Python numpy.infty() 使用实例

The following are code examples for showing how to use . They are extracted from open source Python projects. You can vote up the examples you like or vote down the exmaples you don’t like. You can also save this page to your account.

Example 1

def assert_mpa_identical(mpa1, mpa2, decimal=np.infty):
    """Verify that two MPAs are complety identical
    """
    assert len(mpa1) == len(mpa2)
    assert mpa1.canonical_form == mpa2.canonical_form
    assert mpa1.dtype == mpa2.dtype

    for i, lten1, lten2 in zip(it.count(), mpa1.lt, mpa2.lt):
        if decimal is np.infty:
            assert_array_equal(lten1, lten2,
                               err_msg='mismatch in lten {}'.format(i))
        else:
            assert_array_almost_equal(lten1, lten2, decimal=decimal,
                                      err_msg='mismatch in lten {}'.format(i))
    # TODO: We should make a comprehensive comparison between `mpa1`
    # and `mpa2`.  Are we missing other things? 

Example 2

def __init__(self, reg_e=1., max_iter=1000,
                 tol=10e-9, verbose=False, log=False,
                 metric="sqeuclidean", norm=None,
                 distribution_estimation=distribution_estimation_uniform,
                 out_of_sample_map='ferradans', limit_max=np.infty):

        self.reg_e = reg_e
        self.max_iter = max_iter
        self.tol = tol
        self.verbose = verbose
        self.log = log
        self.metric = metric
        self.norm = norm
        self.limit_max = limit_max
        self.distribution_estimation = distribution_estimation
        self.out_of_sample_map = out_of_sample_map 

Example 3

def __init__(self, reg_e=1., reg_cl=0.1,
                 max_iter=10, max_inner_iter=200,
                 tol=10e-9, verbose=False,
                 metric="sqeuclidean", norm=None,
                 distribution_estimation=distribution_estimation_uniform,
                 out_of_sample_map='ferradans', limit_max=np.infty):

        self.reg_e = reg_e
        self.reg_cl = reg_cl
        self.max_iter = max_iter
        self.max_inner_iter = max_inner_iter
        self.tol = tol
        self.verbose = verbose
        self.metric = metric
        self.norm = norm
        self.distribution_estimation = distribution_estimation
        self.out_of_sample_map = out_of_sample_map
        self.limit_max = limit_max 

Example 4

def train_gmm(X, max_iter, tol, means, covariances):
    xp = cupy.get_array_module(X)
    lower_bound = -np.infty
    converged = False
    weights = xp.array([0.5, 0.5], dtype=np.float32)
    inv_cov = 1 / xp.sqrt(covariances)

    for n_iter in six.moves.range(max_iter):
        prev_lower_bound = lower_bound
        log_prob_norm, log_resp = e_step(X, inv_cov, means, weights)
        weights, means, covariances = m_step(X, xp.exp(log_resp))
        inv_cov = 1 / xp.sqrt(covariances)
        lower_bound = log_prob_norm
        change = lower_bound - prev_lower_bound
        if abs(change) < tol:
            converged = True
            break

    if not converged:
        print('Failed to converge. Increase max-iter or tol.')

    return inv_cov, means, weights, covariances 

Example 5

def containing_rect(self):
        r"""Find containing rectangle of fault in x-y plane.

        Returns tuple of x-limits and y-limits.

        """

        extent = [numpy.infty, -numpy.infty, numpy.infty, -numpy.infty]
        for subfault in self.subfaults:
            for corner in subfault.corners:
                extent[0] = min(corner[0], extent[0])
                extent[1] = max(corner[0], extent[1])
                extent[2] = min(corner[1], extent[2])
                extent[3] = max(corner[1], extent[3])

        return extent 

Example 6

def containing_rect(self):
        r"""Find containing rectangle of fault in x-y plane.

        Returns tuple of x-limits and y-limits.

        """

        extent = [numpy.infty, -numpy.infty, numpy.infty, -numpy.infty]
        for subfault in self.subfaults:
            for corner in subfault.corners:
                extent[0] = min(corner[0], extent[0])
                extent[1] = max(corner[0], extent[1])
                extent[2] = min(corner[1], extent[2])
                extent[3] = max(corner[1], extent[3])

        return extent 

Example 7

def bicGMMModelSelection(X):
    '''
    bic model selection
    :param X: features - observation * dimension
    :return:
    '''
    lowest_bic = np.infty
    bic = []
    n_components_range  = [10,15,20,25,30,35,40,45,50,55,60,65,70]
    best_n_components   = n_components_range[0]
    for n_components in n_components_range:
        # Fit a Gaussian mixture with EM
        print 'Fitting GMM with n_components =',str(n_components)
        gmm = mixture.GaussianMixture(n_components=n_components,
                                      covariance_type='diag')
        gmm.fit(X)
        bic.append(gmm.bic(X))
        if bic[-1] < lowest_bic:
            lowest_bic = bic[-1]
            best_n_components = n_components
            best_gmm          = gmm

    return best_n_components,gmm 

Example 8

def chivecfn(theta):
    """A version of lnprobfn that returns the simple uncertainty 
    normalized residual instead of the log-posterior, for use with 
    least-squares optimization methods like Levenburg-Marquardt.
    """
    lnp_prior = model.prior_product(theta)
    if not np.isfinite(lnp_prior):
        return -np.infty

