Python numpy.hanning() 使用实例

The following are code examples for showing how to use . They are extracted from open source Python projects. You can vote up the examples you like or vote down the exmaples you don’t like. You can also save this page to your account.

Example 1

def stft(sig, frameSize, overlapFac=0.75, window=np.hanning):
    """ short time fourier transform of audio signal """
    win = window(frameSize)
    hopSize = int(frameSize - np.floor(overlapFac * frameSize))
    # zeros at beginning (thus center of 1st window should be for sample nr. 0)
    # samples = np.append(np.zeros(np.floor(frameSize / 2.0)), sig)
    samples = np.array(sig, dtype='float64')
    # cols for windowing
    cols = np.ceil((len(samples) - frameSize) / float(hopSize)) + 1
    # zeros at end (thus samples can be fully covered by frames)
    # samples = np.append(samples, np.zeros(frameSize))
    frames = stride_tricks.as_strided(
        samples,
        shape=(cols, frameSize),
        strides=(samples.strides[0] * hopSize, samples.strides[0])).copy()
    frames *= win
    return np.fft.rfft(frames)


# all the definition of the flowing variable can be found
# train_net.py 

Example 2

def stft(sig, frameSize, overlapFac=0.75, window=np.hanning):
    """ short time fourier transform of audio signal """
    win = window(frameSize)
    hopSize = int(frameSize - np.floor(overlapFac * frameSize))
    # zeros at beginning (thus center of 1st window should be for sample nr. 0)
    # samples = np.append(np.zeros(np.floor(frameSize / 2.0)), sig)
    samples = np.array(sig, dtype='float64')
    # cols for windowing
    cols = np.ceil((len(samples) - frameSize) / float(hopSize)) + 1
    # zeros at end (thus samples can be fully covered by frames)
    samples = np.append(samples, np.zeros(frameSize))
    frames = stride_tricks.as_strided(
        samples,
        shape=(cols, frameSize),
        strides=(samples.strides[0] * hopSize, samples.strides[0])).copy()
    frames *= win
    return np.fft.rfft(frames) 

Example 3

def hanning(M):
    """Returns the Hanning window.

    The Hanning window is defined as

    .. math::
        w(n) = 0.5 - 0.5\\cos\\left(\\frac{2\\pi{n}}{M-1}\\right)
        \\qquad 0 \\leq n \\leq M-1

    Args:
        M (:class:`~int`):
            Number of points in the output window. If zero or less, an empty
            array is returned.

    Returns:
        ~cupy.ndarray: Output ndarray.

    .. seealso:: :func:`numpy.hanning`
    """
    if M < 1:
        return from_data.array([])
    if M == 1:
        return basic.ones(1, float)
    n = ranges.arange(0, M)
    return 0.5 - 0.5 * trigonometric.cos(2.0 * numpy.pi * n / (M - 1)) 

Example 4

def ams_extractor(x, sr, win_len, shift_len, order):
    from scipy.signal import hilbert
    envelope = np.abs(hilbert(x))
    for i in range(order-1):
        envelope = np.abs(hilbert(envelope))
    envelope = envelope * 1./3.
    frames = (len(envelope) - win_len) // shift_len
    hanning_window = np.hanning(win_len)
    ams_feature = np.zeros(shape=(15, frames))
    wts = cal_triangle_window(0, sr//2, win_len, 15, 15.6, 400)
    for i in range(frames):
        one_frame = x[i*shift_len:i*shift_len+win_len]
        one_frame = one_frame * hanning_window
        frame_fft = np.abs(np.fft.fft(one_frame, win_len))
        ams_feature[:,i] = np.matmul(wts, frame_fft)
    return ams_feature 

Example 5

def cochleagram_extractor(xx, sr, win_len, shift_len, channel_number, win_type):
    fcoefs, f = make_erb_filters(sr, channel_number, 50)
    fcoefs = np.flipud(fcoefs)
    xf = erb_frilter_bank(xx, fcoefs)

    if win_type == 'hanning':
        window = np.hanning(channel_number)
    elif win_type == 'hamming':
        window = np.hamming(channel_number)
    elif win_type == 'triangle':
        window = (1 - (np.abs(channel_number - 1 - 2 * np.arange(1, channel_number + 1, 1)) / (channel_number + 1)))
    else:
        window = np.ones(channel_number)
    window = window.reshape((channel_number, 1))

    xe = np.power(xf, 2.0)
    frames = 1 + ((np.size(xe, 1)-win_len) // shift_len)
    cochleagram = np.zeros((channel_number, frames))
    for i in range(frames):
        one_frame = np.multiply(xe[:, i*shift_len:i*shift_len+win_len], np.repeat(window, win_len, 1))
        cochleagram[:, i] = np.sqrt(np.mean(one_frame, 1))

    cochleagram = np.where(cochleagram == 0.0, np.finfo(float).eps, cochleagram)
    return cochleagram 

Example 6

def log_power_spectrum_extractor(x, win_len, shift_len, win_type, is_log=False):
    samples = x.shape[0]
    frames = (samples - win_len) // shift_len
    stft = np.zeros((win_len, frames), dtype=np.complex64)
    spect = np.zeros((win_len // 2 + 1, frames), dtype=np.float64)

    if win_type == 'hanning':
        window = np.hanning(win_len)
    elif win_type == 'hamming':
        window = np.hamming(win_len)
    elif win_type == 'rectangle':
        window = np.ones(win_len)

    for i in range(frames):
        one_frame = x[i*shift_len: i*shift_len+win_len]
        windowed_frame = np.multiply(one_frame, window)
        stft[:, i] = np.fft.fft(windowed_frame, win_len)
        if is_log:
            spect[:, i] = np.log(np.power(np.abs(stft[0: win_len//2+1, i]), 2.))
        else:
            spect[:, i] = np.power(np.abs(stft[0: win_len//2+1, i]), 2.)

