The following are code examples for showing how to use . They are extracted from open source Python projects. You can vote up the examples you like or vote down the exmaples you don’t like. You can also save this page to your account.
Example 1
def draw_flow(img, flow, step=16): h, w = img.shape[:2] y, x = np.mgrid[step/2:h:step, step/2:w:step].reshape(2,-1) fx, fy = flow[y,x].T m = np.bitwise_and(np.isfinite(fx), np.isfinite(fy)) lines = np.vstack([x[m], y[m], x[m]+fx[m], y[m]+fy[m]]).T.reshape(-1, 2, 2) lines = np.int32(lines + 0.5) vis = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR) cv2.polylines(vis, lines, 0, (0, 255, 0)) for (x1, y1), (x2, y2) in lines: cv2.circle(vis, (x1, y1), 1, (0, 255, 0), -1) return vis
Example 2
def logpdf(self, samples): ''' Calculates the log of the probability density function. Parameters ---------- samples : array_like n-by-2 matrix of samples where n is the number of samples. Returns ------- vals : ndarray Log of the probability density function evaluated at `samples`. ''' samples = np.copy(np.asarray(samples)) samples = self.__rotate_input(samples) inner = np.all(np.bitwise_and(samples > 0.0, samples < 1.0), axis=1) outer = np.invert(inner) vals = np.zeros(samples.shape[0]) vals[inner] = self._logpdf(samples[inner, :]) # Assign zero mass to border vals[outer] = -np.inf return vals
Example 3
def get_rgb_mask(img, debug=False): assert isinstance(img, numpy.ndarray), 'image must be a numpy array' assert img.ndim == 3, 'skin detection can only work on color images' logger.debug('getting rgb mask') lower_thresh = numpy.array([45, 52, 108], dtype=numpy.uint8) upper_thresh = numpy.array([255, 255, 255], dtype=numpy.uint8) mask_a = cv2.inRange(img, lower_thresh, upper_thresh) mask_b = 255 * ((img[:, :, 2] - img[:, :, 1]) / 20) mask_c = 255 * ((numpy.max(img, axis=2) - numpy.min(img, axis=2)) / 20) mask_d = numpy.bitwise_and(numpy.uint64(mask_a), numpy.uint64(mask_b)) # mask = numpy.zeros_like(mask_d, dtype=numpy.uint8) msk_rgb = numpy.bitwise_and(numpy.uint64(mask_c), numpy.uint64(mask_d)) # msk_rgb = cv2.fromarray(mask_rgb) msk_rgb[msk_rgb < 128] = 0 msk_rgb[msk_rgb >= 128] = 1 if debug: scripts.display('input', img) scripts.display('mask_rgb', msk_rgb) return msk_rgb.astype(float)
Example 4
def test_NotImplemented_not_returned(self): # See gh-5964 and gh-2091. Some of these functions are not operator # related and were fixed for other reasons in the past. binary_funcs = [ np.power, np.add, np.subtract, np.multiply, np.divide, np.true_divide, np.floor_divide, np.bitwise_and, np.bitwise_or, np.bitwise_xor, np.left_shift, np.right_shift, np.fmax, np.fmin, np.fmod, np.hypot, np.logaddexp, np.logaddexp2, np.logical_and, np.logical_or, np.logical_xor, np.maximum, np.minimum, np.mod ] # These functions still return NotImplemented. Will be fixed in # future. # bad = [np.greater, np.greater_equal, np.less, np.less_equal, np.not_equal] a = np.array('1') b = 1 for f in binary_funcs: assert_raises(TypeError, f, a, b)
Example 5
def test_NotImplemented_not_returned(self): # See gh-5964 and gh-2091. Some of these functions are not operator # related and were fixed for other reasons in the past. binary_funcs = [ np.power, np.add, np.subtract, np.multiply, np.divide, np.true_divide, np.floor_divide, np.bitwise_and, np.bitwise_or, np.bitwise_xor, np.left_shift, np.right_shift, np.fmax, np.fmin, np.fmod, np.hypot, np.logaddexp, np.logaddexp2, np.logical_and, np.logical_or, np.logical_xor, np.maximum, np.minimum, np.mod ] # These functions still return NotImplemented. Will be fixed in # future. # bad = [np.greater, np.greater_equal, np.less, np.less_equal, np.not_equal] a = np.array('1') b = 1 for f in binary_funcs: assert_raises(TypeError, f, a, b)
Example 6
