Python numpy.require() 使用实例

The following are code examples for showing how to use . They are extracted from open source Python projects. You can vote up the examples you like or vote down the exmaples you don’t like. You can also save this page to your account.

Example 1

def predict(image,the_net):
    inputs = []
    try:
        tmp_input = image
        tmp_input = cv2.resize(tmp_input,(SIZE,SIZE))
        tmp_input = tmp_input[11:11+128,11:11+128];
        tmp_input = np.subtract(tmp_input,mean)
        tmp_input = tmp_input.transpose((2, 0, 1))
        tmp_input = np.require(tmp_input, dtype=np.float32)
    except Exception as e:
        raise Exception("Image damaged or illegal file format")
        return
    the_net.blobs['data'].reshape(1, *tmp_input.shape)
    the_net.reshape()
    the_net.blobs['data'].data[...] = tmp_input
    the_net.forward()
    scores = the_net.blobs['prob'].data[0]
    return copy.deepcopy(scores) 

Example 2

def predict(the_net,image):
  inputs = []
  if not os.path.exists(image):
    raise Exception("Image path not exist")
    return
  try:
    tmp_input = cv2.imread(image)
    tmp_input = cv2.resize(tmp_input,(SIZE,SIZE))
    tmp_input = tmp_input[11:11+128,11:11+128]
    tmp_input = np.subtract(tmp_input,mean)
    tmp_input = tmp_input.transpose((2, 0, 1))
    tmp_input = np.require(tmp_input, dtype=np.float32)
  except Exception as e:
    #raise Exception("Image damaged or illegal file format")
    return None
  the_net.blobs['data'].reshape(1, *tmp_input.shape)
  the_net.reshape()
  the_net.blobs['data'].data[...] = tmp_input
  the_net.forward()
  scores = copy.deepcopy(the_net.blobs['feature'].data)
  return scores 

Example 3

def predict(image,the_net):
    inputs = []
    try:
        tmp_input = image
        tmp_input = cv2.resize(tmp_input,(SIZE,SIZE))
        tmp_input = tmp_input[13:13+224,13:13+224];
        tmp_input = np.subtract(tmp_input,mean)
        tmp_input = tmp_input.transpose((2, 0, 1))
        tmp_input = np.require(tmp_input, dtype=np.float32)
    except Exception as e:
        raise Exception("Image damaged or illegal file format")
        return
    the_net.blobs['data'].reshape(1, *tmp_input.shape)
    the_net.reshape()
    the_net.blobs['data'].data[...] = tmp_input
    the_net.forward()
    scores = the_net.blobs['prob'].data[0]
    return copy.deepcopy(scores) 

Example 4

def predict(image,the_net):
    inputs = []
    try:
        tmp_input = image
        tmp_input = cv2.resize(tmp_input,(SIZE,SIZE))
        tmp_input = tmp_input[11:11+128,11:11+128];
        tmp_input = np.subtract(tmp_input,mean)
        tmp_input = tmp_input.transpose((2, 0, 1))
        tmp_input = np.require(tmp_input, dtype=np.float32)
    except Exception as e:
        raise Exception("Image damaged or illegal file format")
        return
    the_net.blobs['data'].reshape(1, *tmp_input.shape)
    the_net.reshape()
    the_net.blobs['data'].data[...] = tmp_input
    the_net.forward()
    scores = the_net.blobs['prob'].data[0]
    return copy.deepcopy(scores) 

Example 5

def predict(the_net,image):
  inputs = []
  if not os.path.exists(image):
    raise Exception("Image path not exist")
    return
  try:
    tmp_input = cv2.imread(image)
    tmp_input = cv2.resize(tmp_input,(SIZE,SIZE))
    tmp_input = tmp_input[13:13+224,13:13+224]
    #tmp_input = np.subtract(tmp_input,mean)
    tmp_input = tmp_input.transpose((2, 0, 1))
    tmp_input = np.require(tmp_input, dtype=np.float32)
  except Exception as e:
    #raise Exception("Image damaged or illegal file format")
    return None
  the_net.blobs['data'].reshape(1, *tmp_input.shape)
  the_net.reshape()
  the_net.blobs['data'].data[...] = tmp_input
  the_net.forward()
  scores = copy.deepcopy(the_net.blobs['fc6'].data)
  return scores 

