The following are code examples for showing how to use . They are extracted from open source Python projects. You can vote up the examples you like or vote down the exmaples you don’t like. You can also save this page to your account.
Example 1
def alpha(self): # Cronbach Alpha alpha = pd.DataFrame(0, index=np.arange(1), columns=self.latent) for i in range(self.lenlatent): block = self.data_[self.Variables['measurement'] [self.Variables['latent'] == self.latent[i]]] p = len(block.columns) if(p != 1): p_ = len(block) correction = np.sqrt((p_ - 1) / p_) soma = np.var(np.sum(block, axis=1)) cor_ = pd.DataFrame.corr(block) denominador = soma * correction**2 numerador = 2 * np.sum(np.tril(cor_) - np.diag(np.diag(cor_))) alpha_ = (numerador / denominador) * (p / (p - 1)) alpha[self.latent[i]] = alpha_ else: alpha[self.latent[i]] = 1 return alpha.T
Example 2
def getMedianDistanceBetweenSamples(self, sampleSet=None) : """ Jaakkola's heuristic method for setting the width parameter of the Gaussian radial basis function kernel is to pick a quantile (usually the median) of the distribution of Euclidean distances between points having different labels. Reference: Jaakkola, M. Diekhaus, and D. Haussler. Using the Fisher kernel method to detect remote protein homologies. In T. Lengauer, R. Schneider, P. Bork, D. Brutlad, J. Glasgow, H.- W. Mewes, and R. Zimmer, editors, Proceedings of the Seventh International Conference on Intelligent Systems for Molecular Biology. """ numrows = sampleSet.shape[0] samples = sampleSet G = sum((samples * samples), 1) Q = numpy.tile(G[:, None], (1, numrows)) R = numpy.tile(G, (numrows, 1)) distances = Q + R - 2 * numpy.dot(samples, samples.T) distances = distances - numpy.tril(distances) distances = distances.reshape(numrows**2, 1, order="F").copy() return numpy.sqrt(0.5 * numpy.median(distances[distances > 0]))
Example 3
def test_tril_triu_ndim3(): for dtype in np.typecodes['AllFloat'] + np.typecodes['AllInteger']: a = np.array([ [[1, 1], [1, 1]], [[1, 1], [1, 0]], [[1, 1], [0, 0]], ], dtype=dtype) a_tril_desired = np.array([ [[1, 0], [1, 1]], [[1, 0], [1, 0]], [[1, 0], [0, 0]], ], dtype=dtype) a_triu_desired = np.array([ [[1, 1], [0, 1]], [[1, 1], [0, 0]], [[1, 1], [0, 0]], ], dtype=dtype) a_triu_observed = np.triu(a) a_tril_observed = np.tril(a) yield assert_array_equal, a_triu_observed, a_triu_desired yield assert_array_equal, a_tril_observed, a_tril_desired yield assert_equal, a_triu_observed.dtype, a.dtype yield assert_equal, a_tril_observed.dtype, a.dtype
Example 4
def test_tril_triu_dtype(): # Issue 4916 # tril and triu should return the same dtype as input for c in np.typecodes['All']: if c == 'V': continue arr = np.zeros((3, 3), dtype=c) assert_equal(np.triu(arr).dtype, arr.dtype) assert_equal(np.tril(arr).dtype, arr.dtype) # check special cases arr = np.array([['2001-01-01T12:00', '2002-02-03T13:56'], ['2004-01-01T12:00', '2003-01-03T13:45']], dtype='datetime64') assert_equal(np.triu(arr).dtype, arr.dtype) assert_equal(np.tril(arr).dtype, arr.dtype) arr = np.zeros((3,3), dtype='f4,f4') assert_equal(np.triu(arr).dtype, arr.dtype) assert_equal(np.tril(arr).dtype, arr.dtype)
Example 5
def two_time_state_to_results(state): """Convert the internal state of the two time generator into usable results Parameters ---------- state : namedtuple The internal state that is yielded from `lazy_two_time` Returns ------- results : namedtuple A results object that contains the two time correlation results and the lag steps """ for q in range(np.max(state.label_array)): x0 = (state.g2)[q, :, :] (state.g2)[q, :, :] = (np.tril(x0) + np.tril(x0).T - np.diag(np.diag(x0))) return results(state.g2, state.lag_steps, state)