    # Generate mean model
    t1 = time.time()
    try:
        spec, phot, x = model.mean_model(theta, obs, sps=sps)
    except(ValueError):
        return -np.infty
    d1 = time.time() - t1

    chispec = chi_spec(spec, obs)
    chiphot = chi_phot(phot, obs)
    return np.concatenate([chispec, chiphot]) 

Example 9

def chivecfn(theta):
    """A version of lnprobfn that returns the simple uncertainty 
    normalized residual instead of the log-posterior, for use with 
    least-squares optimization methods like Levenburg-Marquardt.
    """
    lnp_prior = model.prior_product(theta)
    if not np.isfinite(lnp_prior):
        return -np.infty

    # Generate mean model
    t1 = time.time()
    try:
        spec, phot, x = model.mean_model(theta, obs, sps=sps)
    except(ValueError):
        return -np.infty
    d1 = time.time() - t1

    chispec = chi_spec(spec, obs)
    chiphot = chi_phot(phot, obs)
    return np.concatenate([chispec, chiphot]) 

Example 10

def chivecfn(theta):
            """A version of lnprobfn that returns the simple uncertainty 
            normalized residual instead of the log-posterior, for use with 
            least-squares optimization methods like Levenburg-Marquardt.
            """
            lnp_prior = model.prior_product(theta)
            if not np.isfinite(lnp_prior):
                return -np.infty

            # Generate mean model
            t1 = time.time()
            try:
                spec, phot, x = model.mean_model(theta, obs, sps=sps)
            except(ValueError):
                return -np.infty
            d1 = time.time() - t1

            chispec = chi_spec(spec, obs)
            chiphot = chi_phot(phot, obs)
            return np.concatenate([chispec, chiphot])

        ### 

Example 11

def chivecfn(theta):
            """A version of lnprobfn that returns the simple uncertainty 
            normalized residual instead of the log-posterior, for use with 
            least-squares optimization methods like Levenburg-Marquardt.
            """
            lnp_prior = model.prior_product(theta)
            if not np.isfinite(lnp_prior):
                return -np.infty

            # Generate mean model
            t1 = time.time()
            try:
                spec, phot, x = model.mean_model(theta, obs, sps=sps)
            except(ValueError):
                return -np.infty
            d1 = time.time() - t1

            chispec = chi_spec(spec, obs)
            chiphot = chi_phot(phot, obs)
            return np.concatenate([chispec, chiphot])

        ### 

Example 12

def chivecfn(theta):
    """A version of lnprobfn that returns the simple uncertainty 
    normalized residual instead of the log-posterior, for use with 
    least-squares optimization methods like Levenburg-Marquardt.
    """
    lnp_prior = model.prior_product(theta)
    if not np.isfinite(lnp_prior):
        return -np.infty

    # Generate mean model
    t1 = time.time()
    try:
        spec, phot, x = model.mean_model(theta, obs, sps=sps)
    except(ValueError):
        return -np.infty
    d1 = time.time() - t1

    chispec = chi_spec(spec, obs)
    chiphot = chi_phot(phot, obs)
    return np.concatenate([chispec, chiphot]) 

Example 13

def chivecfn(theta):
            """A version of lnprobfn that returns the simple uncertainty 
            normalized residual instead of the log-posterior, for use with 
            least-squares optimization methods like Levenburg-Marquardt.
            """
            lnp_prior = model.prior_product(theta)
            if not np.isfinite(lnp_prior):
                return -np.infty

            # Generate mean model
            t1 = time.time()
            try:
                spec, phot, x = model.mean_model(theta, obs, sps=sps)
            except(ValueError):
                return -np.infty
            d1 = time.time() - t1

            chispec = chi_spec(spec, obs)
            chiphot = chi_phot(phot, obs)
            return np.concatenate([chispec, chiphot])

        ### 

Example 14

def chivecfn(theta):
            """A version of lnprobfn that returns the simple uncertainty 
            normalized residual instead of the log-posterior, for use with 
            least-squares optimization methods like Levenburg-Marquardt.
            """
            lnp_prior = model.prior_product(theta)
            if not np.isfinite(lnp_prior):
                return -np.infty

            # Generate mean model
            t1 = time.time()
            try:
                spec, phot, x = model.mean_model(theta, obs, sps=sps)
            except(ValueError):
                return -np.infty
            d1 = time.time() - t1

            chispec = chi_spec(spec, obs)
            chiphot = chi_phot(phot, obs)
            return np.concatenate([chispec, chiphot])