    return spect 

Example 7

def stft_extractor(x, win_len, shift_len, win_type):
    samples = x.shape[0]
    frames = (samples - win_len) // shift_len
    stft = np.zeros((win_len, frames), dtype=np.complex64)
    spect = np.zeros((win_len // 2 + 1, frames), dtype=np.complex64)

    if win_type == 'hanning':
        window = np.hanning(win_len)
    elif win_type == 'hamming':
        window = np.hamming(win_len)
    elif win_type == 'rectangle':
        window = np.ones(win_len)

    for i in range(frames):
        one_frame = x[i*shift_len: i*shift_len+win_len]
        windowed_frame = np.multiply(one_frame, window)
        stft[:, i] = np.fft.fft(windowed_frame, win_len)
        spect[:, i] = stft[: win_len//2+1, i]

    return spect 

Example 8

def ams_extractor(x, sr, win_len, shift_len, order=1, decimate_coef=1./4.):
    from scipy.signal import hilbert
    envelope = np.abs(hilbert(x))
    for i in range(order-1):
        envelope = np.abs(hilbert(envelope))
    envelope = envelope * decimate_coef
    frames = (len(envelope) - win_len) // shift_len
    hanning_window = np.hanning(win_len)
    ams_feature = np.zeros(shape=(15, frames))
    wts = cal_triangle_window(0, sr//2, win_len, 15, 15.6, 400)
    for i in range(frames):
        one_frame = x[i*shift_len:i*shift_len+win_len]
        one_frame = one_frame * hanning_window
        frame_fft = np.abs(np.fft.fft(one_frame, win_len))
        ams_feature[:,i] = np.matmul(wts, frame_fft)
    return ams_feature 

Example 9

def unknown_feature_extractor(x, sr, win_len, shift_len, barks, inner_win, inner_shift, win_type, method_version):
    x_spectrum = stft_extractor(x, win_len, shift_len, win_type)
    coef = get_fft_bark_mat(sr, win_len, barks, 20, sr//2)
    bark_spect = np.matmul(coef, x_spectrum)
    ams = np.zeros((barks, inner_win//2+1, (bark_spect.shape[1] - inner_win)//inner_shift))
    for i in range(barks):
        channel_stft = stft_extractor(bark_spect[i, :], inner_win, inner_shift, 'hanning')
        if method_version == 'v1':
            ams[i, :, :] = 20 * np.log(np.abs(channel_stft[:inner_win//2+1, :(bark_spect.shape[1] - inner_win)//inner_shift]))
        elif method_version == 'v2':
            channel_amplitude = np.abs(channel_stft[:inner_win//2+1, :(bark_spect.shape[1] - inner_win)//inner_shift])
            channel_angle = np.angle(channel_stft[:inner_win//2+1, :(bark_spect.shape[1] - inner_win)//inner_shift])
            channel_angle = channel_angle - (np.floor(channel_angle / (2.*np.pi)) * (2.*np.pi))
            ams[i, :, :] = np.power(channel_amplitude, 1./3.) * channel_angle
        else:
            ams[i, :, :] = np.abs(channel_stft)
    return ams 

Example 10

def spectrum_extractor(x, win_len, shift_len, win_type, is_log):
    samples = x.shape[0]
    frames = (samples - win_len) // shift_len
    stft = np.zeros((win_len, frames), dtype=np.complex64)
    spectrum = np.zeros((win_len // 2 + 1, frames), dtype=np.float64)

    if win_type == 'hanning':
        window = np.hanning(win_len)
    elif win_type == 'hamming':
        window = np.hamming(win_len)
    elif win_type == 'triangle':
        window = (1 - (np.abs(win_len - 1 - 2 * np.arange(1, win_len + 1, 1)) / (win_len + 1)))
    else:
        window = np.ones(win_len)
    for i in range(frames):
        one_frame = x[i*shift_len: i*shift_len+win_len]
        windowed_frame = np.multiply(one_frame, window)
        stft[:, i] = np.fft.fft(windowed_frame, win_len)
        if is_log:
            spectrum[:, i] = np.log(np.abs(stft[0: win_len//2+1, i]))
        else:
            spectrum[:, i] = np.abs(stft[0: win_len // 2 + 1:, i])

    return spectrum 

Example 11

def stft(sig, frameSize, overlapFac=0.75, window=np.hanning):
    """ short time fourier transform of audio signal """
    win = window(frameSize)
    hopSize = int(frameSize - np.floor(overlapFac * frameSize))
    # zeros at beginning (thus center of 1st window should be for sample nr. 0)
    # samples = np.append(np.zeros(np.floor(frameSize / 2.0)), sig)
    samples = np.array(sig, dtype='float64')
    # cols for windowing
    cols = np.floor((len(samples) - frameSize) / float(hopSize))
    # zeros at end (thus samples can be fully covered by frames)
    # samples = np.append(samples, np.zeros(frameSize))
    frames = stride_tricks.as_strided(
        samples,
        shape=(cols, frameSize),
        strides=(samples.strides[0] * hopSize, samples.strides[0])).copy()
    frames *= win
    return np.fft.rfft(frames) 

Example 12

def stft(sig, frameSize, overlapFac=0.75, window=np.hanning):
    """ short time fourier transform of audio signal """
    win = window(frameSize)
    hopSize = int(frameSize - np.floor(overlapFac * frameSize))
    # zeros at beginning (thus center of 1st window should be for sample nr. 0)
    # samples = np.append(np.zeros(np.floor(frameSize / 2.0)), sig)
    samples = np.array(sig, dtype='float64')
    # cols for windowing
    cols = np.ceil((len(samples) - frameSize) / float(hopSize)) + 1
    # zeros at end (thus samples can be fully covered by frames)
    # samples = np.append(samples, np.zeros(frameSize))
    frames = stride_tricks.as_strided(
        samples,
        shape=(cols, frameSize),
        strides=(samples.strides[0] * hopSize, samples.strides[0])).copy()
    frames *= win
    return np.fft.rfft(frames) 