Example 6
def two_time_state_to_results(state): """Convert the internal state of the two time generator into usable results Parameters ---------- state : namedtuple The internal state that is yielded from `lazy_two_time` Returns ------- results : namedtuple A results object that contains the two time correlation results and the lag steps """ for q in range(np.max(state.label_array)): x0 = (state.g2)[q, :, :] (state.g2)[q, :, :] = (np.tril(x0) + np.tril(x0).T - np.diag(np.diag(x0))) return results(state.g2, state.lag_steps, state)
Example 7
def test_tril_triu_ndim3(): for dtype in np.typecodes['AllFloat'] + np.typecodes['AllInteger']: a = np.array([ [[1, 1], [1, 1]], [[1, 1], [1, 0]], [[1, 1], [0, 0]], ], dtype=dtype) a_tril_desired = np.array([ [[1, 0], [1, 1]], [[1, 0], [1, 0]], [[1, 0], [0, 0]], ], dtype=dtype) a_triu_desired = np.array([ [[1, 1], [0, 1]], [[1, 1], [0, 0]], [[1, 1], [0, 0]], ], dtype=dtype) a_triu_observed = np.triu(a) a_tril_observed = np.tril(a) yield assert_array_equal, a_triu_observed, a_triu_desired yield assert_array_equal, a_tril_observed, a_tril_desired yield assert_equal, a_triu_observed.dtype, a.dtype yield assert_equal, a_tril_observed.dtype, a.dtype
Example 8
def test_tril_triu_dtype(): # Issue 4916 # tril and triu should return the same dtype as input for c in np.typecodes['All']: if c == 'V': continue arr = np.zeros((3, 3), dtype=c) assert_equal(np.triu(arr).dtype, arr.dtype) assert_equal(np.tril(arr).dtype, arr.dtype) # check special cases arr = np.array([['2001-01-01T12:00', '2002-02-03T13:56'], ['2004-01-01T12:00', '2003-01-03T13:45']], dtype='datetime64') assert_equal(np.triu(arr).dtype, arr.dtype) assert_equal(np.tril(arr).dtype, arr.dtype) arr = np.zeros((3,3), dtype='f4,f4') assert_equal(np.triu(arr).dtype, arr.dtype) assert_equal(np.tril(arr).dtype, arr.dtype)
Example 9
def setUp(self): with self.test_session(): N = 4 M = 5 self.mu = tf.placeholder(settings.float_type, [M, N]) self.sqrt = tf.placeholder(settings.float_type, [M, N]) self.chol = tf.placeholder(settings.float_type, [M, M, N]) self.I = tf.placeholder(settings.float_type, [M, M]) self.rng = np.random.RandomState(0) self.mu_data = self.rng.randn(M, N) self.sqrt_data = self.rng.randn(M, N) q_sqrt = np.rollaxis(np.array([np.tril(self.rng.randn(M, M)) for _ in range(N)]), 0, 3) self.chol_data = q_sqrt self.feed_dict = { self.mu: self.mu_data, self.sqrt: self.sqrt_data, self.chol: self.chol_data, self.I: np.eye(M), }
Example 10
def setUp(self): with self.test_session(): N = 4 M = 5 self.mu = tf.placeholder(settings.float_type, [M, N]) self.sqrt = tf.placeholder(settings.float_type, [M, N]) self.chol = tf.placeholder(settings.float_type, [M, M, N]) self.K = tf.placeholder(settings.float_type, [M, M]) self.Kdiag = tf.placeholder(settings.float_type, [M, M]) self.rng = np.random.RandomState(0) self.mu_data = self.rng.randn(M, N) sqrt_diag = self.rng.randn(M) self.sqrt_data = np.array([sqrt_diag for _ in range(N)]).T sqrt_chol = np.tril(self.rng.randn(M, M)) self.chol_data = np.rollaxis(np.array([sqrt_chol for _ in range(N)]), 0, 3) self.feed_dict = { self.mu: np.zeros((M, N)), self.sqrt: self.sqrt_data, self.chol: self.chol_data, self.K: squareT(sqrt_chol), self.Kdiag: np.diag(sqrt_diag ** 2), }
Example 11