Example 6

def predict(image,the_net):
    inputs = []
    try:
        tmp_input = image
        tmp_input = cv2.resize(tmp_input,(SIZE,SIZE))
        tmp_input = tmp_input[13:13+224,13:13+224];
        tmp_input = np.subtract(tmp_input,mean)
        tmp_input = tmp_input.transpose((2, 0, 1))
        tmp_input = np.require(tmp_input, dtype=np.float32)
    except Exception as e:
        raise Exception("Image damaged or illegal file format")
        return
    the_net.blobs['data'].reshape(1, *tmp_input.shape)
    the_net.reshape()
    the_net.blobs['data'].data[...] = tmp_input
    the_net.forward()
    scores = the_net.blobs['prob'].data[0]
    return copy.deepcopy(scores) 

Example 7

def predict(image,the_net):
    inputs = []
    try:
        tmp_input = image
        tmp_input = cv2.resize(tmp_input,(SIZE,SIZE))
        tmp_input = tmp_input[13:13+224,13:13+224];
        tmp_input = np.subtract(tmp_input,mean)
        tmp_input = tmp_input.transpose((2, 0, 1))
        tmp_input = np.require(tmp_input, dtype=np.float32)
    except Exception as e:
        raise Exception("Image damaged or illegal file format")
        return
    the_net.blobs['data'].reshape(1, *tmp_input.shape)
    the_net.reshape()
    the_net.blobs['data'].data[...] = tmp_input
    the_net.forward()
    scores = the_net.blobs['prob'].data[0]
    return copy.deepcopy(scores) 

Example 8

def predict(the_net,image):
  inputs = []
  if not os.path.exists(image):
    raise Exception("Image path not exist")
    return
  try:
    tmp_input = cv2.imread(image)
    tmp_input = cv2.resize(tmp_input,(SIZE,SIZE))
    tmp_input = tmp_input[13:13+224,13:13+224]
    tmp_input = np.subtract(tmp_input,mean)
    tmp_input = tmp_input.transpose((2, 0, 1))
    tmp_input = np.require(tmp_input, dtype=np.float32)
  except Exception as e:
    #raise Exception("Image damaged or illegal file format")
    return None
  the_net.blobs['data'].reshape(1, *tmp_input.shape)
  the_net.reshape()
  the_net.blobs['data'].data[...] = tmp_input
  the_net.forward()
  scores = copy.deepcopy(the_net.blobs['fc6'].data)
  return scores 

Example 9

def _propagate_boxes(boxes, annot_proto, frame_id):
    pred_boxes = []
    annots = []
    for annot in annot_proto['annotations']:
        for idx, box in enumerate(annot['track']):
            if box['frame'] == frame_id and len(annot['track']) > idx + 1:
                gt1 = box['bbox']
                gt2 = annot['track'][idx+1]['bbox']
                delta = bbox_transform(np.asarray([gt1]), np.asarray([gt2]))
                annots.append((gt1, delta))
    gt1 = [annot[0] for annot in annots]
    overlaps = bbox_overlaps(np.require(boxes, dtype=np.float),
                             np.require(gt1, dtype=np.float))
    assert len(overlaps) == len(boxes)
    for gt_overlaps, box in zip(overlaps, boxes):
        max_overlap = np.max(gt_overlaps)
        max_gt = np.argmax(gt_overlaps)
        if max_overlap < 0.5:
            pred_boxes.append(box)
        else:
            delta = annots[max_gt][1]
            pred_boxes.append(bbox_transform_inv(np.asarray([box]), delta)[0].tolist())
    return pred_boxes 

Example 10

def epoch_to_epoch16(self, epoch):
        """
        Converts a CDF EPOCH to a CDF EPOCH16 value

        Parameters
        ==========
        epoch : double
            EPOCH to convert. Lists and numpy arrays are acceptable.