Example 13

def __init__(self, sampling_rate=16000, frame_width=0.032, frame_shift=0.01, num_mel_filters=40, window_func="hanning",
		using_delta=True, using_delta_delta=True):
		assert window_func in ["hanning", "hamming"]
		self.sampling_rate = sampling_rate
		self.frame_width = frame_width
		self.sampling_rate = sampling_rate
		self.frame_width = frame_width
		self.frame_shift = frame_shift
		self.num_fft = int(sampling_rate * frame_width)
		self.num_mel_filters = num_mel_filters

		if window_func == "hanning":
			self.window_func = lambda x:np.hanning(x)
		elif winfunc == "hamming":
			self.window_func = lambda x:np.hamming(x)

		self.using_delta = using_delta
		self.using_delta_delta = using_delta_delta

		self.fbank = fft.get_filterbanks(nfft=self.num_fft, nfilt=num_mel_filters, samplerate=sampling_rate) 

Example 14

def periodic_hann(window_length):
  """Calculate a "periodic" Hann window.

  The classic Hann window is defined as a raised cosine that starts and
  ends on zero, and where every value appears twice, except the middle
  point for an odd-length window.  Matlab calls this a "symmetric" window
  and np.hanning() returns it.  However, for Fourier analysis, this
  actually represents just over one cycle of a period N-1 cosine, and
  thus is not compactly expressed on a length-N Fourier basis.  Instead,
  it's better to use a raised cosine that ends just before the final
  zero value - i.e. a complete cycle of a period-N cosine.  Matlab
  calls this a "periodic" window. This routine calculates it.

  Args:
    window_length: The number of points in the returned window.

  Returns:
    A 1D np.array containing the periodic hann window.
  """
  return 0.5 - (0.5 * np.cos(2 * np.pi / window_length *
                             np.arange(window_length))) 

Example 15

def stft_magnitude(signal, fft_length,
                   hop_length=None,
                   window_length=None):
  """Calculate the short-time Fourier transform magnitude.

  Args:
    signal: 1D np.array of the input time-domain signal.
    fft_length: Size of the FFT to apply.
    hop_length: Advance (in samples) between each frame passed to FFT.
    window_length: Length of each block of samples to pass to FFT.

  Returns:
    2D np.array where each row contains the magnitudes of the fft_length/2+1
    unique values of the FFT for the corresponding frame of input samples.
  """
  frames = frame(signal, window_length, hop_length)
  # Apply frame window to each frame. We use a periodic Hann (cosine of period
  # window_length) instead of the symmetric Hann of np.hanning (period
  # window_length-1).
  window = periodic_hann(window_length)
  windowed_frames = frames * window
  return np.abs(np.fft.rfft(windowed_frames, int(fft_length)))


# Mel spectrum constants and functions. 

Example 16

def compute_pairwise_shifts(imstack):
    # Calculates the pairwise shifts for images in a stack of format [frame, x, y].
    # returns shift vector as [y, x] for each pair, a 2 x N-1 array where N is num_frames
    
    scan_shape = imstack.shape
    num_pairs = scan_shape[0]-1 
    print('Correcting ' + str(num_pairs) + ' frames...')

    # Prepare window function (Hann)
    win = np.outer(np.hanning(scan_shape[1]),np.hanning(scan_shape[2]))

    # Pairwise shifts
    shift = np.zeros((2, num_pairs))
    for iPair in range(0, num_pairs):
        image = imstack[iPair]
        offset_image = imstack[iPair+1]
        shift[:,iPair], error, diffphase = register_translation_hybrid(image*win, offset_image*win, 
                                                                        exponent = 0.3, upsample_factor = 100)
        # Shifts are defined as [y, x] where y is shift of imaging location 
        # with respect to positive y axis, similarly for x
    return shift 

Example 17

def __init__(self, window_size, segments_buf=None):
        self._window_size = window_size
        if segments_buf is None:
            segments_buf = int(SAMPLE_RATE / window_size)
        self._segments_buf = segments_buf

        self._thresholding_window_size = THRESHOLD_WINDOW_SIZE
        assert self._thresholding_window_size <= segments_buf

        self._last_spectrum = np.zeros(window_size, dtype=np.int16)
        self._last_flux = deque(
            np.zeros(segments_buf, dtype=np.int16), segments_buf)
        self._last_prunned_flux = 0

        self._hanning_window = np.hanning(window_size)
        # The zeros which will be used to double each segment size
        self._inner_pad = np.zeros(window_size)

        # To ignore the first peak just after starting the application
        self._first_peak = True 

Example 18

def managed_window(self,axismanager, data, windowaxis):

        def window_axis_function(a, window):
            a = a * window
            return a

        newaxis = axismanager.current_axis_number(windowaxis)

        N = data.shape[newaxis]
        window = np.hanning(N)

        # Save "window summed and squared" (see Numerical Recipes)
        wss = np.sum(window**2.0)/float(N)

        # Apply window
        windoweddata = np.apply_along_axis(window_axis_function, 
                                           newaxis, data, window)

        return windoweddata, wss 

Example 19

def measureLoop(self):
        """ Measure 10 values, add them to buffer and remove the 10 oldest values.
        """
        if self.stopRequest:
            self.stopRequest = False
            self.unlock()
            return

        data = np.zeros((100,  self._data_logic.getChannels()))
        data[:, 0] = np.array([self._data_logic.getData() for i in range(100)])

        self.buf = np.roll(self.buf, -100, axis=0)
        self.buf[-101:-1] = data
        w = np.hanning(self.window_len)
        s = np.r_[self.buf[self.window_len-1:0:-1], self.buf, self.buf[-1:-self.window_len:-1]]
        for channel in range(self._data_logic.getChannels()):
            convolved = np.convolve(w/w.sum(), s[:, channel], mode='valid')
            self.smooth[:, channel] = convolved
        self.sigRepeat.emit() 