def agent_start(self, observation): # Preprocess tmp = np.bitwise_and(np.asarray(observation.intArray[128:]).reshape([210, 160]), 0b0001111) # Get Intensity from the observation obs_array = (spm.imresize(tmp, (110, 84)))[110-84-8:110-8, :] # Scaling # Initialize State self.state = np.zeros((4, 84, 84), dtype=np.uint8) self.state[0] = obs_array state_ = cuda.to_gpu(np.asanyarray(self.state.reshape(1, 4, 84, 84), dtype=np.float32)) # Generate an Action e-greedy returnAction = Action() action, Q_now = self.DDQN.e_greedy(state_, self.epsilon) returnAction.intArray = [action] # Update for next step self.lastAction = copy.deepcopy(returnAction) self.last_state = self.state.copy() self.last_observation = obs_array return returnAction
Example 7
def create_mask_from_bitmask(geoimg, filename=''): """ Mask geoimg with a series of provided bitmasks """ # medium and high confidence clouds nodata = int('0000000000000001', 2) clouds = int('1000000000000000', 2) cirrus = int('0011000000000000', 2) # calculate mask arr = geoimg.read().astype('int16') # it is a good data mask mask = (np.bitwise_and(arr, nodata) != nodata) & \ (np.bitwise_and(arr, clouds) < clouds) & \ (np.bitwise_and(arr, cirrus) < cirrus) # create mask file logger.info('Saving to file %s' % filename, action='Save file', actee=filename, actor=__name__) maskimg = GeoImage.create_from(geoimg, filename=filename, dtype='uint8') maskimg.set_nodata(0) maskimg[0].write(mask.astype('uint8')) return maskimg
Example 8
def test_NotImplemented_not_returned(self): # See gh-5964 and gh-2091. Some of these functions are not operator # related and were fixed for other reasons in the past. binary_funcs = [ np.power, np.add, np.subtract, np.multiply, np.divide, np.true_divide, np.floor_divide, np.bitwise_and, np.bitwise_or, np.bitwise_xor, np.left_shift, np.right_shift, np.fmax, np.fmin, np.fmod, np.hypot, np.logaddexp, np.logaddexp2, np.logical_and, np.logical_or, np.logical_xor, np.maximum, np.minimum, np.mod ] # These functions still return NotImplemented. Will be fixed in # future. # bad = [np.greater, np.greater_equal, np.less, np.less_equal, np.not_equal] a = np.array('1') b = 1 for f in binary_funcs: assert_raises(TypeError, f, a, b)
Example 9
def test_values(self): for dt in self.bitwise_types: zeros = np.array([0], dtype=dt) ones = np.array([-1], dtype=dt) msg = "dt = '%s'" % dt.char assert_equal(np.bitwise_not(zeros), ones, err_msg=msg) assert_equal(np.bitwise_not(ones), zeros, err_msg=msg) assert_equal(np.bitwise_or(zeros, zeros), zeros, err_msg=msg) assert_equal(np.bitwise_or(zeros, ones), ones, err_msg=msg) assert_equal(np.bitwise_or(ones, zeros), ones, err_msg=msg) assert_equal(np.bitwise_or(ones, ones), ones, err_msg=msg) assert_equal(np.bitwise_xor(zeros, zeros), zeros, err_msg=msg) assert_equal(np.bitwise_xor(zeros, ones), ones, err_msg=msg) assert_equal(np.bitwise_xor(ones, zeros), ones, err_msg=msg) assert_equal(np.bitwise_xor(ones, ones), zeros, err_msg=msg) assert_equal(np.bitwise_and(zeros, zeros), zeros, err_msg=msg) assert_equal(np.bitwise_and(zeros, ones), zeros, err_msg=msg) assert_equal(np.bitwise_and(ones, zeros), zeros, err_msg=msg) assert_equal(np.bitwise_and(ones, ones), ones, err_msg=msg)
Example 10
def set_ufunc(self, scalar_op): # This is probably a speed up of the implementation if isinstance(scalar_op, theano.scalar.basic.Add): self.ufunc = numpy.add elif isinstance(scalar_op, theano.scalar.basic.Mul): self.ufunc = numpy.multiply elif isinstance(scalar_op, theano.scalar.basic.Maximum): self.ufunc = numpy.maximum elif isinstance(scalar_op, theano.scalar.basic.Minimum): self.ufunc = numpy.minimum elif isinstance(scalar_op, theano.scalar.basic.AND): self.ufunc = numpy.bitwise_and elif isinstance(scalar_op, theano.scalar.basic.OR): self.ufunc = numpy.bitwise_or elif isinstance(scalar_op, theano.scalar.basic.XOR): self.ufunc = numpy.bitwise_xor else: self.ufunc = numpy.frompyfunc(scalar_op.impl, 2, 1)
Example 11