        Returns
        =======
        out : (double, double)
            EPOCH16 corresponding to epoch
        """
        e = numpy.require(epoch, numpy.float64)
        s = numpy.trunc(e / 1000.0)
        #ugly numpy stuff, probably a better way....
        res = numpy.hstack((s, (e - s * 1000.0) * 1e9))
        if len(res) <= 2:
            return res
        newshape = list(res.shape[0:-2])
        newshape.append(res.shape[-1] // 2)
        newshape.append(2)
        return numpy.rollaxis(res.reshape(newshape), -1, -2) 

Example 11

def epoch16_to_epoch(self, epoch16):
        """
        Converts a CDF EPOCH16 to a CDF EPOCH value

        Parameters
        ==========
        epoch16 : (double, double)
            EPOCH16 to convert. Lists and numpy arrays are acceptable.
            LAST dimension should be 2: the two pairs of EPOCH16

        Returns
        =======
        out : double
            EPOCH corresponding to epoch16
        """
        e = numpy.require(epoch16, numpy.float64)
        return e[..., 0] * 1000.0 + numpy.round(e[..., 1] / 1e9) 

Example 12

def create_array(self):
        """Creates a numpy array to hold the data from this slice

        Returns
        =======
        out : numpy.array
            array sized, typed, and dimensioned to hold data from
            this slice
        """
        counts = self.counts
        degen = self.degen
        if self.column:
            counts = self.reorder(counts)
            degen = self.reorder(degen)
        #TODO: Forcing C order for now, revert to using self.column later
        array = numpy.empty(
            [counts[i] for i in range(len(counts)) if not degen[i]],
            self.zvar._np_type(), order='C')
        return numpy.require(array, requirements=('C', 'A', 'W')) 

Example 13

def unique_rows(A, return_index=False, return_inverse=False):
    """
    Similar to MATLAB's unique(A, 'rows'), this returns B, I, J
    where B is the unique rows of A and I and J satisfy
    A = B[J,:] and B = A[I,:]

    Returns I if return_index is True
    Returns J if return_inverse is True
    """
    A = np.require(A, requirements='C')
    assert A.ndim == 2, "array must be 2-dim'l"
    B = np.unique(A.view([('', A.dtype)]*A.shape[1]),
                  return_index=return_index,
                  return_inverse=return_inverse)

    if return_index or return_inverse:
        return (B[0].view(A.dtype).reshape((-1, A.shape[1]), order='C'),) \
            + B[1:]
    else:
        return B.view(A.dtype).reshape((-1, A.shape[1]), order='C') 

Example 14

def test_fft(backend, batch, x, y, z):
    b = backend()
    N = (z, y, x, batch)
    v = np.random.rand(*N) + 1j*np.random.rand(*N)
    v = np.require(v, dtype=np.dtype('complex64'), requirements='F')
    ax = (0,1,2)
    
    # check forward
    w_exp = np.fft.fftn(v, axes=ax)
    v_d = b.copy_array(v)
    u_d = b.copy_array(v)
    b.fftn(u_d, v_d)
    w_act = u_d.to_host()
    np.testing.assert_allclose(w_act, w_exp, atol=1e-2)

    # check adjoint
    v_exp = np.fft.ifftn(w_act, axes=ax) * (x*y*z)
    v_d = b.copy_array(w_act)
    u_d = b.copy_array(w_act)
    b.ifftn(u_d, v_d)
    v_act = u_d.to_host()
    np.testing.assert_allclose(v_act, v_exp, atol=1e-2)

    # check unitary
    np.testing.assert_allclose(v, v_act / (x*y*z), atol=1e-6) 

Example 15

def test_csr_matrix(backend, M, N, K, density):
    b = backend()
    c = np.dtype('complex64')
    A = indigo.util.randM(M, N, density)
    A_d = b.csr_matrix(b, A)

    # forward
    x = (np.random.rand(N,K) + 1j * np.random.rand(N,K))
    x = np.require(x, dtype=c, requirements='F')
    y_exp = A.astype(c) * x
    x_d = b.copy_array(x)
    y_d = b.zero_array(y_exp.shape, x.dtype)
    A_d.forward(y_d, x_d)
    y_act = y_d.to_host()
    np.testing.assert_allclose(y_exp, y_act, atol=1e-5)

    # adjoint
    x = (np.random.rand(M,K) + 1j * np.random.rand(M,K))
    x = np.require(x, dtype=c, requirements='C')
    y_exp = A.H.astype(c) * x
    x_d = b.copy_array(x)
    y_d = b.zero_array(y_exp.shape, x.dtype)
    A_d.adjoint(y_d, x_d)
    y_act = y_d.to_host()
    np.testing.assert_allclose(y_exp, y_act, atol=1e-5) 