def consensusCDF(self,K, matrix): self.count = 0 lEN = len(matrix) Sum = 0 Denominator = (lEN*(lEN-1))/2 CDF = dict() matrix = np.tril(matrix) for c in self.HistogramValues.keys(): Sum = 0 for cumalativeC in self.HistogramValues.keys(): if cumalativeC <= c: Sum += self.HistogramValues[cumalativeC] CDF[c] = Sum/Denominator self.GlobalCDF[K] = copy.deepcopy(CDF) del lEN, matrix
Example 12
def read_mongodb_matrix(tickers, matrix_name): mis = MatrixItem.objects(i__in = tickers, j__in = tickers, matrix_name = matrix_name) n = len(tickers) available_tickers = set([mi.i for mi in mis]) np.random.seed(n) a = np.absolute(np.random.normal(0, 0.001, [n, n])) a_triu = np.triu(a, k=0) a_tril = np.tril(a, k=0) a_diag = np.diag(np.diag(a)) a_sym_triu = a_triu + a_triu.T - a_diag matrix = pd.DataFrame(a_sym_triu, index = tickers, columns = tickers) for mi in mis: if abs(mi.v) > 10: mi.v = 0.001 matrix.set_value(mi.i, mi.j, mi.v) matrix.set_value(mi.j, mi.i, mi.v) matrix = matrix.round(6) return matrix
Example 13
def test_tril_triu_ndim3(): for dtype in np.typecodes['AllFloat'] + np.typecodes['AllInteger']: a = np.array([ [[1, 1], [1, 1]], [[1, 1], [1, 0]], [[1, 1], [0, 0]], ], dtype=dtype) a_tril_desired = np.array([ [[1, 0], [1, 1]], [[1, 0], [1, 0]], [[1, 0], [0, 0]], ], dtype=dtype) a_triu_desired = np.array([ [[1, 1], [0, 1]], [[1, 1], [0, 0]], [[1, 1], [0, 0]], ], dtype=dtype) a_triu_observed = np.triu(a) a_tril_observed = np.tril(a) yield assert_array_equal, a_triu_observed, a_triu_desired yield assert_array_equal, a_tril_observed, a_tril_desired yield assert_equal, a_triu_observed.dtype, a.dtype yield assert_equal, a_tril_observed.dtype, a.dtype
Example 14
def test_tril_triu_dtype(): # Issue 4916 # tril and triu should return the same dtype as input for c in np.typecodes['All']: if c == 'V': continue arr = np.zeros((3, 3), dtype=c) assert_equal(np.triu(arr).dtype, arr.dtype) assert_equal(np.tril(arr).dtype, arr.dtype) # check special cases arr = np.array([['2001-01-01T12:00', '2002-02-03T13:56'], ['2004-01-01T12:00', '2003-01-03T13:45']], dtype='datetime64') assert_equal(np.triu(arr).dtype, arr.dtype) assert_equal(np.tril(arr).dtype, arr.dtype) arr = np.zeros((3,3), dtype='f4,f4') assert_equal(np.triu(arr).dtype, arr.dtype) assert_equal(np.tril(arr).dtype, arr.dtype)
Example 15
def make_symmetric_lower(mat): ''' Copies the matrix entries below the main diagonal to the upper triangle half of the matrix. Leaves the diagonal unchanged. Returns a `NumPy` matrix object. **mat** : `numpy.matrix` A lower diagonal matrix. returns : `numpy.matrix` The lower triangle matrix. ''' # extract lower triangle from matrix (including diagonal) tmp_mat = np.tril(mat) # if the matrix given wasn't a lower triangle matrix, raise an error if (mat != tmp_mat).all(): raise Exception('Matrix to symmetrize is not a lower diagonal matrix.') # add its transpose to itself, zeroing the diagonal to avoid doubling tmp_mat += np.triu(tmp_mat.transpose(), 1) return np.asmatrix(tmp_mat)
Example 16
def test_tril_triu_ndim3(): for dtype in np.typecodes['AllFloat'] + np.typecodes['AllInteger']: a = np.array([ [[1, 1], [1, 1]], [[1, 1], [1, 0]], [[1, 1], [0, 0]], ], dtype=dtype) a_tril_desired = np.array([ [[1, 0], [1, 1]], [[1, 0], [1, 0]], [[1, 0], [0, 0]], ], dtype=dtype) a_triu_desired = np.array([ [[1, 1], [0, 1]], [[1, 1], [0, 0]], [[1, 1], [0, 0]], ], dtype=dtype) a_triu_observed = np.triu(a) a_tril_observed = np.tril(a) yield assert_array_equal, a_triu_observed, a_triu_desired yield assert_array_equal, a_tril_observed, a_tril_desired yield assert_equal, a_triu_observed.dtype, a.dtype yield assert_equal, a_tril_observed.dtype, a.dtype