def parseNpf(self, buffer, imageWidth, imageHeight): # Read the header sectionLengths = self._readUgarHeader(buffer) # Read the palette data (section number 1) paletteData = np.frombuffer(buffer.read(roundToPower(sectionLengths[0])), dtype=np.uint16) # Read the image data (section number 2) imageData = np.frombuffer(buffer.read(sectionLengths[1]), dtype=np.uint8) # NPF image data uses 1 byte per 2 pixels, so we need to split that byte into two imageData = np.stack((np.bitwise_and(imageData, 0x0f), np.bitwise_and(imageData >> 4, 0x0f)), axis=-1).flatten() # Unpack palette colors palette = unpackColors(paletteData, useAlpha=False) # Convert each pixel from a palette index to full color pixels = np.fromiter((palette[i] if i > 0 else 0 for i in imageData), dtype=">u4") # Clip the image data and create a Pillow image from it return Image.fromarray(self._clipImageData(pixels, (imageWidth, imageHeight)), mode="RGBA") # Write the image as an npf to buffer
Example 12
def __init__(self, imageBuffer, size): width, height = self.get_size(size) self.size = size self.surface = Surface((width, height), depth=8) # Read the header paletteLength, imageDataLength = self.read_ugar_header(imageBuffer) # Read the image palette and unpack palette = self.unpack_palette(np.fromstring(imageBuffer.read(self.round_to_power(paletteLength)), dtype=np.uint16)) self.surface.set_palette(palette) # All pixels with the index of 0 are transparent self.surface.set_colorkey(0) # Read the pixel data bytes pixelData = np.fromstring(imageBuffer.read(imageDataLength), dtype=np.uint8) # Split each byte into 2 pixels pixels = np.stack((np.bitwise_and(pixelData, 0x0f), np.bitwise_and(pixelData >> 4, 0x0f)), axis=-1).flatten() pixels = np.swapaxes(np.reshape(pixels, (-1, width)), 0, 1) pixelcopy.array_to_surface(self.surface, pixels)
Example 13
def test_NotImplemented_not_returned(self): # See gh-5964 and gh-2091. Some of these functions are not operator # related and were fixed for other reasons in the past. binary_funcs = [ np.power, np.add, np.subtract, np.multiply, np.divide, np.true_divide, np.floor_divide, np.bitwise_and, np.bitwise_or, np.bitwise_xor, np.left_shift, np.right_shift, np.fmax, np.fmin, np.fmod, np.hypot, np.logaddexp, np.logaddexp2, np.logical_and, np.logical_or, np.logical_xor, np.maximum, np.minimum, np.mod ] # These functions still return NotImplemented. Will be fixed in # future. # bad = [np.greater, np.greater_equal, np.less, np.less_equal, np.not_equal] a = np.array('1') b = 1 for f in binary_funcs: assert_raises(TypeError, f, a, b)
Example 14
def test_uw_rgbd_object(): from pybot.vision.image_utils import to_color from pybot.vision.imshow_utils import imshow_cv object_directory = '~/data/rgbd_datasets/udub/rgbd-object-crop/rgbd-dataset' rgbd_data_uw = UWRGBDObjectDataset(directory=object_directory) for f in rgbd_data_uw.iteritems(every_k_frames=5): bbox = f.bbox imshow_cv('frame', np.hstack([f.img, np.bitwise_and(f.img, to_color(f.mask))]), text='Image + Mask [Category: [%i] %s, Instance: %i]' % (bbox['category'], rgbd_data_uw.get_category_name(bbox['category']), bbox['instance'])) imshow_cv('depth', (f.depth / 16).astype(np.uint8), text='Depth')
Example 15
def project(self, X, check_bounds=False, check_depth=False, return_depth=False, min_depth=0.1): """ Project [Nx3] points onto 2-D image plane [Nx2] """ R, t = self.to_Rt() rvec,_ = cv2.Rodrigues(R) proj,_ = cv2.projectPoints(X, rvec, t, self.K, self.D) x = proj.reshape(-1,2) if check_depth: # Only return positive depths depths = self.depth_from_projection(X) valid = depths >= min_depth else: valid = np.ones(len(x), dtype=np.bool) if check_bounds: if self.shape is None: raise ValueError('check_bounds cannot proceed. Camera.shape is not set') # Only return points within-image bounds valid = np.bitwise_and( valid, np.bitwise_and( np.bitwise_and(x[:,0] >= 0, x[:,0] < self.shape[1]), \ np.bitwise_and(x[:,1] >= 0, x[:,1] < self.shape[0])) ) if return_depth: return x[valid], depths[valid] return x[valid]
