_trajectory[index-(i+1)] - learned_trajectory[index-(i+2)])
for i in range(tao):
feature = np.append(feature,learned_trajectory[index-(i+1)])
previous_prediction = learned_trajectory[index-tao:index].copy()
previous_prediction = previous_prediction[::-1]
old_model_predict = (old_policy.predict(feature) + np.inner(old_coeff, previous_prediction) * weight) / (1+weight)
new_model_predict = (new_policy.predict(feature) + np.inner(new_coeff, previous_prediction) * weight) / (1+weight)
#current_prediction = interpolate * new_policy.predict(feature) + (1-interpolate) * old_policy.predict(feature)
learned_trajectory[index] = interpolate * new_model_predict + (1-interpolate) * old_model_predict
return learned_trajectory ```

Example 50

```def interpolate_test_policy(old_policy, new_policy, interpolate, reference_path, context, old_coeff, new_coeff, weight, method):
Y_predict = np.zeros(reference_path.shape)
if method is "stack_vel_pos":
for i in range(len(reference_path)):
if i<tao:
Y_predict[i] = reference_path[i] #note: have the first tau frames correct
else:
feature = context[i]
for j in range(tao-1):
feature = np.hstack((feature,Y_predict[i-(j+1)]-Y_predict[i-(j+2)]))
for j in range(tao):
feature = np.hstack((feature,Y_predict[i-(j+1)]))
previous_prediction = Y_predict[i-tao:i]
previous_prediction = previous_prediction[::-1]
#current_prediction = interpolate * new_policy.predict(feature) + (1-interpolate) * old_policy.predict(feature)
old_model_predict = (old_policy.predict(feature) + np.inner(old_coeff, previous_prediction) * weight) / (1+weight)
new_model_predict = (new_policy.predict(feature) + np.inner(new_coeff, previous_prediction) * weight) / (1+weight)
#Y_predict[i] = (current_prediction + np.inner(coeff,previous_prediction)*weight)/(1+weight) # replace
Y_predict[i] = interpolate * new_model_predict + (1-interpolate) * old_model_predict
return Y_predict ```