        ### 

Example 15

def sanity_check(test_emb, train_emb, num_test):
    '''
    Sanity check on the cosine similarity calculations
    Finds the closest vector in the space by brute force
    '''
    correct_list = []
    for i in xrange(num_test):
        smallest_norm = np.infty
        index = 0
        for j in xrange(len(train_emb)):
            norm = np.linalg.norm(emb - test_emb[i])
            if norm < smallest_norm:
                smallest_norm = norm
                index = j
        correct_list.append(index)
    # Pad the list to make it the same length as test_emb
    for i in xrange(len(test_emb) - num_test):
        correct_list.append(-1)
    return correct_list 

Example 16

def sanity_check(test_emb, train_emb, num_test):
    '''
    Sanity check on the cosine similarity calculations
    Finds the closest vector in the space by brute force
    '''
    correct_list = []
    for i in xrange(num_test):
        smallest_norm = np.infty
        index = 0
        for j in xrange(len(train_emb)):
            norm = np.linalg.norm(emb - test_emb[i])
            if norm < smallest_norm:
                smallest_norm = norm
                index = j
        correct_list.append(index)
    # Pad the list to make it the same length as test_emb
    for i in xrange(len(test_emb) - num_test):
        correct_list.append(-1)
    return correct_list 

Example 17

def crowding_distance(models, *attrs):
    """
    Assumes models in lexicographical sorted.
    """

    get_fit = _get_fit(models, attrs)

    f = np.array(sorted([get_fit(m) for m in models]))

    scale = np.max(f, axis=0) - np.min(f, axis=0)

    with np.errstate(invalid="ignore"):
        dist = np.sum(abs(np.roll(f, 1, axis=0) - np.roll(f, -1, axis=0) ) / scale, axis=1)
    dist[0] = np.infty
    dist[-1] = np.infty
    return dist 

Example 18

def _find_decision_boundary_on_hypersphere(self, centroid, R, penalize_known=False):
        def objective(phi, grad=0):
            # search on hypersphere surface in polar coordinates - map back to cartesian
            cx = centroid + polar_to_cartesian(phi, R)
            try:
                cx2d = self.dimensionality_reduction.transform([cx])[0]
                error = self.decision_boundary_distance(cx)
                if penalize_known:
                    # slight penalty for being too close to already known decision boundary
                    # keypoints
                    db_distances = [euclidean(cx2d, self.decision_boundary_points_2d[k])
                                    for k in range(len(self.decision_boundary_points_2d))]
                    error += 1e-8 * ((self.mean_2d_dist - np.min(db_distances)) /
                                     self.mean_2d_dist)**2
                return error
            except (Exception, ex):
                print("Error in objective function:", ex)
                return np.infty

        optimizer = self._get_optimizer(
            D=self.X.shape[1] - 1, upper_bound=2 * np.pi, iteration_budget=self.hypersphere_iteration_budget)
        optimizer.set_min_objective(objective)
        db_phi = optimizer.optimize([rnd.random() * 2 * np.pi for k in range(self.X.shape[1] - 1)])
        db_point = centroid + polar_to_cartesian(db_phi, R)
        return db_point 

Example 19

def find_best_match(patch, strip):
    # TODO: Find patch in strip and return column index (x value) of topleft corner

    # We will use SSD to find out the best match

    best_id = 0
    min_diff = np.infty

    for i in range(int(strip.shape[1] - patch.shape[1])):
        temp = strip[:, i: i + patch.shape[1]]
        ssd = np.sum((temp - patch) ** 2)
        if ssd < min_diff:
            min_diff = ssd
            best_id = i

    return best_id

# Test code:

# Load images 

Example 20

def converge(self, x):
        """Finds cluster centers through an alternating optimization routine.

        Terminates when either the number of cycles reaches `max_iter` or the
        objective function changes by less than `tol`.

        Parameters
        ----------
        x : :obj:`np.ndarray`
            (n_samples, n_features)
            The original data.

        """
        centers = []
        j_new = np.infty
        for i in range(self.max_iter):
            j_old = j_new
            self.update(x)
            centers.append(self.centers)
            j_new = self.objective(x)
            if np.abs(j_old - j_new) < self.tol:
                break
        return np.array(centers) 

Example 21

def test_generate_np_gives_adversarial_example_linfinity(self):
        self.help_generate_np_gives_adversarial_example(np.infty) 

Example 22

def E(self, x):  # pylint: disable=invalid-name
        """Electric field vector.
        Ref: http://www.phys.uri.edu/gerhard/PHY204/tsl31.pdf
        """
        x = array(x)
        x1, x2, lam = self.x1, self.x2, self.lam

        # Get lengths and angles for the different triangles
        theta1, theta2 = angle(x, x1, x2), pi - angle(x, x2, x1)
        a = point_line_distance(x, x1, x2)
        r1, r2 = norm(x - x1), norm(x - x2)