Example 17
def test_tril_triu_dtype(): # Issue 4916 # tril and triu should return the same dtype as input for c in np.typecodes['All']: if c == 'V': continue arr = np.zeros((3, 3), dtype=c) assert_equal(np.triu(arr).dtype, arr.dtype) assert_equal(np.tril(arr).dtype, arr.dtype) # check special cases arr = np.array([['2001-01-01T12:00', '2002-02-03T13:56'], ['2004-01-01T12:00', '2003-01-03T13:45']], dtype='datetime64') assert_equal(np.triu(arr).dtype, arr.dtype) assert_equal(np.tril(arr).dtype, arr.dtype) arr = np.zeros((3,3), dtype='f4,f4') assert_equal(np.triu(arr).dtype, arr.dtype) assert_equal(np.tril(arr).dtype, arr.dtype)
Example 18
def get_masked(self, percent_hole, diag_off=1): """ Construct a random mask. Random training set on 20% on Data / debug5 - debug11 -- Unbalanced """ data = self.data if type(data) is np.ndarray: #self.data_mat = sp.sparse.csr_matrix(data) pass else: raise NotImplementedError('type %s unknow as corpus' % type(data)) n = int(data.size * percent_hole) mask_index = np.unravel_index(np.random.permutation(data.size)[:n], data.shape) mask = np.zeros(data.shape, dtype=data.dtype) mask[mask_index] = 1 if self.is_symmetric(): mask = np.tril(mask) + np.tril(mask, -1).T data_ma = ma.array(data, mask=mask) if diag_off == 1: np.fill_diagonal(data_ma, ma.masked) return data_ma
Example 19
def get_masked_zeros(self, diag_off=1): ''' Take out all zeros ''' data = self.data if type(data) is np.ndarray: #self.data_mat = sp.sparse.csr_matrix(data) pass else: raise NotImplementedError('type %s unknow as corpus' % type(data)) mask = np.zeros(data.shape, dtype=data.dtype) mask[data == 0] = 1 if self.is_symmetric(): mask = np.tril(mask) + np.tril(mask, -1).T data_ma = ma.array(data, mask=mask) if diag_off == 1: np.fill_diagonal(data_ma, ma.masked) return data_ma
Example 20
def test_tril_triu_ndim3(): for dtype in np.typecodes['AllFloat'] + np.typecodes['AllInteger']: a = np.array([ [[1, 1], [1, 1]], [[1, 1], [1, 0]], [[1, 1], [0, 0]], ], dtype=dtype) a_tril_desired = np.array([ [[1, 0], [1, 1]], [[1, 0], [1, 0]], [[1, 0], [0, 0]], ], dtype=dtype) a_triu_desired = np.array([ [[1, 1], [0, 1]], [[1, 1], [0, 0]], [[1, 1], [0, 0]], ], dtype=dtype) a_triu_observed = np.triu(a) a_tril_observed = np.tril(a) yield assert_array_equal, a_triu_observed, a_triu_desired yield assert_array_equal, a_tril_observed, a_tril_desired yield assert_equal, a_triu_observed.dtype, a.dtype yield assert_equal, a_tril_observed.dtype, a.dtype
Example 21
def test_tril_triu_dtype(): # Issue 4916 # tril and triu should return the same dtype as input for c in np.typecodes['All']: if c == 'V': continue arr = np.zeros((3, 3), dtype=c) assert_equal(np.triu(arr).dtype, arr.dtype) assert_equal(np.tril(arr).dtype, arr.dtype) # check special cases arr = np.array([['2001-01-01T12:00', '2002-02-03T13:56'], ['2004-01-01T12:00', '2003-01-03T13:45']], dtype='datetime64') assert_equal(np.triu(arr).dtype, arr.dtype) assert_equal(np.tril(arr).dtype, arr.dtype) arr = np.zeros((3,3), dtype='f4,f4') assert_equal(np.triu(arr).dtype, arr.dtype) assert_equal(np.tril(arr).dtype, arr.dtype)
Example 22
def verify_solve_grad(self, m, n, A_structure, lower, rng): # ensure diagonal elements of A relatively large to avoid numerical # precision issues A_val = (rng.normal(size=(m, m)) * 0.5 + numpy.eye(m)).astype(config.floatX) if A_structure == 'lower_triangular': A_val = numpy.tril(A_val) elif A_structure == 'upper_triangular': A_val = numpy.triu(A_val) if n is None: b_val = rng.normal(size=m).astype(config.floatX) else: b_val = rng.normal(size=(m, n)).astype(config.floatX) eps = None if config.floatX == "float64": eps = 2e-8 solve_op = Solve(A_structure=A_structure, lower=lower) utt.verify_grad(solve_op, [A_val, b_val], 3, rng, eps=eps)