Example 16
def get_bounded_projection(camera, pts, subsample=10): """ Project points and only return points that are within image bounds """ # Project points pts2d = camera.project(pts[::subsample].astype(np.float32)) # Only return points within-image bounds valid = np.bitwise_and(np.bitwise_and(pts2d[:,0] >= 0, pts2d[:,0] < camera.shape[1]), \ np.bitwise_and(pts2d[:,1] >= 0, pts2d[:,1] < camera.shape[0])) return pts2d[valid], valid
Example 17
def bbox_inbounds(bb, shape): assert(shape[1] > shape[0] and bb.shape[1] == 4) return np.all(np.bitwise_and(np.bitwise_and(bb[:,0] >= 0, bb[:,2] < shape[1]), \ np.bitwise_and(bb[:,1] >= 0, bb[:,3] < shape[0])))
Example 18
def match_targets(bboxes_truth, bboxes_test, intersection_th=0.5): A = brute_force_match_coords(bboxes_truth, bboxes_test) B = brute_force_match_target(bboxes_truth, bboxes_test) pos = np.bitwise_and(A > intersection_th, B) return pos
Example 19
def finite_and_within_bounds(xys, shape): H, W = shape[:2] if not len(xys): return np.array([]) return np.bitwise_and(np.isfinite(xys).all(axis=1), reduce(lambda x,y: np.bitwise_and(x,y), [xys[:,0] >= 0, xys[:,0] < W, xys[:,1] >= 0, xys[:,1] < H]))
Example 20
def detect(self, im, mask=None): edges = self.detect_edges_(im) # edges1 = edges.copy() if mask is not None: edges = np.bitwise_and(edges, mask) # cv2.imshow('mask', np.hstack([edges1, edges])) kpts = self.detector_.detect(im, mask=edges) return kpts
Example 21
def getCrop(self, dpt, xstart, xend, ystart, yend, zstart, zend, thresh_z=True): """ Crop patch from image :param dpt: depth image to crop from :param xstart: start x :param xend: end x :param ystart: start y :param yend: end y :param zstart: start z :param zend: end z :param thresh_z: threshold z values :return: cropped image """ if len(dpt.shape) == 2: cropped = dpt[max(ystart, 0):min(yend, dpt.shape[0]), max(xstart, 0):min(xend, dpt.shape[1])].copy() # add pixels that are out of the image in order to keep aspect ratio cropped = numpy.pad(cropped, ((abs(ystart)-max(ystart, 0), abs(yend)-min(yend, dpt.shape[0])), (abs(xstart)-max(xstart, 0), abs(xend)-min(xend, dpt.shape[1]))), mode='constant', constant_values=0) elif len(dpt.shape) == 3: cropped = dpt[max(ystart, 0):min(yend, dpt.shape[0]), max(xstart, 0):min(xend, dpt.shape[1]), :].copy() # add pixels that are out of the image in order to keep aspect ratio cropped = numpy.pad(cropped, ((abs(ystart)-max(ystart, 0), abs(yend)-min(yend, dpt.shape[0])), (abs(xstart)-max(xstart, 0), abs(xend)-min(xend, dpt.shape[1])), (0, 0)), mode='constant', constant_values=0) else: raise NotImplementedError() if thresh_z is True: msk1 = numpy.bitwise_and(cropped < zstart, cropped != 0) msk2 = numpy.bitwise_and(cropped > zend, cropped != 0) cropped[msk1] = zstart cropped[msk2] = 0. # backface is at 0, it is set later return cropped
Example 22
def _ccdf(self, samples): vals = np.zeros(samples.shape[0]) # Avoid subtraction of infinities neqz = np.bitwise_and(np.any(samples > 0.0, axis=1), np.any(samples < 1.0, axis=1)) nrvs = norm.ppf(samples[neqz, :]) vals[neqz] = norm.cdf((nrvs[:, 0] - self.theta * nrvs[:, 1]) / np.sqrt(1 - self.theta**2)) vals[np.invert(neqz)] = norm.cdf(0.0) return vals
Example 23
def roi_from_bbox( input_file, bbox, output_file): """ Create a ROI image from a bounding box. Parameters ---------- input_file: str the reference image where the bbox is defined. bbox: 6-uplet the corner of the bbox in voxel coordinates: xmin, xmax, ymin, ymax, zmin, zmax. output_file: str the desired ROI image file. """ # Load the reference image and generate a grid im = nibabel.load(input_file) xv, yv, zv = numpy.meshgrid( numpy.linspace(0, im.shape[0] - 1, im.shape[0]), numpy.linspace(0, im.shape[1] - 1, im.shape[1]), numpy.linspace(0, im.shape[2] - 1, im.shape[2])) xv = xv.astype(int) yv = yv.astype(int) zv = zv.astype(int) # Intersect the grid with the bbox xa = numpy.bitwise_and(xv >= bbox[0], xv <= bbox[1]) ya = numpy.bitwise_and(yv >= bbox[2], yv <= bbox[3]) za = numpy.bitwise_and(zv >= bbox[4], zv <= bbox[5]) # Generate bbox indices indices = numpy.bitwise_and(numpy.bitwise_and(xa, ya), za) # Generate/save ROI roi = numpy.zeros(im.shape, dtype=int) roi[xv[indices].tolist(), yv[indices].tolist(), zv[indices].tolist()] = 1 roi_im = nibabel.Nifti1Image(roi, affine=im.get_affine()) nibabel.save(roi_im, output_file)