        # Calculate the parallel and perpendicular components
        sign = where(is_left(x, x1, x2), 1, -1)

        # pylint: disable=invalid-name
        Epara = lam*(1/r2-1/r1)
        Eperp = -sign*lam*(cos(theta2)-cos(theta1))/where(a == 0, infty, a)

        # Transform into the coordinate space and return
        dx = x2 - x1

        if len(x.shape) == 2:
            Epara = Epara[::, newaxis]
            Eperp = Eperp[::, newaxis]

        return Eperp * (array([-dx[1], dx[0]])/norm(dx)) + Epara * (dx/norm(dx)) 

Example 23

def interpolation(X, Y, extend_to_infty=True):
    if extend_to_infty:
        X = [-np.infty] + X + [np.infty]
        Y = [Y[0]] + Y + [Y[-1]]
    X = np.array(X)
    Y = np.array(Y)
    return lambda x: evaluate_interpolation(x, X, Y) 

Example 24

def test_predict_facets(self):
        self.actualSetUp()
        self.params['facets'] = 2
        self._predict_base(predict_facets, fluxthreshold=numpy.infty) 

Example 25

def test_predict_timeslice(self):
        # This works poorly because of the poor interpolation accuracy for point sources. The corresponding
        # invert works well particularly if the beam sampling is high
        self.actualSetUp()
        self._predict_base(predict_timeslice, fluxthreshold=numpy.infty) 

Example 26

def test_predict_timeslice_wprojection(self):
        self.actualSetUp()
        self.params['kernel'] = 'wprojection'
        self.params['wstep'] = 2.0
        self._predict_base(predict_timeslice, fluxthreshold=numpy.infty) 

Example 27

def initialize_run(nnet):

    if nnet.data.dataset_name == 'imagenet':
        nnet.max_passes = 1
        nnet.max_inner_iterations = 5
        nnet.max_outer_iterations = 1
        nnet.epoch = epoch_imagenet

    elif Cfg.store_on_gpu:
        nnet.max_passes = 50
        nnet.max_inner_iterations = 100
        nnet.max_outer_iterations = 1
        nnet.epoch = epoch_full_gpu

        nnet.old_objective = np.infty
        nnet.old_validation_acc = 0.

        performance(nnet, which_set='train', print_=True)

    else:
        nnet.max_passes = 50
        nnet.max_inner_iterations = 100
        nnet.max_outer_iterations = 1
        nnet.epoch = epoch_part_gpu

        nnet.old_objective = np.infty
        nnet.old_validation_acc = 0.

        performance(nnet, which_set='train', print_=True)

    return 

Example 28

def get_series_g2_taus( fra_max_list, acq_time=1, max_fra_num=None, log_taus = True, 
                        num_bufs = 8):
    '''
    Get taus for dose dependent analysis
    Parameters:
        fra_max_list: a list, a lsit of largest available frame number        
        acq_time: acquistion time for each frame
        log_taus: if true, will use the multi-tau defined taus bu using buf_num (default=8),
               otherwise, use deltau =1        
    Return:
        tausd, a dict, with keys as taus_max_list items  
    e.g., 
    get_series_g2_taus( fra_max_list=[20,30,40], acq_time=1, max_fra_num=None, log_taus = True,  num_bufs = 8)
    --> 
    {20: array([ 0,  1,  2,  3,  4,  5,  6,  7,  8, 10, 12, 14, 16]),
     30: array([ 0,  1,  2,  3,  4,  5,  6,  7,  8, 10, 12, 14, 16, 20, 24, 28]),
     40: array([ 0,  1,  2,  3,  4,  5,  6,  7,  8, 10, 12, 14, 16, 20, 24, 28, 32])
    }
     
    '''
    tausd = {}
    for n in fra_max_list:
        if max_fra_num is not None:
            L = max_fra_num
        else:
            L = np.infty            
        if n>L:
            warnings.warn("Warning: the dose value is too large, and please" 
                          "check the maxium dose in this data set and give a smaller dose value."
                          "We will use the maxium dose of the data.") 
            n = L 
        if log_taus:
            lag_steps = get_multi_tau_lag_steps(n,  num_bufs)
        else:
            lag_steps = np.arange( n )
        tausd[n] = lag_steps * acq_time
    return tausd 

Example 29

def wavread(fileName, lmax=np.infty, offset = 0, len_in_smpl = False):
    """reads the wave file file and returns a NDarray and the sampling frequency"""

    def isValid(filename):
        if not fileName:
            return False
        try:
            fileHandle = wave.open(fileName, 'r')
            fileHandle.close()
            return True
        except:
            return False
    if not isValid(fileName):
        print("invalid WAV file. Aborting")
        return None