Example 23
def testCholesky(self): # Tests the cholesky function np.random.seed(8) # generating two symmetric positive-definite tt-cores L_1 = np.tril(np.random.normal(scale=2., size=(2, 2))) L_2 = np.tril(np.random.normal(scale=2., size=(3, 3))) K_1 = L_1.dot(L_1.T) K_2 = L_2.dot(L_2.T) K = np.kron(K_1, K_2) initializer = tensor_train.TensorTrain([K_1[None, :, :, None], K_2[None, :, :, None]], tt_ranks=7*[1]) kron_mat = variables.get_variable('kron_mat', initializer=initializer) init_op = tf.global_variables_initializer() with self.test_session() as sess: sess.run(init_op) desired = np.linalg.cholesky(K) actual = ops.full(kr.cholesky(kron_mat)).eval() self.assertAllClose(desired, actual)
Example 24
def test_tril_triu_ndim3(): for dtype in np.typecodes['AllFloat'] + np.typecodes['AllInteger']: a = np.array([ [[1, 1], [1, 1]], [[1, 1], [1, 0]], [[1, 1], [0, 0]], ], dtype=dtype) a_tril_desired = np.array([ [[1, 0], [1, 1]], [[1, 0], [1, 0]], [[1, 0], [0, 0]], ], dtype=dtype) a_triu_desired = np.array([ [[1, 1], [0, 1]], [[1, 1], [0, 0]], [[1, 1], [0, 0]], ], dtype=dtype) a_triu_observed = np.triu(a) a_tril_observed = np.tril(a) yield assert_array_equal, a_triu_observed, a_triu_desired yield assert_array_equal, a_tril_observed, a_tril_desired yield assert_equal, a_triu_observed.dtype, a.dtype yield assert_equal, a_tril_observed.dtype, a.dtype
Example 25
def test_tril_triu_dtype(): # Issue 4916 # tril and triu should return the same dtype as input for c in np.typecodes['All']: if c == 'V': continue arr = np.zeros((3, 3), dtype=c) assert_equal(np.triu(arr).dtype, arr.dtype) assert_equal(np.tril(arr).dtype, arr.dtype) # check special cases arr = np.array([['2001-01-01T12:00', '2002-02-03T13:56'], ['2004-01-01T12:00', '2003-01-03T13:45']], dtype='datetime64') assert_equal(np.triu(arr).dtype, arr.dtype) assert_equal(np.tril(arr).dtype, arr.dtype) arr = np.zeros((3,3), dtype='f4,f4') assert_equal(np.triu(arr).dtype, arr.dtype) assert_equal(np.tril(arr).dtype, arr.dtype)
Example 26
def htmt(self): htmt_ = pd.DataFrame(pd.DataFrame.corr(self.data_), index=self.manifests, columns=self.manifests) mean = [] allBlocks = [] for i in range(self.lenlatent): block_ = self.Variables['measurement'][ self.Variables['latent'] == self.latent[i]] allBlocks.append(list(block_.values)) block = htmt_.ix[block_, block_] mean_ = (block - np.diag(np.diag(block))).values mean_[mean_ == 0] = np.nan mean.append(np.nanmean(mean_)) comb = [[k, j] for k in range(self.lenlatent) for j in range(self.lenlatent)] comb_ = [(np.sqrt(mean[comb[i][1]] * mean[comb[i][0]])) for i in range(self.lenlatent ** 2)] comb__ = [] for i in range(self.lenlatent ** 2): block = (htmt_.ix[allBlocks[comb[i][1]], allBlocks[comb[i][0]]]).values # block[block == 1] = np.nan comb__.append(np.nanmean(block)) htmt__ = np.divide(comb__, comb_) where_are_NaNs = np.isnan(htmt__) htmt__[where_are_NaNs] = 0 htmt = pd.DataFrame(np.tril(htmt__.reshape( (self.lenlatent, self.lenlatent)), k=-1), index=self.latent, columns=self.latent) return htmt
Example 27
def corLVs(self): # Correlations LVs corLVs_ = np.tril(pd.DataFrame.corr(self.fscores)) return pd.DataFrame(corLVs_, index=self.latent, columns=self.latent)
Example 28