Example 20

def undo_stft(spect, hop_size, frame_len=None, unwindow='auto'):
    """
    Undoes an SFTF via overlap-add, returning a numpy array of samples.
    """
    # transform into time domain
    spect = np.fft.irfft(spect, n=frame_len, axis=1)
    # overlap-and-add
    num_frames, frame_len = spect.shape
    win = np.hanning(frame_len)
    #win = np.sin(np.pi * np.arange(frame_len) / frame_len)
    #win = 1
    if unwindow == 'auto':
        unwindow = (hop_size <= frame_len//2)
    samples = np.zeros((num_frames - 1) * hop_size + frame_len)
    if unwindow:
        factors = np.zeros_like(samples)
    for idx, frame in enumerate(spect):
        oidx = int(idx*hop_size)
        samples[oidx:oidx+frame_len] += frame * win
        if unwindow:
            factors[oidx:oidx+frame_len] += win**2
    if unwindow:
        np.maximum(factors, .1 * factors.max(), factors)
        samples /= factors
    return samples 

Example 21

def stft(sig, frameSize, overlapFac=0.75, window=np.hanning):
    """ short time fourier transform of audio signal """
    win = window(frameSize)
    hopSize = int(frameSize - np.floor(overlapFac * frameSize))
    # zeros at beginning (thus center of 1st window should be for sample nr. 0)
    # samples = np.append(np.zeros(np.floor(frameSize / 2.0)), sig)
    samples = np.array(sig, dtype='float64')
    # cols for windowing
    cols = np.ceil((len(samples) - frameSize) / float(hopSize)) + 1
    # zeros at end (thus samples can be fully covered by frames)
    samples = np.append(samples, np.zeros(frameSize))
    frames = stride_tricks.as_strided(
        samples,
        shape=(cols, frameSize),
        strides=(samples.strides[0] * hopSize, samples.strides[0])).copy()
    frames *= win
    return np.fft.rfft(frames) 

Example 22

def stft(sig, frameSize, overlapFac=0.75, window=np.hanning):
    """ short time fourier transform of audio signal """
    win = window(frameSize)
    hopSize = int(frameSize - np.floor(overlapFac * frameSize))
    # zeros at beginning (thus center of 1st window should be for sample nr. 0)
    # samples = np.append(np.zeros(np.floor(frameSize / 2.0)), sig)
    samples = np.array(sig, dtype='float64')
    # cols for windowing
    cols = np.ceil((len(samples) - frameSize) / float(hopSize)) + 1
    # zeros at end (thus samples can be fully covered by frames)
    samples = np.append(samples, np.zeros(frameSize))
    frames = stride_tricks.as_strided(
        samples,
        shape=(cols, frameSize),
        strides=(samples.strides[0] * hopSize, samples.strides[0])).copy()
    frames *= win
    return np.fft.rfft(frames) 

Example 23

def stft(sig, frameSize, overlapFac=0.75, window=np.hanning):
    """ short time fourier transform of audio signal """
    win = window(frameSize)
    hopSize = int(frameSize - np.floor(overlapFac * frameSize))
    # zeros at beginning (thus center of 1st window should be for sample nr. 0)
    # samples = np.append(np.zeros(np.floor(frameSize / 2.0)), sig)
    samples = np.array(sig, dtype='float64')
    # cols for windowing
    cols = np.ceil((len(samples) - frameSize) / float(hopSize))
    # zeros at end (thus samples can be fully covered by frames)
    # samples = np.append(samples, np.zeros(frameSize))
    frames = stride_tricks.as_strided(
        samples,
        shape=(cols, frameSize),
        strides=(samples.strides[0] * hopSize, samples.strides[0])).copy()
    frames *= win
    return np.fft.rfft(frames) 

Example 24

def test_high_frequency_completion(self):
        path = dirpath + '/data/test16000.wav'
        fs, x = wavfile.read(path)

        f0rate = 0.5
        shifter = Shifter(fs, f0rate=f0rate)
        mod_x = shifter.f0transform(x, completion=False)
        mod_xc = shifter.f0transform(x, completion=True)
        assert len(mod_x) == len(mod_xc)

        N = 512
        fl = int(fs * 25 / 1000)
        win = np.hanning(fl)
        sts = [1000, 5000, 10000, 20000]
        for st in sts:
            # confirm w/o completion
            f_mod_x = fft(mod_x[st: st + fl] / 2**16 * win)
            amp_mod_x = 20.0 * np.log10(np.abs(f_mod_x))

            # confirm w/ completion
            f_mod_xc = fft(mod_xc[st: st + fl] / 2**16 * win)
            amp_mod_xc = 20.0 * np.log10(np.abs(f_mod_xc))

            assert np.mean(amp_mod_x[N // 4:] < np.mean(amp_mod_xc[N // 4:])) 

Example 25

def analysis_with_del_comp_from_est_file(v_in_sig, est_file, fs, nFFT=None, win_func=np.hanning, b_ph_unv_zero=False, nwin_per_pitch_period=0.5):

    if nFFT is None: # If fft length is not provided, some standard values are assumed.
        if fs==48000:
            nFFT=4096
        elif fs==16000:
            nFFT=2048

    # Pitch Marks:-------------------------------------------------------------
    v_pm_sec, v_voi = la.read_reaper_est_file(est_file, check_len_smpls=len(v_in_sig), fs=fs)    
    v_pm_smpls = v_pm_sec * fs

    m_sp, m_ph, v_shift, m_frms, m_fft = analysis_with_del_comp_from_pm(v_in_sig, v_pm_smpls, nFFT, win_func=win_func, nwin_per_pitch_period=nwin_per_pitch_period)

    if b_ph_unv_zero:
        m_ph = m_ph * v_voi[:,None]

    return m_sp, m_ph, v_shift, v_voi, m_frms, m_fft



#==============================================================================
# From (after) 'analysis_with_del_comp':
# new: returns voi/unv decision. 