    # metadata properties of a file
    length, nChans, fs, sampleWidth = wavinfo(fileName)
    if not len_in_smpl:
        lmax = lmax * fs
    length = min(length - offset, lmax)
    waveform = np.zeros((length, nChans))

    # reading data
    fileHandle = wave.open(fileName, 'r')
    fileHandle.setpos(offset)
    batchSizeT = 3000000
    pos = 0
    while pos < length:
        batchSize = min(batchSizeT, length - pos)
        str_bytestream = fileHandle.readframes(int(batchSize*2/sampleWidth))
        tempData = np.fromstring(str_bytestream, 'h')
        tempData = tempData.astype(float)
        tempData = tempData.reshape(batchSize, nChans)
        waveform[pos:pos+batchSize, :] = tempData / float(2**(8*sampleWidth - 1))
        pos += batchSize
    fileHandle.close()
    return (waveform, fs) 

Example 30

def norm_infty(x):
    """Compute infinity norm of `x`."""
    if len(x) > 0:
        return norm(x, ord=infty)
    return 0.0 

Example 31

def lnprobfn(theta):
    """Given a parameter vector, a dictionary of observational data 
    and a model object, return the ln of the posterior. 
    This requires that an sps object (and if using spectra 
    and gaussian processes, a GP object) be instantiated.
    """

    print('lnprobfn loves pizza')
    # Calculate prior probability and exit if not within prior
    lnp_prior = model.prior_product(theta)
    if not np.isfinite(lnp_prior):
        return -np.infty
        
    # Generate mean model
    t1 = time.time()
    try:
        spec, phot, x = model.mean_model(theta, obs, sps=sps)
    except(ValueError):
        return -np.infty
    d1 = time.time() - t1
    vectors = {}  # This would be used for noise model weight functions

    # Calculate likelihoods
    t2 = time.time()
    lnp_spec = lnlike_spec(spec, obs=obs, spec_noise=spec_noise)
    lnp_phot = lnlike_phot(phot, obs=obs, phot_noise=phot_noise)
    d2 = time.time() - t2
    if verbose:
        write_log(theta, lnp_prior, lnp_spec, lnp_phot, d1, d2)

    return lnp_prior + lnp_phot + lnp_spec

# In [11] 

Example 32

def lnprobfn(theta):
    """Given a parameter vector, a dictionary of observational data 
    and a model object, return the ln of the posterior. 
    This requires that an sps object (and if using spectra 
    and gaussian processes, a GP object) be instantiated.
    """

    print('lnprobfn loves pizza')
    # Calculate prior probability and exit if not within prior
    lnp_prior = model.prior_product(theta)
    if not np.isfinite(lnp_prior):
        print('oh shit prior')
        return -np.infty
        
    # Generate mean model
    t1 = time.time()
    try:
        spec, phot, x = model.mean_model(theta, obs, sps=sps)
    except(ValueError):
        return -np.infty
    d1 = time.time() - t1
    vectors = {}  # This would be used for noise model weight functions

    # Calculate likelihoods
    t2 = time.time()
    lnp_spec = lnlike_spec(spec, obs=obs, spec_noise=spec_noise)
    lnp_phot = lnlike_phot(phot, obs=obs, phot_noise=phot_noise)
    d2 = time.time() - t2
    if verbose:
        write_log(theta, lnp_prior, lnp_spec, lnp_phot, d1, d2)

    return lnp_prior + lnp_phot + lnp_spec

# In [11] 

Example 33

def lnprobfn(theta):
    """Given a parameter vector, a dictionary of observational data 
    and a model object, return the ln of the posterior. 
    This requires that an sps object (and if using spectra 
    and gaussian processes, a GP object) be instantiated.
    """

    #print('lnprobfn loves pizza')
    # Calculate prior probability and exit if not within prior
    lnp_prior = model.prior_product(theta)
    if not np.isfinite(lnp_prior):
        #print('oh shit prior')
        return -np.infty
        
    # Generate mean model
    t1 = time.time()
    try:
        spec, phot, x = model.mean_model(theta, obs, sps=sps)
    except(ValueError):
        return -np.infty
    d1 = time.time() - t1
    vectors = {}  # This would be used for noise model weight functions

    # Calculate likelihoods
    t2 = time.time()
    lnp_spec = lnlike_spec(spec, obs=obs, spec_noise=spec_noise)
    lnp_phot = lnlike_phot(phot, obs=obs, phot_noise=phot_noise)
    d2 = time.time() - t2
    if verbose:
        write_log(theta, lnp_prior, lnp_spec, lnp_phot, d1, d2)

    return lnp_prior + lnp_phot + lnp_spec

# In [11] 

Example 34

def lnprobfn(theta):
    """Given a parameter vector, a dictionary of observational data 
    and a model object, return the ln of the posterior. 
    This requires that an sps object (and if using spectra 
    and gaussian processes, a GP object) be instantiated.
    """