Example 16

def test_blas_axpby(backend, n, alpha, alpha_i, beta):
    b = backend()
    x = (np.random.rand(n) + 1j * np.random.rand(n))
    y = (np.random.rand(n) + 1j * np.random.rand(n))
    x = np.require(x, dtype=np.dtype('complex64'), requirements='F')
    y = np.require(y, dtype=np.dtype('complex64'), requirements='F')
    x_d = b.copy_array(x)
    y_d = b.copy_array(y)

    alpha = alpha + 1j*alpha_i

    y_exp = beta*y + alpha*x
    b.axpby(beta, y_d, alpha, x_d)

    y_act = y_d.to_host()

    np.testing.assert_allclose(y_exp, y_act, atol=1e-6) 

Example 17

def write(fname, data, psz=1, origin=None, fast=False):
    """ Writes a MRC file. The header will be blank except for nx,ny,nz,datatype=2 for float32. 
    data should be (nx,ny,nz), and will be written in Fortran order as MRC requires."""
    header = np.zeros(256, dtype=np.int32)  # 1024 byte header
    header_f = header.view(np.float32)
    header[:3] = data.shape  # nx, ny, nz
    header[3] = 2  # mode, 2 = float32 datatype
    header[7:10] = data.shape  # mx, my, mz (grid size)
    header_f[10:13] = [psz * i for i in data.shape]  # xlen, ylen, zlen
    header_f[13:16] = 90.0  # CELLB
    header[16:19] = [1, 2, 3]  # axis order
    if not fast:
        header_f[19:22] = [data.min(), data.max(), data.mean()]  # data stats
    if origin is None:
        header_f[49:52] = [0, 0, 0]
    elif origin is "center":
        header_f[49:52] = [psz * i / 2 for i in data.shape]
    else:
        header_f[49:52] = origin
    header[52] = 542130509  # 'MAP ' chars
    header[53] = 16708
    with open(fname, 'wb') as f:
        header.tofile(f)
        np.require(np.reshape(data, (-1,), order='F'), dtype=np.float32).tofile(f) 

Example 18

def append(fname, data):
    with open(fname, 'r+b') as f:
        nx, ny, nz = np.fromfile(f, dtype=np.int32, count=3)  # First 12 bytes of stack.
        f.seek(36)  # First byte of zlen.
        zlen = np.fromfile(f, dtype=np.float32, count=1)
        if data.shape[0] != nx or data.shape[1] != ny:
            raise Exception
        f.seek(0, os.SEEK_END)
        np.require(np.reshape(data, (-1,), order='F'), dtype=np.float32).tofile(f)
        # Update header after new data is written.
        apix = zlen / nz
        nz += data.shape[2]
        zlen += apix * data.shape[2]
        f.seek(8)
        nz.tofile(f)
        f.seek(36)
        zlen.tofile(f) 

Example 19

def deprocess_net_image(image):
	image = image.copy()	# use copy don't modify destructively
	image = image[::-1]  	# BGR to RGB
	image = image.transpose(1,2,0) # CHW to HCW
	image += [123,117,104] 	# undo mean subtraction

	# clamp values in [0,255]
	image[image < 0], image[image > 255] = 0 , 255

	# round and cast form float32 to uint8
	image = np.round(image)
	image = np.require(image,dtype=np.uint8)

	return image

# Load the 1000 ImageNet labels from 
# ilsvrc12/synset_words.txt, and the 5 style labels from finetune_flickr_style/style_names.txt.