Example 24
def _rgb_integers_to_components(self, rgb_integers): red_mask = 0x00FF0000 green_mask = 0x0000FF00 blue_mask = 0x000000FF masks = np.asarray([[red_mask, green_mask, blue_mask]]) masked_rgb_components = np.bitwise_and(rgb_integers, masks) red_shifted = np.right_shift(masked_rgb_components[:,0], 16) green_shifted = np.right_shift(masked_rgb_components[:,1], 8) blue_shifted = np.right_shift(masked_rgb_components[:,2], 0) return np.array([red_shifted, green_shifted, blue_shifted]).transpose()
Example 25
def load_feature_run_model(bundle_hdf_path, prediction_csv_path): with h5py.File(bundle_hdf_path, 'r') as bundle_f: is_valid = bundle_f['info']['is_valid'].value is_test = bundle_f['info']['is_test'].value passenger_id = bundle_f['id'].value label = bundle_f['label'].value # concated feature = bundle_f['features'].value train_filter = (np.bitwise_and(~is_valid, ~is_test)) valid_filter = (np.bitwise_and(is_valid, ~is_test)) test_filter = is_test ############## # validation # ############## clf = RandomForestClassifier() clf.fit(feature[train_filter], label[train_filter]) print('validation score: (Accuracy)', clf.score(feature[valid_filter], label[valid_filter])) ############## # prediction # ############## clf.fit(feature[~test_filter], label[~test_filter]) prediction = clf.predict(feature[test_filter]) df = pd.DataFrame(prediction, columns=['Survived'], index=passenger_id[test_filter]) df.index.rename('PassengerId') df.to_csv(prediction_csv_path)
Example 26
def test_truth_table_bitwise(self): arg1 = [False, False, True, True] arg2 = [False, True, False, True] out = [False, True, True, True] assert_equal(np.bitwise_or(arg1, arg2), out) out = [False, False, False, True] assert_equal(np.bitwise_and(arg1, arg2), out) out = [False, True, True, False] assert_equal(np.bitwise_xor(arg1, arg2), out)
Example 27
def test_NotImplemented_not_returned(self): # See gh-5964 and gh-2091. Some of these functions are not operator # related and were fixed for other reasons in the past. binary_funcs = [ np.power, np.add, np.subtract, np.multiply, np.divide, np.true_divide, np.floor_divide, np.bitwise_and, np.bitwise_or, np.bitwise_xor, np.left_shift, np.right_shift, np.fmax, np.fmin, np.fmod, np.hypot, np.logaddexp, np.logaddexp2, np.logical_and, np.logical_or, np.logical_xor, np.maximum, np.minimum, np.mod ] # These functions still return NotImplemented. Will be fixed in # future. # bad = [np.greater, np.greater_equal, np.less, np.less_equal, np.not_equal] a = np.array('1') b = 1 for f in binary_funcs: assert_raises(TypeError, f, a, b)
Example 28
def __and__(self, other): return bitwise_and(self, other)
Example 29
def __iand__(self, other): return bitwise_and(self, other, self)
Example 30
def __rand__(self, other): return bitwise_and(other, self)
Example 31
def main(): """Main demo.""" # Load survey data llh, data = get_flightlines() decimate = 5 llh = llh[::decimate] data = data[::decimate] # Select by height intervals (57% of the data) hrange = [95., 105.] keep = np.bitwise_and(llh[:, 2] > hrange[0], llh[:,2] < hrange[1]) llh = llh[keep] data = data[keep] # Write out the reduced llh, data sf = shapefile.Writer(shapefile.POINT) outname = data_root + 'new_flightlines' log.info('Writing shapefile') sf.field("K") sf.field("Th") sf.field("U") for ll, dat in tqdm(zip(llh, data)): sf.point(ll[0], ll[1], ll[2]) sf.record(K=dat[0], Th=dat[1], U=dat[2]) sf.save(outname) log.info('Done!')