def check_pd(A, lower=True): """ Checks if A is PD. If so returns True and Cholesky decomposition, otherwise returns False and None """ try: return True, np.tril(cho_factor(A, lower=lower)[0]) except LinAlgError as err: if 'not positive definite' in str(err): return False, None
Example 29
def test_tril_triu_ndim2(): for dtype in np.typecodes['AllFloat'] + np.typecodes['AllInteger']: a = np.ones((2, 2), dtype=dtype) b = np.tril(a) c = np.triu(a) yield assert_array_equal, b, [[1, 0], [1, 1]] yield assert_array_equal, c, b.T # should return the same dtype as the original array yield assert_equal, b.dtype, a.dtype yield assert_equal, c.dtype, a.dtype
Example 30
def test_tril_triu_with_inf(): # Issue 4859 arr = np.array([[1, 1, np.inf], [1, 1, 1], [np.inf, 1, 1]]) out_tril = np.array([[1, 0, 0], [1, 1, 0], [np.inf, 1, 1]]) out_triu = out_tril.T assert_array_equal(np.triu(arr), out_triu) assert_array_equal(np.tril(arr), out_tril)
Example 31
def __init__(self, batch_size, mem_size, hidden_size): self.hidden_size = hidden_size self.mem_size = mem_size self.batch_size = batch_size N, M, d = batch_size, mem_size, hidden_size self.L = np.tril(np.ones([M, M], dtype='float32')) self.sL = np.tril(np.ones([M, M], dtype='float32'), k=-1)
Example 32
def __init__(self, batch_size, mem_size, hidden_size): self.hidden_size = hidden_size self.mem_size = mem_size self.batch_size = batch_size N, M, d = batch_size, mem_size, hidden_size self.L = np.tril(np.ones([M, M], dtype='float32')) self.sL = np.tril(np.ones([M, M], dtype='float32'), k=-1)
Example 33
def __init__(self, batch_size, mem_size, hidden_size): self.hidden_size = hidden_size self.mem_size = mem_size self.batch_size = batch_size N, M, d = batch_size, mem_size, hidden_size self.L = np.tril(np.ones([M, M], dtype='float32')) self.sL = np.tril(np.ones([M, M], dtype='float32'), k=-1)
Example 34
def __init__(self, batch_size, mem_size, hidden_size): self.hidden_size = hidden_size self.mem_size = mem_size self.batch_size = batch_size N, M, d = batch_size, mem_size, hidden_size self.L = np.tril(np.ones([M, M], dtype='float32')) self.sL = np.tril(np.ones([M, M], dtype='float32'), k=-1)
Example 35
def grad_AQ(A, Gamma, B1_B3, B2, T,q, prior_A, prior_Q, flag_A_time_vary, A_flag = True, Q_flag = True): grad_A = np.zeros(A.shape) grad_Gamma = np.zeros(Gamma.shape) eig_Q_sqrt, inv_Q = _util_obj_grad_AQ(Gamma) if A_flag: if flag_A_time_vary: for t in range(T): # 2 Q^-1(-B2 + A B_3) grad_A[t] = 2.0*np.dot(inv_Q, (-B2[t]+ A[t].dot(B1_B3[t]))) if prior_A is not None: # gradient of lambda0||A_t||_F^2 + lambda1||A_t-A_t_1||_F^2 # 2 lambda0 A_t + 2 lambda1 ((A_t_1 + A_t+1)-2 A_t) grad_A[t] += 2.0* prior_A['lambda0'] *A[t] if t > 0 and t < T-1: #grad_A[t] += 2.0*prior_A['lambda1']*(A[t-1]+A[t+1]-2.0*A[t]) # correction on May 19 grad_A[t] += 2.0*prior_A['lambda1']*(2.0*A[t]-A[t-1]-A[t+1]) elif t == 0: grad_A[t] += 2.0*prior_A['lambda1']*(A[0]-A[1]) else: # t = t-1 grad_A[t] += 2.0*prior_A['lambda1']*(A[t]-A[t-1]) else: grad_A = 2.0*np.dot(inv_Q, (-B2.sum(axis=0)+A.dot((B1_B3[0:T]).sum(axis = 0)))) if prior_A is not None: grad_A += 2.0*prior_A['lambda0'] if Q_flag: # gradient = Q^{-1}(qT I-\sum_T B1t-AtB2t^T-B2tAt^T + AtB3tAt^T)Q^{-1}) Gamma tmp = _util_obj_grad_AQ_sum_B123(A, B1_B3, B2, T, flag_A_time_vary) grad_Gamma = reduce(np.dot, [inv_Q, (np.eye(inv_Q.shape[0])*np.float(q)*np.float(T)-tmp.dot(inv_Q)), Gamma]) if prior_Q is not None: grad_Gamma += grad_prior_Q(Gamma, prior_Q) grad_Gamma = np.tril(grad_Gamma) return grad_A, grad_Gamma #=========== gradient descent with back tracking for AQ =============