# Load ImageNet labels to imagenet_labels 

Example 20

def _KeenerMatrix(self, A, C, regularization, func, epsilon):
        """func is a regularization function imposed on every element of matrix.
        """
        # Apply Laplace Law
        B = A+A.T+2;
        A = A+1
        A = A/B
        # Regularization
        if func is not None:
            h = np.frompyfunc(func, 1, 1)
            A = np.require(h(A), dtype=np.float32)
        # divide by contest number
        C = C+C.T
        c = np.sum(C, axis=1)
        if regularization:
            A = A/np.expand_dims(c, axis=1)
        A[C==0]=0
        if epsilon is not None:
            A += epsilon*np.ones(A.shape, A.dtype)
        return A 

Example 21

def __init__(self, table=None, filename=''):
        """
        table:      the pandas DataFrame that records rankable objects competition
                    record
        filename:   the hdf5 filename that stores the DataFrame. The DataFrame
                    must be indexed by 'item_pair_rate'.
        """
        if table is None:
            table = pd.read_hdf(filename, "item_pair_rate")
        table = table[['primary','secondary','rate1','rate2','weight']]
        self.table = table
        # itemid to index table
        idx = self._extract_list(self.table)
        self.itemlist = idx
        temptable = table.iloc[:,:2].values
        pair = np.fromfunction(np.vectorize(lambda i, j: idx[temptable[i,j]]),
                        temptable.shape)
        pair = np.require(pair, dtype=np.int32)
        self.pair = pair 

Example 22

def RateDifferenceVoteMatrix(self):
        """This function outputs only Point Difference Matrix.
        It can be ensured that every element of the matrix are not less than 0
        """
        idx = self.itemlist
        table = self.table

        icnt = len(idx)
        # allocate space for computing
        D = np.zeros((icnt, icnt), dtype=np.float32)
        pair = self.pair

        fast_rate_diff_vote_matrix_build(pair,
                        np.require(table.iloc[:,2:].values, dtype=np.float32),
                        D)

        return D 

Example 23

def SimpleDifferenceVoteMatrix(self):
        """This function outputs only Simple Difference Vote Matrix.
        """
        idx = self.itemlist
        table = self.table

        icnt = len(idx)
        # allocate space for computing
        D = np.zeros((icnt, icnt), dtype=np.float32)
        pair = self.pair

        fast_simple_diff_vote_matrix_build(pair,
                        np.require(table.iloc[:,2:].values, dtype=np.float32),
                        D)

        return D 

Example 24

def RateVoteMatrix(self):
        """This function outputs only Simple Difference Vote Matrix.
        """
        idx = self.itemlist
        table = self.table

        icnt = len(idx)
        # allocate space for computing
        D = np.zeros((icnt, icnt), dtype=np.float32)
        pair = self.pair

        fast_rate_vote_matrix_build(pair,
                        np.require(table.iloc[:,2:].values, dtype=np.float32),
                        D)

        return D 

Example 25

def MasseyVector(self):
        """This function produces X'Wy
        """
        idx = self.itemlist
        table = self.table
        pair = self.pair
        j = np.ravel(pair)
        i = np.repeat(np.arange(table.shape[0], dtype=np.int32), 2, axis=0)
        data = np.array([[1,-1]],dtype=np.float32)
        data = np.ravel(np.repeat(data, table.shape[0], axis=0))
        X = coo_matrix((data, (i, j)), shape=(table.shape[0], len(idx)))
        X = X.tocsr()
        W = np.require(table.iloc[:,4].values, np.float32)
        y = table.iloc[:, 2].values - table.iloc[:, 3].values;
        Wy=np.multiply(W, y)
        return X.T*Wy 

Example 26

def isIntegral(solution):
        return np.all(solution == np.require(solution, dtype = 'int_')) 

Example 27

def filter(self, filter_ind):
        filter_ind = np.require(filter_ind, dtype = 'bool')
        new = self.copy()
        new.objvals = self.objvals[filter_ind]
        new.solutions = self.solutions[filter_ind]
        return new 

Example 28

def generate_binary_data(n_rows = 1000000, n_cols = 20):
    X = np.random.randint(low=0, high=2, size=(n_rows, n_cols))
    Y = np.random.randint(low=0, high=2, size=(n_rows, 1))
    pos_ind = Y == 1
    Y[~pos_ind] = -1
    Z = X * Y
    Z = np.require(Z, requirements=['F'], dtype=np.float64)
    return Z 

Example 29

def generate_integer_model(n_cols = 20, rho_ub = 100, rho_lb = -100, sparse_pct = 0.5):
    rho = np.random.randint(low=rho_lb, high=rho_ub, size=n_cols)
    rho = np.require(rho, dtype=Z.dtype, requirements=['F'])
    nnz_count = int(sparse_pct * np.floor(n_cols / 2))
    set_to_zero = np.random.choice(range(0, n_cols), size=nnz_count, replace=False)
    rho[set_to_zero] = 0.0
    return rho 