Example 26

def stft(self, samples, window_size, overlap_factor=0.5, window_function=np.hanning):
        """
        Perform Short-time Fourier transform to get the spectrogram for the given samples

        :param samples: Complex samples
        :param window_size: Size of DFT window
        :param overlap_factor: Value between 0 (= No Overlapping) and 1 (= Full overlapping) of windows
        :param window_function: Function for DFT window
        :return: short-time Fourier transform of the given signal
        """
        window = window_function(window_size)

        # hop size determines by how many samples the window is advanced
        hop_size = window_size - int(overlap_factor * window_size)

        # pad with zeros to ensure last window fits signal
        padded_samples = np.append(samples, np.zeros((len(samples) - window_size) % hop_size))
        num_frames = ((len(padded_samples) - window_size) // hop_size) + 1
        frames = [padded_samples[i*hop_size:i*hop_size+window_size] * window for i in range(num_frames)]
        return np.fft.fft(frames) 

Example 27

def stft(sig, frame_size, overlap_fac=0.5, window=np.hanning):
    """ short time fourier transform of audio signal """
    win = window(frame_size)
    hop_size = int(frame_size - np.floor(overlap_fac * frame_size))

    # zeros at beginning (thus center of 1st window should be for sample nr. 0)
    samples = np.append(np.zeros(np.floor(frame_size / 2.0)), sig)
    # cols for windowing
    cols = np.ceil((len(samples) - frame_size) / float(hop_size)) + 1
    # zeros at end (thus samples can be fully covered by frames)
    samples = np.append(samples, np.zeros(frame_size))

    frames = stride_tricks.as_strided(
        samples,
        shape=(cols, frame_size),
        strides=(
            samples.strides[0] * hop_size,
            samples.strides[0]
        )
    ).copy()

    frames *= win

    return np.fft.rfft(frames) 

Example 28

def __init__(self, configs, chunks, chunksize, channels, rate):
        self.configs = configs
        self.channels = channels
        self.chunksize = chunksize
        self.channel_len = chunks*chunksize
        self.fft_len = self.channel_len//2 + 1  # See numpy.fft.rfft
        self.fft_freqs_in_hertz = np.fft.rfftfreq(self.channel_len, d=1.0/rate)
        endpoint_notes = configs.settings.getmultistr('fft', 'endpoint_notes')
        self.notespace = process.generic.notespace(
            endpoint_notes[0], endpoint_notes[1],
            step=1.0/6)  # XXX
        self.window = np.hanning(self.channel_len)
        self.sensitivity = configs.settings.getfloat('fft', 'sensitivity')
        self.compute_weights(self.sensitivity)

        logger.debug("FFT length: {}".format(self.fft_len))

        # Create a pyfftw.FFTW object
        a = pyfftw.empty_aligned(
            self.channel_len, dtype='int16', n=pyfftw.simd_alignment)
        self.fft = pyfftw.builders.rfft(
            a, overwrite_input=True, threads=multiprocessing.cpu_count()) 

Example 29

def hann(args):
    """
    window = hann(args)

    Computes a Hann window, with NumPy's function hanning(args).
    """
    return np.hanning(args)

# FUNCTIONS FOR TIME-FREQUENCY REPRESENTATION 

Example 30

def iFFT(Y, output_length=None, window=False):
    """ Inverse real-valued Fourier Transform

    Parameters
    ----------
    Y : array_like
       Frequency domain data [Nsignals x Nbins]
    output_length : int, optional
       Lenght of returned time-domain signal (Default: 2 x len(Y) + 1)
    win : boolean, optional
       Weights the resulting time-domain signal with a Hann

    Returns
    -------
    y : array_like
       Reconstructed time-domain signal
    """
    Y = _np.atleast_2d(Y)
    y = _np.fft.irfft(Y, n=output_length)

    if window:
        if window not in {'hann', 'hamming', 'blackman', 'kaiser'}:
            raise ValueError('Selected window must be one of hann, hamming, blackman or kaiser')
        no_of_signals, no_of_samples = y.shape

        if window == 'hann':
            window_array = _np.hanning(no_of_samples)
        elif window == 'hamming':
            window_array = _np.hamming(no_of_samples)
        elif window == 'blackman':
            window_array = _np.blackman(no_of_samples)
        elif window == 'kaiser':
            window_array = _np.kaiser(no_of_samples, 3)
        y = window_array * y
    return y 

Example 31

def stft(sig, frameSize, overlapFac=0.5, window=np.hanning):
    win = window(frameSize)
    hopSize = int(frameSize - np.floor(overlapFac * frameSize))
    
    # zeros at beginning (thus center of 1st window should be for sample nr. 0)
    samples = np.append(np.zeros(np.floor(frameSize/2.0)), sig)    
    # cols for windowing
    cols = np.ceil( (len(samples) - frameSize) / float(hopSize)) + 1
    # zeros at end (thus samples can be fully covered by frames)
    samples = np.append(samples, np.zeros(frameSize))
    
    frames = stride_tricks.as_strided(samples, shape=(cols, frameSize), strides=(samples.strides[0]*hopSize, samples.strides[0])).copy()
    frames *= win
    
    return np.fft.rfft(frames) 

Example 32

def stft(sig, frameSize, overlapFac=0.5, window=np.hanning):
    win = window(frameSize)
    hopSize = int(frameSize - np.floor(overlapFac * frameSize))
    
    # zeros at beginning (thus center of 1st window should be for sample nr. 0)
    samples = np.append(np.zeros(np.floor(frameSize/2.0)), sig)    
    # cols for windowing
    cols = np.ceil( (len(samples) - frameSize) / float(hopSize)) + 1
    # zeros at end (thus samples can be fully covered by frames)
    samples = np.append(samples, np.zeros(frameSize))
    
    frames = stride_tricks.as_strided(samples, shape=(cols, frameSize), strides=(samples.strides[0]*hopSize, samples.strides[0])).copy()
    frames *= win
    return np.fft.rfft(frames) 