Example 36
def grad_Q0(Gamma0, B7, q, prior_Q0): eig_Q_sqrt, inv_Q = _util_obj_grad_AQ(Gamma0) grad_Gamma0 = reduce(np.dot, [inv_Q, np.float(q)*np.eye(Gamma0.shape[0])- B7.dot(inv_Q), Gamma0]) if prior_Q0 is not None: grad_Gamma0 += grad_prior_Q(Gamma0, prior_Q0) grad_Gamma0 = np.tril(grad_Gamma0) return grad_Gamma0 # gradient descent
Example 37
def get_neg_log_post_grad_Qu(Phi, G, MMT, q, Sigma_E, L,Sigma_J, nu, V, GL, prior_on = False): """ Just get the gradient for Qu, ignore other variables """ p = Phi.shape[0] Qu = Phi.dot(Phi.T) G_Sigma_G = np.zeros(MMT.shape) for i in range(Sigma_J.size): G_Sigma_G += Sigma_J[i]* np.outer(G[:,i], G[:,i]) cov = Sigma_E + G_Sigma_G + GL.dot(Qu).dot(GL.T) inv_cov = np.linalg.inv(cov) GLT_inv_cov = np.dot(GL.T, inv_cov) invQ = np.linalg.inv(Qu) if prior_on: grad0 = (q* GL.T.dot(inv_cov).dot(GL) - GLT_inv_cov.dot(MMT).dot(GLT_inv_cov.T) \ + invQ.dot( (nu+p+1) *np.eye(p) - V.dot(invQ))) else: grad0 = q* GL.T.dot(inv_cov).dot(GL) - GLT_inv_cov.dot(MMT).dot(GLT_inv_cov.T) grad1 = 2.0* grad0.dot(Phi) # cholesky decomposition is lower triangular grad = np.tril(grad1) return grad #============================================================================== # gradient descent optimization, using back track # only update Qu
Example 38
def grad_Q0(Gamma0, B7, q, prior_Q0): eig_Q_sqrt, inv_Q = _util_obj_grad_AQ(Gamma0) grad_Gamma0 = reduce(np.dot, [inv_Q, np.float(q)*np.eye(Gamma0.shape[0])- B7.dot(inv_Q), Gamma0]) if prior_Q0 is not None: grad_Gamma0 += grad_prior_Q(Gamma0, prior_Q0) grad_Gamma0 = np.tril(grad_Gamma0) return grad_Gamma0 # gradient descent
Example 39
def get_neg_log_post_grad_Qu(Phi, G, MMT, q, Sigma_E, L,Sigma_J, nu, V, GL, prior_on = False): """ Just get the gradient for Qu, ignore other variables """ p = Phi.shape[0] Qu = Phi.dot(Phi.T) G_Sigma_G = np.zeros(MMT.shape) for i in range(Sigma_J.size): G_Sigma_G += Sigma_J[i]* np.outer(G[:,i], G[:,i]) cov = Sigma_E + G_Sigma_G + GL.dot(Qu).dot(GL.T) inv_cov = np.linalg.inv(cov) GLT_inv_cov = np.dot(GL.T, inv_cov) invQ = np.linalg.inv(Qu) if prior_on: grad0 = (q* GL.T.dot(inv_cov).dot(GL) - GLT_inv_cov.dot(MMT).dot(GLT_inv_cov.T) \ + invQ.dot( (nu+p+1) *np.eye(p) - V.dot(invQ))) else: grad0 = q* GL.T.dot(inv_cov).dot(GL) - GLT_inv_cov.dot(MMT).dot(GLT_inv_cov.T) grad1 = 2.0* grad0.dot(Phi) # cholesky decomposition is lower triangular grad = np.tril(grad1) return grad #============================================================================== # gradient descent optimization, using back track # only update Qu
Example 40
def plomp(f1, f2): b1 = 3.51 b2 = 5.75 xstar = 0.24 s1 = 0.0207 s2 = 18.96 s = np.tril(xstar / ((s1 * np.minimum(f1, f2)) + s2)) pd = np.exp(-b1 * s * np.abs(f2 - f1)) - np.exp(-b2 * s * np.abs(f2 - f1)) return pd
Example 41
def test_tril_triu_ndim2(): for dtype in np.typecodes['AllFloat'] + np.typecodes['AllInteger']: a = np.ones((2, 2), dtype=dtype) b = np.tril(a) c = np.triu(a) yield assert_array_equal, b, [[1, 0], [1, 1]] yield assert_array_equal, c, b.T # should return the same dtype as the original array yield assert_equal, b.dtype, a.dtype yield assert_equal, c.dtype, a.dtype
Example 42
def test_tril_triu_with_inf(): # Issue 4859 arr = np.array([[1, 1, np.inf], [1, 1, 1], [np.inf, 1, 1]]) out_tril = np.array([[1, 0, 0], [1, 1, 0], [np.inf, 1, 1]]) out_triu = out_tril.T assert_array_equal(np.triu(arr), out_triu) assert_array_equal(np.tril(arr), out_tril)
Example 43