Example 30

def is_integer(rho):
    """
    checks if numpy array is an integer vector

    Parameters
    ----------
    rho

    Returns
    -------

    """
    return np.array_equal(rho, np.require(rho, dtype=np.int_)) 

Example 31

def set_and_check_flag(self, flag, dtype, arr):
        if dtype is None:
            dtype = arr.dtype
        b = np.require(arr, dtype, [flag])
        assert_(b.flags[flag])
        assert_(b.dtype == dtype)

        # a further call to np.require ought to return the same array
        # unless OWNDATA is specified.
        c = np.require(b, None, [flag])
        if flag[0] != 'O':
            assert_(c is b)
        else:
            assert_(c.flags[flag]) 

Example 32

def test_unknown_requirement(self):
        a = self.generate_all_false('f8')
        assert_raises(KeyError, np.require, a, None, 'Q') 

Example 33

def test_non_array_input(self):
        a = np.require([1, 2, 3, 4], 'i4', ['C', 'A', 'O'])
        assert_(a.flags['O'])
        assert_(a.flags['C'])
        assert_(a.flags['A'])
        assert_(a.dtype == 'i4')
        assert_equal(a, [1, 2, 3, 4]) 

Example 34

def test_C_and_F_simul(self):
        a = self.generate_all_false('f8')
        assert_raises(ValueError, np.require, a, None, ['C', 'F']) 

Example 35

def test_ensure_array(self):
        class ArraySubclass(np.ndarray):
            pass

        a = ArraySubclass((2, 2))
        b = np.require(a, None, ['E'])
        assert_(type(b) is np.ndarray) 

Example 36

def _gt_propagate_boxes(boxes, annot_proto, frame_id, window, overlap_thres):
    pred_boxes = []
    annots = []
    for annot in annot_proto['annotations']:
        for idx, box in enumerate(annot['track']):
            if box['frame'] == frame_id:
                gt1 = box['bbox']
                deltas = []
                deltas.append(gt1)
                for offset in xrange(1, window):
                    try:
                        gt2 = annot['track'][idx+offset]['bbox']
                    except IndexError:
                        gt2 = gt1
                    delta = bbox_transform(np.asarray([gt1]), np.asarray([gt2]))
                    deltas.append(delta)
                annots.append(deltas)
    gt1s = [annot[0] for annot in annots]
    if not gt1s:
        # no grount-truth, boxes remain still
        return np.tile(np.asarray(boxes)[:,np.newaxis,:], [1,window-1,1])
    overlaps = bbox_overlaps(np.require(boxes, dtype=np.float),
                             np.require(gt1s, dtype=np.float))
    assert len(overlaps) == len(boxes)
    for gt_overlaps, box in zip(overlaps, boxes):
        max_overlap = np.max(gt_overlaps)
        max_gt = np.argmax(gt_overlaps)
        sequence_box = []
        if max_overlap < overlap_thres:
            for offset in xrange(1, window):
                sequence_box.append(box)
        else:
            for offset in xrange(1, window):
                delta = annots[max_gt][offset]
                sequence_box.append(
                    bbox_transform_inv(np.asarray([box]), delta)[0].tolist())
        pred_boxes.append((sequence_box))
    return np.asarray(pred_boxes) 