Example 33

def make_filterbank(self):
        erb_max = hz2erb(self.sr/2.0)
        erb_freqs = np.arange(0, self.n_bins) * erb_max / float(self.n_bins - 1)
        self.hz_freqs = erb2hz(erb_freqs)
        self.widths = np.round(0.5 * (self.n_bins - 1) / erb_max * 
            9.26 * 0.00437 * self.sr * np.exp(-erb_freqs / 9.26) - 0.5)
        self.filters = []
        for b in range(self.n_bins):
            w = self.widths[b]
            f = self.hz_freqs[b]
            exponential = np.exp(
                np.complex(0,1) * 2 * np.pi * f / self.sr * 
                np.arange(-w, w + 1))
            self.filters.append(np.hanning(2 * w + 1) * exponential) 

Example 34

def __init__(self, window = None, fft_size = 1024, hop_size = 512):
        if window is None:
            self.window = np.hanning(fft_size)
        else:
            self.window = window
        self.fft_size = fft_size
        self.hop_size = hop_size
        self.window_size = len(self.window)
        self.half_window = int(np.floor(len(self.window) / 2.0)) 

Example 35

def __init__(self, window = None, fft_size = 1024, hop_size = 512, sample_rate = 44100):
        if window is None:
            self.window = np.hanning(fft_size)
        else:
            self.window = window
        self.fft_size = fft_size
        self.hop_size = hop_size
        self.sample_rate = sample_rate
        self.window_size = len(self.window)
        self.half_window = int(np.floor(len(self.window) / 2.0)) 

Example 36

def __init__(self, img, start_pos, HOG_flag=0, dataformat=1, resize=1):
		
		self.HOG_flag = HOG_flag
		self.padding = 2
		self.dataformat = dataformat
		self.resize = resize
		self.img_size = img.shape[0],img.shape[1]

		if self.dataformat:
			w,h = start_pos[2]-start_pos[0],start_pos[3]-start_pos[1]
			self.pos = start_pos[0],start_pos[1],w,h
		else:
			self.pos = start_pos

		if self.resize:
			self.pos = tuple([ele/2 for ele in self.pos])
			self.img_size = img.shape[0]/2, img.shape[1]/2
			img = cv2.resize(img,self.img_size[::-1])

		object_size = self.pos[2:]
		if self.HOG_flag:
			self.target_size = 32,32
			self.l = 0.0001
			self.sigma = 0.6
			self.f = 0.012
		else:
			self.target_size = object_size[0]*self.padding,object_size[1]*self.padding
			self.l = 0.0001
			self.sigma = 0.2
			self.f = 0.02
		output_sigma_factor = 1/float(8)

		output_sigma = np.sqrt(np.prod(self.target_size)) * output_sigma_factor
		self.cos_window = np.outer(np.hanning(self.target_size[0]), np.hanning(self.target_size[1]))
		self.y = tracker.generate_gaussian(self.target_size, output_sigma)
		x =  tracker.get_window(img, self.pos, self.padding)
		x = tracker.getFeature(x, self.cos_window,self.HOG_flag)
		self.alpha = tracker.train(x, self.y, self.sigma, self.l)
		self.z = x 

Example 37

def ideal_binary_mask(noisy_speech, clean_speech, snr, sr):
    win_len = sr * 0.02
    shift_len = sr * 0.01
    noisy_spect = stft_extractor(noisy_speech, win_len, shift_len, 'hanning')
    clean_spect = stft_extractor(clean_speech, win_len, shift_len, 'hanning')
    spect_snr = np.power(np.abs(clean_spect), 2.0) / np.power(np.abs(noisy_spect - clean_spect), 2.0)
    ibm = np.where(spect_snr > 10**(0.1*snr), 1, 0)

    return ibm 

Example 38

def ideal_ratio_mask(noisy_speech, clean_speech, sr):
    win_len = sr * 0.02
    shift_len = sr * 0.01
    noisy_spect = stft_extractor(noisy_speech, win_len, shift_len, 'hanning')
    clean_spect = stft_extractor(clean_speech, win_len, shift_len, 'hanning')
    irm = np.abs(clean_spect) / np.abs(noisy_spect)

    return irm 

Example 39

def synthesis_speech(noisy_speech, ideal_mask, win_type, win_len, shift_len, syn_method='A&R'):
    samples = noisy_speech.shape[0]
    frames = (samples - win_len) // shift_len

    if win_type == 'hanning':
        window = np.hanning(win_len)
    elif win_type == 'hamming':
        window = np.hamming(win_len)
    elif win_type == 'rectangle':
        window = np.ones(win_len)
    to_ifft = np.zeros(win_len, dtype=np.complex64)
    clean_speech = np.zeros((frames-1)*shift_len+win_len, dtype=np.float32)
    window_sum = np.zeros((frames-1)*shift_len+win_len, dtype=np.float32)
    for i in range(frames):
        one_frame = noisy_speech[i * shift_len: i * shift_len + win_len]
        windowed_frame = np.multiply(one_frame, window)
        stft = np.fft.fft(windowed_frame, win_len)
        masked_abs = np.abs(stft[:win_len//2+1]) * ideal_mask[:, i]
        to_ifft[:win_len//2+1] = masked_abs * np.exp(1j * np.angle(stft[:win_len//2+1]))
        to_ifft[win_len//2+1:] = np.conj(to_ifft[win_len//2-1:0:-1])
        speech_seg = np.real(np.fft.ifft(to_ifft, win_len))

        if syn_method == 'A&R' or syn_method == 'ALLEN & RABINER':
            clean_speech[i*shift_len:i*shift_len+win_len] += speech_seg
            window_sum[i*shift_len:i*shift_len+win_len] += window

        elif syn_method == 'G&L' or syn_method == 'GRIFFIN & LIM':
            speech_seg = np.multiply(speech_seg, window)
            clean_speech[i * shift_len:i * shift_len + win_len] += speech_seg
            window_sum[i * shift_len:i * shift_len + win_len] += np.power(window, 2.)
        # if i > 0:
        #     clean_speech[i*shift_len: (i-1)*shift_len+win_len] *= 0.5
    window_sum = np.where(window_sum < 1e-2, 1e-2, window_sum)
    return clean_speech / window_sum 