Example 32
def create_binary_wf_data(wf, sync_mkr=0, samp_mkr=0, vertical_resolution=12): """Given numpy arrays of waveform and marker data convert to binary format. Assumes waveform data is np.float in range -1 to 1 and marker data can be cast to bool Binary format is waveform in MSB and and markers in LSB waveform sync_mkr samp_mkr 15 downto 4/2 1 0 """ #cast the waveform to integers if not((vertical_resolution == 12) or (vertical_resolution == 14)): raise ValueError("vertical resolution must be 12 or 14 bits") #convert waveform to integers scale_factor = 2**(vertical_resolution-1) bin_data = np.int16((scale_factor-1)*np.array(wf)) #clip if necessary if np.max(bin_data) > scale_factor-1 or np.min(bin_data) < -scale_factor: warnings.warn("Clipping waveform. Max value: {:d} Min value: {:d}. Scale factor: {:d}.".format(np.max(bin_data), np.min(bin_data),scale_factor)) bin_data = np.clip(bin_data, -scale_factor, scale_factor-1) # bin_data = bin_data.byteswap() #shift up to the MSB bin_data = np.left_shift(bin_data, 4 if vertical_resolution == 12 else 2) #add in the marker bits bin_data = np.bitwise_or(bin_data, np.bitwise_or(np.left_shift(np.bitwise_and(sync_mkr, 0x1), 1), np.bitwise_and(samp_mkr, 0x1))) return bin_data
Example 33
def get_mask_overlap(mask1, mask2): intersect = np.bitwise_and(mask1, mask2).sum() union = np.bitwise_or(mask1, mask2).sum() return 1.0 * intersect / union
Example 34
def training_stress_pma_grappe_score(X, pma): """Compute the training stress score using the MAP. Parameters ---------- X : array-like, shape (n_samples, ) Array containing the power intensities for a ride. pma : float Maximum Anaerobic Power. Returns ------- tss_score: float Return the training stress score. """ # Check the consistency of X and pma if len(X.shape) != 1: raise ValueError('X should have 1 dimension. Got {}, instead'.format( len(X.shape))) # Compute the stress for each item of the ESIE tss_grappe = 0. for key_sc in TS_SCALE_GRAPPE.keys(): # Count the number of elements which corresponds to as sec # We need to convert it to minutes curr_stress = np.count_nonzero( np.bitwise_and(X >= ESIE_SCALE_GRAPPE[key_sc][0] * pma, X < ESIE_SCALE_GRAPPE[key_sc][1] * pma)) / 60 # Compute the cumulative stress tss_grappe += curr_stress * TS_SCALE_GRAPPE[key_sc] return tss_grappe
Example 35
def getCrop(self, dpt, xstart, xend, ystart, yend, zstart, zend, thresh_z=True): """ Crop patch from image :param dpt: depth image to crop from :param xstart: start x :param xend: end x :param ystart: start y :param yend: end y :param zstart: start z :param zend: end z :param thresh_z: threshold z values :return: cropped image """ if len(dpt.shape) == 2: cropped = dpt[max(ystart, 0):min(yend, dpt.shape[0]), max(xstart, 0):min(xend, dpt.shape[1])].copy() # add pixels that are out of the image in order to keep aspect ratio cropped = numpy.pad(cropped, ((abs(ystart)-max(ystart, 0), abs(yend)-min(yend, dpt.shape[0])), (abs(xstart)-max(xstart, 0), abs(xend)-min(xend, dpt.shape[1]))), mode='constant', constant_values=0) elif len(dpt.shape) == 3: cropped = dpt[max(ystart, 0):min(yend, dpt.shape[0]), max(xstart, 0):min(xend, dpt.shape[1]), :].copy() # add pixels that are out of the image in order to keep aspect ratio cropped = numpy.pad(cropped, ((abs(ystart)-max(ystart, 0), abs(yend)-min(yend, dpt.shape[0])), (abs(xstart)-max(xstart, 0), abs(xend)-min(xend, dpt.shape[1])), (0, 0)), mode='constant', constant_values=0) else: raise NotImplementedError() if thresh_z is True: msk1 = numpy.bitwise_and(cropped < zstart, cropped != 0) msk2 = numpy.bitwise_and(cropped > zend, cropped != 0) cropped[msk1] = zstart cropped[msk2] = 0. # backface is at 0, it is set later return cropped