Example 37

def _setup_arrays(x,v,m,omega=None):
    sindx= numpy.argsort(x)
    # Keep track of amount of mass above and below and compute acceleration
    mass_below= numpy.cumsum(m[sindx])
    mass_below[-1]= 0.
    mass_below= numpy.roll(mass_below,1)
    mass_above= numpy.cumsum(m[sindx][::-1])[::-1]
    mass_above[0]= 0.
    mass_above= numpy.roll(mass_above,-1)
    a= (mass_above-mass_below)[numpy.argsort(sindx)]
    # Solve for all collisions, using C code for consistency
    tcoll= []
    for xi,vi,ai,xii,vii,aii in zip(x[sindx][:-1],v[sindx][:-1],a[sindx][:-1],
                                    x[sindx][1:],v[sindx][1:],a[sindx][1:]):
        if omega is None:
            tcoll.append(_wendy_solve_coll_quad_func(xi-xii,vi-vii,(ai-aii)/2.))
        else:
            tcoll.append(_wendy_solve_coll_harm_func(xi-xii,vi-vii,ai-aii,omega))
    tcoll= numpy.array(tcoll)
    cindx= ctypes.c_int(numpy.argmin(tcoll))
    next_tcoll= ctypes.c_double(tcoll[cindx])
    # Prepare for C
    err= ctypes.c_int(0)
    #Array requirements
    x= numpy.require(x,dtype=numpy.float64,requirements=['C','W'])
    v= numpy.require(v,dtype=numpy.float64,requirements=['C','W'])
    a= numpy.require(a,dtype=numpy.float64,requirements=['C','W'])
    m= numpy.require(m,dtype=numpy.float64,requirements=['C','W'])
    sindx= numpy.require(sindx,dtype=numpy.int32,requirements=['C','W'])
    tcoll= numpy.require(tcoll,dtype=numpy.float64,requirements=['C','W'])
    return (x,v,m,a,sindx,cindx,next_tcoll,tcoll,err) 

Example 38

def calculate(self, parameters_dict):
        """Calculate DKI statistics like the mean, axial and radial kurtosis.

        The Mean Kurtosis (MK) is calculated by averaging the Kurtosis over orientations on the unit sphere.
        The Axial Kurtosis (AK) is obtained using the principal direction of diffusion (fe; first eigenvec)
        from the Tensor as its direction and then averaging the Kurtosis over +fe and -fe.
        Finally, the Radial Kurtosis (RK) is calculated by averaging the Kurtosis over a circle of directions around
        the first eigenvec.

        Args:
            parameters_dict (dict): the fitted Kurtosis parameters, this requires a dictionary with at least
                the elements:
                'd', 'dperp0', 'dperp1', 'theta', 'phi', 'psi', 'W_0000', 'W_1000', 'W_1100', 'W_1110',
                'W_1111', 'W_2000', 'W_2100', 'W_2110', 'W_2111', 'W_2200', 'W_2210', 'W_2211',
                'W_2220', 'W_2221', 'W_2222'.

        Returns:
            dict: maps for the Mean Kurtosis (MK), Axial Kurtosis (AK) and Radial Kurtosis (RK).
        """
        if parameters_dict['d'].dtype == np.float32:
            np_dtype = np.float32
            mot_float_type = SimpleCLDataType.from_string('float')
            double_precision = False
        else:
            np_dtype = np.float64
            mot_float_type = SimpleCLDataType.from_string('double')
            double_precision = True

        param_names = ['d', 'dperp0', 'dperp1', 'theta', 'phi', 'psi', 'W_0000', 'W_1000', 'W_1100', 'W_1110',
                       'W_1111', 'W_2000', 'W_2100', 'W_2110', 'W_2111', 'W_2200', 'W_2210', 'W_2211',
                       'W_2220', 'W_2221', 'W_2222']
        parameters = np.require(np.column_stack([parameters_dict[n] for n in param_names]),
                                np_dtype, requirements=['C', 'A', 'O'])
        directions = convert_data_to_dtype(self._get_spherical_samples(), 'mot_float_type4', mot_float_type)
        return self._calculate(parameters, param_names, directions, double_precision) 

Example 39

def required(ob):
    """Return an object that meets Shapely requirements for self-owned
    C-continguous data, copying if necessary, or just return the original
    object."""
    if has_numpy and hasattr(ob, '__array_interface__'):
        return numpy.require(ob, numpy.float64, ["C", "OWNDATA"])
    else:
        return ob 

Example 40

def set_and_check_flag(self, flag, dtype, arr):
        if dtype is None:
            dtype = arr.dtype
        b = np.require(arr, dtype, [flag])
        assert_(b.flags[flag])
        assert_(b.dtype == dtype)

        # a further call to np.require ought to return the same array
        # unless OWNDATA is specified.
        c = np.require(b, None, [flag])
        if flag[0] != 'O':
            assert_(c is b)
        else:
            assert_(c.flags[flag]) 