    # Calculate prior probability and exit if not within prior
    lnp_prior = model.prior_product(theta)
    if not np.isfinite(lnp_prior):
        return -np.infty
        
    # Generate mean model
    t1 = time.time()
    try:
        spec, phot, x = model.mean_model(theta, obs, sps=sps)
    except(ValueError):
        return -np.infty
    d1 = time.time() - t1
    vectors = {}  # This would be used for noise model weight functions

    # Calculate likelihoods
    t2 = time.time()
    lnp_spec = lnlike_spec(spec, obs=obs, spec_noise=spec_noise)
    lnp_phot = lnlike_phot(phot, obs=obs, phot_noise=phot_noise)
    d2 = time.time() - t2
    if verbose:
        write_log(theta, lnp_prior, lnp_spec, lnp_phot, d1, d2)

    return lnp_prior + lnp_phot + lnp_spec
#RUNNING PROSPECTOR
# Outputs 

Example 35

def lnprobfn(theta):
    """Given a parameter vector, a dictionary of observational data 
    and a model object, return the ln of the posterior. 
    This requires that an sps object (and if using spectra 
    and gaussian processes, a GP object) be instantiated.
    """

    #print('lnprobfn loves pizza')
    # Calculate prior probability and exit if not within prior
    lnp_prior = model.prior_product(theta)
    if not np.isfinite(lnp_prior):
        #print('oh shit prior')
        return -np.infty
        
    # Generate mean model
    t1 = time.time()
    try:
        spec, phot, x = model.mean_model(theta, obs, sps=sps)
    except(ValueError):
        return -np.infty
    d1 = time.time() - t1
    vectors = {}  # This would be used for noise model weight functions

    # Calculate likelihoods
    t2 = time.time()
    lnp_spec = lnlike_spec(spec, obs=obs, spec_noise=spec_noise)
    lnp_phot = lnlike_phot(phot, obs=obs, phot_noise=phot_noise)
    d2 = time.time() - t2
    if verbose:
        write_log(theta, lnp_prior, lnp_spec, lnp_phot, d1, d2)

    return lnp_prior + lnp_phot + lnp_spec

# In [11] 

Example 36

def check_partition_function():
    with misc.gnumpy_conversion_check('allow'):
        rbm = random_rbm()
        total = -np.infty
        
        for vis_ in itertools.product(*[[0, 1]] * NVIS):
            vis = gnp.garray(vis_)
            for hid_ in itertools.product(*[[0, 1]] * NHID):
                hid = gnp.garray(hid_)
                total = np.logaddexp(total, rbm.energy(vis[nax, :], hid[nax, :])[0])

        assert np.allclose(tractable.exact_partition_function(rbm, batch_units=BATCH_UNITS), total) 

Example 37

def test_get_layer_nr():
    bip = np.array([0, 0, 300])
    lbip, zbip = utils.get_layer_nr(bip, np.array([-np.infty, 500]))
    assert lbip == 0
    assert zbip == 300
    lbip, _ = utils.get_layer_nr(bip, np.array([-np.infty, 0, 300, 500]))
    assert lbip == 1
    lbip, _ = utils.get_layer_nr(bip, np.array([-np.infty, 0, 200]))
    assert lbip == 2
    bip = np.array([np.zeros(4), np.zeros(4), np.arange(4)*100])
    lbip, _ = utils.get_layer_nr(bip, np.array([-np.infty, 0, 200]))
    assert_allclose(lbip, [0, 1, 1, 2]) 

Example 38

def maximum(values):
    temp_max = -np.infty
    for v in values:
        if v > temp_max:
            temp_max = v
        yield temp_max 

Example 39

def __init__(self, y_axis: Axis, x_axis: Axis):
        self.x_axis = x_axis
        self.y_axis = y_axis

        self.x_soft_lower_limit = -np.infty
        self.x_soft_upper_limit = np.infty
        self.y_soft_lower_limit = -np.infty
        self.y_soft_upper_limit = np.infty 

Example 40

def find_best_match(patch, strip):

    # We will use SSD to find out the best match
    best_id = 0
    min_diff = np.infty

    for i in range(int(strip.shape[1] - patch.shape[1])):
        temp = strip[:, i: i + patch.shape[1]]
        ssd = np.sum((temp - patch) ** 2)
        if ssd < min_diff:
            min_diff = ssd
            best_id = i

    return best_id 

Example 41

def test_labels_assignment_and_inertia():
    # pure numpy implementation as easily auditable reference gold
    # implementation
    rng = np.random.RandomState(42)
    noisy_centers = centers + rng.normal(size=centers.shape)
    labels_gold = - np.ones(n_samples, dtype=np.int)
    mindist = np.empty(n_samples)
    mindist.fill(np.infty)
    for center_id in range(n_clusters):
        dist = np.sum((X - noisy_centers[center_id]) ** 2, axis=1)
        labels_gold[dist < mindist] = center_id
        mindist = np.minimum(dist, mindist)
    inertia_gold = mindist.sum()
    assert_true((mindist >= 0.0).all())
    assert_true((labels_gold != -1).all())