Example 40

def cochleagram_extractor(xx, sr, win_len, shift_len, channel_number, win_type):
    fcoefs, f = make_erb_filters(sr, channel_number, 50)
    fcoefs = np.flipud(fcoefs)
    xf = erb_frilter_bank(xx, fcoefs)

    if win_type == 'hanning':
        window = np.hanning(channel_number)
    elif win_type == 'hamming':
        window = np.hamming(channel_number)
    elif win_type == 'triangle':
        window = (1 - (np.abs(channel_number - 1 - 2 * np.arange(1, channel_number + 1, 1)) / (channel_number + 1)))
    else:
        window = np.ones(channel_number)
    window = window.reshape((channel_number, 1))

    xe = np.power(xf, 2.0)
    frames = 1 + ((np.size(xe, 1)-win_len) // shift_len)
    cochleagram = np.zeros((channel_number, frames))
    for i in range(frames):
        one_frame = np.multiply(xe[:, i*shift_len:i*shift_len+win_len], np.repeat(window, win_len, 1))
        cochleagram[:, i] = np.sqrt(np.mean(one_frame, 1))

    # c1 = np.where(c1 == 0.0, np.finfo(float).eps, c1)
    cochleagram = np.where(cochleagram == 0.0, np.finfo(float).eps, cochleagram)
    cochleagram = np.power(cochleagram, 1./3)
    return cochleagram 

Example 41

def ideal_binary_mask(noisy_speech, clean_speech, snr):
    noisy_spect = stft_extractor(noisy_speech, 320, 160, 'hanning')
    clean_spect = stft_extractor(clean_speech, 320, 160, 'hanning')
    spect_snr = np.power(np.abs(clean_spect), 2.0) / np.power(np.abs(noisy_spect - clean_spect), 2.0)
    ibm = np.where(spect_snr > 10**(0.1*snr), 1, 0)

    return ibm 

Example 42

def synthesis_speech(ns, mk, win_type, win_len, shift_len, syn_method='A&R'):
    samples = ns.shape[0]
    frames = (samples - win_len) // shift_len

    if win_type == 'hanning':
        window = np.hanning(win_len)
    elif win_type == 'hamming':
        window = np.hamming(win_len)
    elif win_type == 'rectangle':
        window = np.ones(win_len)
    to_ifft = np.zeros(win_len, dtype=np.complex64)
    clean_speech = np.zeros((frames-1)*shift_len+win_len, dtype=np.float32)
    window_sum = np.zeros((frames-1)*shift_len+win_len, dtype=np.float32)
    for i in range(frames):
        one_frame = ns[i * shift_len: i * shift_len + win_len]
        windowed_frame = np.multiply(one_frame, window)
        stft = np.fft.fft(windowed_frame, win_len)
        masked_abs = np.abs(stft[:win_len//2+1]) * mk[:, i]
        to_ifft[:win_len//2+1] = masked_abs * np.exp(1j * np.angle(stft[:win_len//2+1]))
        to_ifft[win_len//2+1:] = np.conj(to_ifft[win_len//2-1:0:-1])
        speech_seg = np.real(np.fft.ifft(to_ifft, 320))

        if syn_method == 'A&R' or syn_method == 'ALLEN & RABINER':
            clean_speech[i*shift_len:i*shift_len+win_len] += speech_seg
            window_sum[i*shift_len:i*shift_len+win_len] += window

        elif syn_method == 'G&L' or syn_method == 'GRIFFIN & LIM':
            speech_seg = np.multiply(speech_seg, window)
            clean_speech[i * shift_len:i * shift_len + win_len] += speech_seg
            window_sum[i * shift_len:i * shift_len + win_len] += np.power(window, 2.)
        # if i > 0:
        #     clean_speech[i*shift_len: (i-1)*shift_len+win_len] *= 0.5
    window_sum = np.where(window_sum < 1e-2, 1e-2, window_sum)
    return clean_speech / window_sum 

Example 43

def getCutlerDavisFrequencyScore(I, doPlot = False):
    """
    Compute the frequency score suggested by Cutler and Davis, with a slight
    modification using Kurtosis instead of mean versus standard deviation
    :param I: An Nxd matrix representing a video with N frames at a resolution of
        d pixels
    :doPlot: If true, show the SSM and average power spectrum across all columns
    """
    N = I.shape[0]
    (D, _) = getSSM(I, N)
    F = np.zeros(N)
    #For linearly detrending
    A = np.ones((N, 2))
    A[:, 1] = np.arange(N)
    #Compute the power spectrum column by column
    for i in range(N):
        x = D[:, i]
        #Linearly detrend
        mb = np.linalg.lstsq(A, x)[0]
        y = x - A.dot(mb)
        #Apply Hann Window
        y = y*np.hanning(N)
        #Add on power spectrum
        F += np.abs(np.fft.fft(y))**2
    #Compute kurtosis of normalized averaged power spectrum
    F = F/np.sum(F)
    F[0:2] = 0 #Ignore DC component
    F[-1] = 0
    kurt = scipy.stats.kurtosis(F, fisher = False)
    M = np.mean(F)
    S = np.std(F)
    if doPlot:
        plt.subplot(121)
        plt.imshow(D, cmap='afmhot', interpolation = 'none')
        plt.subplot(122)
        plt.plot(F)
        plt.hold(True)
        plt.plot([0, N], [M, M], 'b')
        plt.plot([0, N], [M+2*S, M+2*S])
        plt.title("Kurtosis = %.3g"%kurt)
    return (np.max(F) - M)/S 

Example 44

def hanningWindow(nPix, percentage):
    """
    Return a Hanning window in 2D

    Args:
    size (int): size of the final image
    percentage (TYPE): percentage of the image that is apodized