Example 36
def delta_plus(self, nodes): ''' Returns the list of edges forwarding from a set of nodes ''' bool_indices_head = np.array([x[0] in nodes for x in self.edges]) bool_indices_tail = np.array([x[1] not in nodes for x in self.edges]) bool_indices_edges = np.bitwise_and( bool_indices_head, bool_indices_tail) return self.edges[bool_indices_edges]
Example 37
def delta_minus(self, nodes): ''' Returns the list of edges backwarding from a set of nodes ''' bool_indices_head = np.array([x[0] not in nodes for x in self.edges]) bool_indices_tail = np.array([x[1] in nodes for x in self.edges]) bool_indices_edges = np.bitwise_and( bool_indices_head, bool_indices_tail) return self.edges[bool_indices_edges]
Example 38
def delta_plus(self, nodes): ''' Returns the list of edges forwarding from a set of nodes ''' bool_indices_head = np.array([x[0] in nodes for x in self.edges]) bool_indices_tail = np.array([x[1] not in nodes for x in self.edges]) bool_indices_edges = np.bitwise_and( bool_indices_head, bool_indices_tail) return self.edges[bool_indices_edges]
Example 39
def delta_minus(self, nodes): ''' Returns the list of edges backwarding from a set of nodes ''' bool_indices_head = np.array([x[0] not in nodes for x in self.edges]) bool_indices_tail = np.array([x[1] in nodes for x in self.edges]) bool_indices_edges = np.bitwise_and( bool_indices_head, bool_indices_tail) return self.edges[bool_indices_edges]
Example 40
def binary_and(a,b): """Compare two binary arrays of the same length and return a third one, the bitwise addition of the first two.""" # return np.logical_and(a,b) # does not work with packed arrays return np.bitwise_and(a, b)
Example 41
def test_truth_table_bitwise(self): arg1 = [False, False, True, True] arg2 = [False, True, False, True] out = [False, True, True, True] assert_equal(np.bitwise_or(arg1, arg2), out) out = [False, False, False, True] assert_equal(np.bitwise_and(arg1, arg2), out) out = [False, True, True, False] assert_equal(np.bitwise_xor(arg1, arg2), out)
Example 42
def test_NotImplemented_not_returned(self): # See gh-5964 and gh-2091. Some of these functions are not operator # related and were fixed for other reasons in the past. binary_funcs = [ np.power, np.add, np.subtract, np.multiply, np.divide, np.true_divide, np.floor_divide, np.bitwise_and, np.bitwise_or, np.bitwise_xor, np.left_shift, np.right_shift, np.fmax, np.fmin, np.fmod, np.hypot, np.logaddexp, np.logaddexp2, np.logical_and, np.logical_or, np.logical_xor, np.maximum, np.minimum, np.mod ] # These functions still return NotImplemented. Will be fixed in # future. # bad = [np.greater, np.greater_equal, np.less, np.less_equal, np.not_equal] a = np.array('1') b = 1 for f in binary_funcs: assert_raises(TypeError, f, a, b)
Example 43
def __iand__(self, other): np.bitwise_and(self, other, out=self) return self
Example 44
def _bin_results(self, length, results): """ Add hits to the bins corresponding to these results. length_hit_bins is flattened, so we need to figure out the offset for this hit by factoring the sizes of the other dimensions. """ hit_bin = np.zeros(results.shape[0], dtype='int64') multi = 1 good = np.ones(results.shape[0], dtype='bool') for dim in range(len(self.out_labels)): for d1 in range(dim): multi *= self.bin_edges[d1].size if dim == 0 and len(self.out_labels)==1: try: digi = np.digitize(results, self.bin_edges[dim]) except ValueError: # The user probably did