def prof_instance(nz, neq, nineq, nIter, cuda): L = np.tril(npr.uniform(0,1, (nz,nz))) + np.eye(nz,nz) G = npr.randn(nineq,nz) A = npr.randn(neq,nz) z0 = npr.randn(nz) s0 = np.ones(nineq) p = npr.randn(nz) p, L, G, A, z0, s0 = [torch.Tensor(x) for x in [p, L, G, A, z0, s0]] Q = torch.mm(L, L.t())+0.001*torch.eye(nz).type_as(L) if cuda: p, L, Q, G, A, z0, s0 = [x.cuda() for x in [p, L, Q, G, A, z0, s0]] af = adact.AdactFunction() start = time.time() # One-time cost for numpy conversion. p_np, L_np, G_np, A_np, z0_np, s0_np = [adact.toNp(v) for v in [p, L, G, A, z0, s0]] cp = time.time()-start for i in range(nIter): start = time.time() zhat, nu, lam = af.forward_single_np(p_np, L_np, G_np, A_np, z0_np, s0_np) cp += time.time()-start b = torch.mv(A, z0) if neq > 0 else None h = torch.mv(G, z0)+s0 L_Q, L_S, R = aip.pre_factor_kkt(Q, G, A, nineq, neq) pdipm = [] for i in range(nIter): start = time.time() zhat_ip, nu_ip, lam_ip = aip.forward_single(p, Q, G, A, b, h, L_Q, L_S, R) pdipm.append(time.time()-start) return cp, np.sum(pdipm)
Example 44
def gen_L(rng, n, *shape): return np.array([np.tril(rng.randn(*shape)) for _ in range(n)])
Example 45
def gen_q_sqrt(rng, D_out, *shape): q_sqrt = np.array([np.tril(rng.randn(*shape)) for _ in range(D_out)]) return np.transpose(q_sqrt, [1, 2, 0])
Example 46
def update(self, x): """Single step learning update""" # print x.shape x = x.reshape((self.ndims, 1)) y = np.dot(self.w.T, x) # GHA rule in matrix form d_w = self.anneal(self.cnt) * self.eta * (np.dot(x, y.T) - np.dot(self.w, np.tril(np.dot(y, y.T)))) self.w += d_w self.cnt += 1 return y
Example 47
def _cost_strictly_lower_triangular(b): return np.sum((np.tril(b, -1) - b) ** 2)
Example 48
def histogram(self,matrix): matrix= np.tril(matrix) matrix1 = matrix.flatten() nonZeroValues = np.flatnonzero(matrix1) matrix1 = matrix1[nonZeroValues] unique, counts = np.unique(matrix1, return_counts=True) self.HistogramValues = dict() for i,j in np.asarray((unique, counts)).T: self.HistogramValues[float(format(i, '.1f'))] = j
Example 49
def Find_HighlightedEdges(self,weight = 0): self.ThresholdData = np.copy(self.data) # low_values_indices = self.ThresholdData < weight # Where values are low # self.ThresholdData[low_values_indices] = 0 # graterindices = [ (i,j) for i,j in np.ndenumerate(self.ThresholdData) if any(i > j) ] # self.ThresholdData[graterindices[:1]] = 0 # self.ThresholdData = np.tril(self.ThresholdData) # print self.ThresholdData, "is the data same??" """ test 2 highlighted edges there """ # np.savetxt('test2.txt', self.ThresholdData, delimiter=',', fmt='%1.4e') self.g = nx.from_numpy_matrix(self.ThresholdData)
Example 50
def feed_forward(self,sigma=.1): '''Generate random feedforward wrec (lower triangular)''' N_in = self.N_in N_rec = self.N_rec N_out = self.N_out weights_path = self.init_weights_path #Uniform between -.1 and .1 W_in = .2*np.random.rand(N_rec,N_in) - .1 W_out = .2*np.random.rand(N_out,N_rec) - .1 b_rec = np.zeros(N_rec) b_out = np.zeros(N_out) init_state = .1 + .01*np.random.randn(N_rec) W_rec = np.tril(sigma*np.random.randn(N_rec,N_rec),-1) input_Connectivity = np.ones([N_rec,N_in]) rec_Connectivity = np.ones([N_rec,N_rec]) output_Connectivity = np.ones([N_out,N_rec]) if not self.autapses: W_rec[np.eye(N_rec)==1] = 0 rec_Connectivity[np.eye(N_rec)==1] = 0 np.savez(weights_path, W_in = W_in, W_rec = W_rec, W_out = W_out, b_rec = b_rec, b_out = b_out, init_state = init_state, input_Connectivity = input_Connectivity, rec_Connectivity= rec_Connectivity, output_Connectivity=output_Connectivity) return weights_path