    Returns:
    real: 2D apodization mask

    """ 
    M = np.ceil(nPix*percentage/100.0)
    win = np.hanning(M)

    winOut = np.ones(nPix)
    winOut[0:M/2] = win[0:M/2]
    winOut[-M/2:] = win[-M/2:]

    return np.outer(winOut, winOut)

# @jit
# def conv(spec, psf, nPixBorder):    
#     nx, ny, nlambda = spec.shape
#     nxPSF, nyPSF, nPSF = psf.shape
#     out = np.zeros_like(spec)
#     for i in range(nx-2*nPixBorder):
#         for j in range(ny-2*nPixBorder):
#             for k in range(nxPSF):
#                 for l in range(nyPSF):                    
#                     out[i,j,0] += spec[i+k-nxPSF/2+nPixBorder,j+l-nyPSF/2+nPixBorder,0] * psf[k,l,i]
#     return out 

Example 45

def fft(data, fs):
    n = data.shape[-1]
    window = np.hanning(n)
    windowed = data * window
    spectrum = np.fft.fft(windowed)
    freq = np.fft.fftfreq(n, 1 / fs)
    half_n = np.ceil(n / 2)
    spectrum_half = (2 / n) * spectrum[..., :half_n]
    freq_half = freq[:half_n]
    return freq_half, np.abs(spectrum_half) 

Example 46

def smooth1d(x, window_len):
    s = np.r_[2*x[0] - x[window_len:1:-1], x, 2*x[-1] - x[-1:-window_len:-1]]
    w = np.hanning(window_len)
    y = np.convolve(w/w.sum(), s, mode='same')
    return y[window_len-1:-window_len+1] 

Example 47

def _init_stretching(self):
        # Resp. index of current audio chunk and computed phase
        self._i1, self._i2 = 0, 0
        self._N, self._H = self.chunk_size, int(self.chunk_size / 4)

        self._win = numpy.hanning(self._N)
        self._phi = numpy.zeros(self._N, dtype=self.y.dtype)
        self._sy = numpy.zeros(len(self.y), dtype=self.y.dtype)

        if not hasattr(self, '_sf'):
            self.stretch_factor = 1.0

        self._zero_padding() 

Example 48

def get_spectral_features(audio, fs, lf_limit=20):
    """
     This function calculates the spectral centroid and spectral spread of an audio array.
     
     :param audio:      Audio array 
     :param fs:         Sample rate of audio file
     :param lf_limit:   Low frequency limit, in Hz, to be analysed.  Defaults to 20Hz.
     :return:           Returns the spectral centroid and spectral spread
    """
    # use a hanning window
    window = np.hanning(len(audio))
    next_pow_2 = int(pow(2, np.ceil(np.log2(len(window)))))
    # get frequency domain representation
    spectrum = np.fft.fft((window * audio), next_pow_2)
    spectrum = np.absolute(spectrum[0:int(len(spectrum) / 2) + 1])
    freq = np.arange(0, len(spectrum), 1) * (fs / (2.0 * (len(spectrum) - 1)))

    # find lowest frequency index, zeros used to unpack result
    lf_limit_idx = np.where(freq >= lf_limit)[0][0]
    spectrum = spectrum[lf_limit_idx:]
    freq = freq[lf_limit_idx:]

    # calculate centroid and spread
    centroid = sum(spectrum * freq) / float(sum(spectrum))
    spread = np.sqrt(sum(((freq - centroid) ** 2) * spectrum) / sum(spectrum))

    return centroid, spread 

Example 49

def spectrogram(samples, sample_rate, frame_len, fps, batch=50):
    """
    Computes a magnitude spectrogram for a given vector of samples at a given
    sample rate (in Hz), frame length (in samples) and frame rate (in Hz).
    Allows to transform multiple frames at once for improved performance (with
    a default value of 50, more is not always better). Returns a numpy array.
    """
    if len(samples) < frame_len:
        return np.empty((0, frame_len // 2 + 1), dtype=samples.dtype)
    win = np.hanning(frame_len)
    hopsize = sample_rate // fps
    num_frames = max(0, (len(samples) - frame_len) // hopsize + 1)
    batch = min(batch, num_frames)
    if batch <= 1 or not samples.flags.c_contiguous:
        rfft = rfft_builder(samples[:frame_len], n=frame_len)
        spect = np.vstack(np.abs(rfft(samples[pos:pos + frame_len] * win))
                          for pos in range(0, len(samples) - frame_len + 1,
                                           int(hopsize)))
    else:
        rfft = rfft_builder(np.empty((batch, frame_len), samples.dtype),
                            n=frame_len, threads=1)
        frames = np.lib.stride_tricks.as_strided(
                samples, shape=(num_frames, frame_len),
                strides=(samples.strides[0] * hopsize, samples.strides[0]))
        spect = [np.abs(rfft(frames[pos:pos + batch] * win))
                 for pos in range(0, num_frames - batch + 1, batch)]
        if num_frames % batch:
            spect.extend(spectrogram(
                    samples[(num_frames // batch * batch) * hopsize:],
                    sample_rate, frame_len, fps, batch=1))
        spect = np.vstack(spect)
    return spect 

Example 50

def stft(sig, frameSize, overlapFac=0.5, window=np.hanning):
    win = window(frameSize)
    hopSize = int(frameSize - np.floor(overlapFac * frameSize))

    # zeros at beginning (thus center of 1st window should be for sample nr. 0)
    samples = np.append(np.zeros(frameSize/2), sig)    
    # cols for windowing
    cols = np.ceil( (len(samples) - frameSize) / float(hopSize)) + 1
    # zeros at end (thus samples can be fully covered by frames)
    samples = np.append(samples, np.zeros(frameSize))
    cols = int(cols)
    frames = stride_tricks.as_strided(samples, shape=(cols, frameSize), strides=(samples.strides[0]*hopSize, samples.strides[0])).copy()
    frames *= win

    return np.fft.rfft(frames) 
点赞