Example 41

def test_unknown_requirement(self):
        a = self.generate_all_false('f8')
        assert_raises(KeyError, np.require, a, None, 'Q') 

Example 42

def test_non_array_input(self):
        a = np.require([1, 2, 3, 4], 'i4', ['C', 'A', 'O'])
        assert_(a.flags['O'])
        assert_(a.flags['C'])
        assert_(a.flags['A'])
        assert_(a.dtype == 'i4')
        assert_equal(a, [1, 2, 3, 4]) 

Example 43

def test_C_and_F_simul(self):
        a = self.generate_all_false('f8')
        assert_raises(ValueError, np.require, a, None, ['C', 'F']) 

Example 44

def test_ensure_array(self):
        class ArraySubclass(np.ndarray):
            pass

        a = ArraySubclass((2, 2))
        b = np.require(a, None, ['E'])
        assert_(type(b) is np.ndarray) 

Example 45

def slidingWindow(s, span, stride=None, axis=0):
    """Sliding window.
    """
    #s = np.ascontiguousarray(s)
    s = np.require(s, requirements=['C', 'O'])

    if stride is None:
        stride = span

    # catch some bad values since this is a common place for
    # bugs to crop up in other routines
    if span > s.shape[axis]:
        raise ValueError('Span of %d exceeds input length of %d.' % (span, s.shape[axis]))

    if span < 0:
        raise ValueError('Negative span of %d is invalid.' % span)

    if stride < 1:
        raise ValueError('Stride of %d is not positive.' % stride)

    nWin = int(np.ceil((s.shape[axis]-span+1) / float(stride)))

    shape = list(s.shape)
    shape[axis] = span
    shape.insert(axis, nWin)

    strides = list(s.strides)
    strides.insert(axis, stride*strides[axis])

    return npst.as_strided(s, shape=shape, strides=strides) 

Example 46

def train(self, x, g, optimFunc, **kwargs):
        x = util.segmat(x)
        x = np.require(x, requirements=['O', 'C'])

        g = util.segmat(g)
        g = np.require(g, requirements=['O', 'C'])

        self.trainResult = optimFunc(self, x=x, g=g, **kwargs) 

Example 47

def train(self, classData, optimFunc, **kwargs):
        x, g = label.indicatorsFromList(classData)
        x = np.require(x, requirements=['O', 'C'])
        self.trainResult = optimFunc(self, x=x, g=g, **kwargs) 

Example 48

def train(self, classData, optimFunc, **kwargs):
        x, g = label.indicatorsFromList(classData)
        x = np.require(x, requirements=['O', 'C'])
        self.trainResult = optimFunc(self, x=x, g=g, **kwargs)

        #dv = self.discrim(x, accum='mult')
        #self.normSoftmaxMean = dv.mean()
        #self.normSoftmaxStd = dv.std()
        #self.normSoftmaxMin = dv.min()
        #self.normSoftmaxMax = (dv-self.normSoftmaxMin).max() 

Example 49

def _bad_tt2000(*args, **kwargs):
        """Convenience function for complaining that TT2000 not supported"""
        raise NotImplementedError(
            'TT2000 functions require CDF library 3.4.0 or later') 

Example 50

def convert_input_array(self, buffer):
        """Converts a buffer of raw data from this slice

        EPOCH(16) variables always need to be converted.
        CHAR need converted to Unicode if py3k

        Parameters
        ==========
        buffer : numpy.array
            data as read from the CDF file

        Returns
        =======
        out : numpy.array
            converted data
        """
        result = self._flip_array(buffer)

        #Convert to derived types
        cdftype = self.zvar.type()
        if not self.zvar._raw:
            if cdftype in (const.CDF_CHAR.value, const.CDF_UCHAR.value) and \
                    str != bytes:
                dt = numpy.dtype('U{0}'.format(result.dtype.itemsize))
                result = numpy.require(numpy.char.array(result).decode(),
                                       dtype=dt)
            elif cdftype == const.CDF_EPOCH.value:
                result = lib.v_epoch_to_datetime(result)
            elif cdftype == const.CDF_EPOCH16.value:
                result = lib.v_epoch16_to_datetime(result)
            elif cdftype == const.CDF_TIME_TT2000.value:
                result = lib.v_tt2000_to_datetime(result)
        return result 
点赞