    # perform label assignment using the dense array input
    x_squared_norms = (X ** 2).sum(axis=1)
    labels_array, inertia_array = _labels_inertia(
        X, x_squared_norms, noisy_centers)
    assert_array_almost_equal(inertia_array, inertia_gold)
    assert_array_equal(labels_array, labels_gold)

    # perform label assignment using the sparse CSR input
    x_squared_norms_from_csr = row_norms(X_csr, squared=True)
    labels_csr, inertia_csr = _labels_inertia(
        X_csr, x_squared_norms_from_csr, noisy_centers)
    assert_array_almost_equal(inertia_csr, inertia_gold)
    assert_array_equal(labels_csr, labels_gold) 

Example 42

def fit(self, x):
        """Optimizes cluster centers by restarting convergence several times.

        Parameters
        ----------
        x : :obj:`np.ndarray`
            (n_samples, n_features)
            The original data.

        """
        objective_best = np.infty
        memberships_best = None
        centers_best = None
        j_list = []
        for i in range(self.n_init):
            self.centers = None
            self.memberships = None
            self.converge(x)
            objective = self.objective(x)
            j_list.append(objective)
            if objective < objective_best:
                memberships_best = self.memberships.copy()
                centers_best = self.centers.copy()
                objective_best = objective
        self.memberships = memberships_best
        self.centers = centers_best
        return j_list 

Example 43

def objective(self, x):
        if self.memberships is None or self.centers is None:
            return np.infty
        distances = self.distances(x)
        return np.sum(self.memberships * distances) 

Example 44

def objective(self, x):
        if self.memberships is None or self.centers is None:
            return np.infty
        distances = self.distances(x)
        return np.sum(self.fuzzifier(self.memberships) * distances) 

Example 45

def fit(self, Xs=None, ys=None, Xt=None, yt=None):
        """Build a coupling matrix from source and target sets of samples
        (Xs, ys) and (Xt, yt)

        Parameters
        ----------
        Xs : array-like, shape (n_source_samples, n_features)
            The training input samples.
        ys : array-like, shape (n_source_samples,)
            The class labels
        Xt : array-like, shape (n_target_samples, n_features)
            The training input samples.
        yt : array-like, shape (n_target_samples,)
            The class labels. If some target samples are unlabeled, fill the
            yt's elements with -1.

            Warning: Note that, due to this convention -1 cannot be used as a
            class label

        Returns
        -------
        self : object
            Returns self.
        """

        # check the necessary inputs parameters are here
        if check_params(Xs=Xs, Xt=Xt):

            # pairwise distance
            self.cost_ = dist(Xs, Xt, metric=self.metric)
            self.cost_ = cost_normalization(self.cost_, self.norm)

            if (ys is not None) and (yt is not None):

                if self.limit_max != np.infty:
                    self.limit_max = self.limit_max * np.max(self.cost_)

                # assumes labeled source samples occupy the first rows
                # and labeled target samples occupy the first columns
                classes = [c for c in np.unique(ys) if c != -1]
                for c in classes:
                    idx_s = np.where((ys != c) & (ys != -1))
                    idx_t = np.where(yt == c)

                    # all the coefficients corresponding to a source sample
                    # and a target sample :
                    # with different labels get a infinite
                    for j in idx_t[0]:
                        self.cost_[idx_s[0], j] = self.limit_max

            # distribution estimation
            self.mu_s = self.distribution_estimation(Xs)
            self.mu_t = self.distribution_estimation(Xt)

            # store arrays of samples
            self.xs_ = Xs
            self.xt_ = Xt

        return self 

Example 46

def cross_validation_spectrum_kernel(seq, is_train, folds):
    # Cross-validation
    # Repeat for each combination of candidate hyperparameter values
    substring_length = 3
    C_values = [0.01, 0.1, 1.0, 10., 100.]

    best_result = {"score": -np.infty}

    seq_vec = sequences_to_vec(seq, substring_length)
    K = np.dot(seq_vec, seq_vec.T)
    K_train = K[is_train][:, is_train]
    K_test = K[~is_train][:, is_train]
    y_train = labels[is_train]
    y_test = labels[~is_train]

    for C in C_values:

        print "Parameters: C: {0:.4f}".format(C)