something like # return a * b rather than # return a[0] * b[0], which will only happen # for single field functions. digi = np.digitize(results[0], self.bin_edges[dim]) else: digi = np.digitize(results[:,dim], self.bin_edges[dim]) too_low = (digi == 0) too_high = (digi == self.bin_edges[dim].size) self.too_low[dim] += (too_low).sum() self.too_high[dim] += (too_high).sum() newgood = np.bitwise_and(np.invert(too_low), np.invert(too_high)) good = np.bitwise_and(good, newgood) hit_bin += np.multiply((digi - 1), multi) digi_bins = np.arange(self.length_bin_hits[length].size+1) hist, digi_bins = np.histogram(hit_bin[good], digi_bins) self.length_bin_hits[length] += hist
Example 45
def spread_bitsv(ival, level): res = np.zeros_like(ival, dtype='int64') for i in range(level): ares = np.bitwise_and(ival, 1<<i) << (i*2) np.bitwise_or(res, ares, res) return res
Example 46
def mask_real_image(color, depth, depth_render): mask = (depth_render != 0).astype(np.uint8)[:, :, np.newaxis] masked_rgb = color * mask masked_hsv = cv2.cvtColor(masked_rgb, cv2.COLOR_BGR2HSV) saturation_mask = (masked_hsv[:, :, 2] <= SATURATION_THRESHOLD)[:, :, np.newaxis].astype(np.uint8) total_mask = np.bitwise_and(mask, saturation_mask) masked_color = color * total_mask masked_depth = depth[:total_mask.shape[0], :total_mask.shape[1]] * total_mask[:, :, 0] return masked_color, masked_depth
Example 47
def show_occlusion(detection, rgb, depth, camera, bb_width): pixels = compute_2Dboundingbox(detection, camera, bb_width) depth_crop = depth[pixels[0, 0]:pixels[1, 0], pixels[0, 1]:pixels[2, 1]].astype(np.float) mask = np.bitwise_and(depth_crop < 880, depth_crop != 0) mask = cv2.erode(mask.astype(np.uint8), np.ones((3, 3))) print("Occlusion level : {}".format(np.sum(mask) / (mask.shape[0] * mask.shape[1]))) cv2.imshow("object crop mask", (mask * 255)) cv2.imshow("object crop depth", ((depth_crop / np.max(depth_crop) * 255).astype(np.uint8))) cv2.rectangle(rgb, tuple(pixels[0][::-1]), tuple(pixels[3][::-1]), (0, 0, 255), 2)
Example 48
def test_truth_table_bitwise(self): arg1 = [False, False, True, True] arg2 = [False, True, False, True] out = [False, True, True, True] assert_equal(np.bitwise_or(arg1, arg2), out) out = [False, False, False, True] assert_equal(np.bitwise_and(arg1, arg2), out) out = [False, True, True, False] assert_equal(np.bitwise_xor(arg1, arg2), out)
Example 49
def test_truth_table_bitwise(self): arg1 = [False, False, True, True] arg2 = [False, True, False, True] out = [False, True, True, True] assert_equal(np.bitwise_or(arg1, arg2), out) out = [False, False, False, True] assert_equal(np.bitwise_and(arg1, arg2), out) out = [False, True, True, False] assert_equal(np.bitwise_xor(arg1, arg2), out)
Example 50
def cut_face_ellipse(image, face_coord): """ Cuts the image to just show the face in an ellipse. This function takes the rectangle coordinates around a detected face or faces and cuts the original image with the face coordenates. It also surrounds the face with an ellipse making black all the extra background or faces """ images_ellipse = [] for (x, y, w, h) in face_coord: center = (x + w / 2, y + h / 2) axis_major = (h / 2) axis_minor = (w / 2) mask = np.zeros_like(image) # create a white filled ellipse mask = cv2.ellipse(mask, center=center, axes=(axis_major, axis_minor), angle=0, startAngle=0, endAngle=360, color=(255, 255, 255), thickness=-1) # Bitwise AND operation to black out regions outside the mask image_ellipse = np.bitwise_and(image, mask) images_ellipse.append(image_ellipse[y: y + h, x: x + w]) return images_ellipse