        # Cross-validation
        fold_scores = []
        for fold in np.unique(folds):
            print "...Fold {0:d}".format(fold + 1)
            fold_K_train = K_train[folds != fold][:, folds != fold]
            fold_K_test = K_train[folds == fold][:, folds != fold]
            fold_y_train = y_train[folds != fold]
            fold_y_test = y_train[folds == fold]
            fold_estimator = SupportVectorRegression(kernel="precomputed", C=C)
            fold_estimator.fit(fold_K_train.copy(), fold_y_train)
            fold_scores.append(fold_estimator.score(fold_K_test, fold_y_test))
        cv_score = np.mean(fold_scores)
        print "...... cv score:", cv_score

        if cv_score > best_result["score"]:
            best_result["score"] = cv_score
            best_result["K"] = dict(train=K_train, test=K_test, full=K)
            best_result["estimator"] = SupportVectorRegression(kernel="precomputed", C=C).fit(K_train, y_train)
            best_result["hps"] = dict(C=C)

        print
        print
    return best_result 

Example 47

def __init__(self,
               loss,
               var_list=None,
               equalities=None,
               inequalities=None,
               var_to_bounds=None,
               **optimizer_kwargs):
    """Initialize a new interface instance.

    Args:
      loss: A scalar `Tensor` to be minimized.
      var_list: Optional `list` of `Variable` objects to update to minimize
        `loss`.  Defaults to the list of variables collected in the graph
        under the key `GraphKeys.TRAINABLE_VARIABLES`.
      equalities: Optional `list` of equality constraint scalar `Tensor`s to be
        held equal to zero.
      inequalities: Optional `list` of inequality constraint scalar `Tensor`s
        to be held nonnegative.
      var_to_bounds: Optional `dict` where each key is an optimization
        `Variable` and each corresponding value is a length-2 tuple of
        `(low, high)` bounds. Although enforcing this kind of simple constraint
        could be accomplished with the `inequalities` arg, not all optimization
        algorithms support general inequality constraints, e.g. L-BFGS-B. Both
        `low` and `high` can either be numbers or anything convertible to a
        NumPy array that can be broadcast to the shape of `var` (using
        `np.broadcast_to`). To indicate that there is no bound, use `None` (or
        `+/- np.infty`). For example, if `var` is a 2x3 matrix, then any of
        the following corresponding `bounds` could be supplied:
        * `(0, np.infty)`: Each element of `var` held positive.
        * `(-np.infty, [1, 2])`: First column less than 1, second column less
          than 2.
        * `(-np.infty, [[1], [2], [3]])`: First row less than 1, second row less
          than 2, etc.
        * `(-np.infty, [[1, 2, 3], [4, 5, 6]])`: Entry `var[0, 0]` less than 1,
          `var[0, 1]` less than 2, etc.
      **optimizer_kwargs: Other subclass-specific keyword arguments.
    """
    self.optimizer_kwargs = optimizer_kwargs

    self._loss = loss
    self._equalities = equalities or []
    self._inequalities = inequalities or []
    self._var_to_bounds = var_to_bounds

    if var_list is None:
      self._vars = variables.trainable_variables()
    elif var_list == []:
      raise ValueError("No variables to optimize.")
    else:
      self._vars = list(var_list)

    self._packed_bounds = []
    self._update_placeholders = []
    self._var_updates = []
    self._packed_var = None
    self._packed_loss_grad = None
    self._packed_equality_grads = []
    self._packed_inequality_grads = []
    self._var_shapes = None 

Example 48

def _initialize_updated_shapes(self, session):
    shapes = array_ops.shape_n(self._vars)
    var_shapes = list(map(tuple, session.run(shapes)))

    if self._var_shapes is not None:
      new_old_shapes = zip(self._var_shapes, var_shapes)
      if all([old == new for old, new in new_old_shapes]):
        return

    self._var_shapes = var_shapes
    vars_and_shapes = zip(self._vars, self._var_shapes)
    vars_and_shapes_dict = dict(vars_and_shapes)

    packed_bounds = None
    if self._var_to_bounds is not None:
      left_packed_bounds = []
      right_packed_bounds = []
      for var, var_shape in vars_and_shapes:
        shape = list(var_shape)
        bounds = (-np.infty, np.infty)
        if var in var_to_bounds:
          bounds = var_to_bounds[var]
        left_packed_bounds.extend(list(np.broadcast_to(bounds[0], shape).flat))
        right_packed_bounds.extend(list(np.broadcast_to(bounds[1], shape).flat))
      packed_bounds = list(zip(left_packed_bounds, right_packed_bounds))
    self._packed_bounds = packed_bounds

    self._update_placeholders = [
        array_ops.placeholder(var.dtype) for var in self._vars
    ]
    self._var_updates = [
        var.assign(array_ops.reshape(placeholder, vars_and_shapes_dict[var]))
        for var, placeholder in zip(self._vars, self._update_placeholders)
    ]

    loss_grads = _compute_gradients(self._loss, self._vars)
    equalities_grads = [
        _compute_gradients(equality, self._vars)
        for equality in self._equalities
    ]
    inequalities_grads = [
        _compute_gradients(inequality, self._vars)
        for inequality in self._inequalities
    ]

    self._packed_var = self._pack(self._vars)
    self._packed_loss_grad = self._pack(loss_grads)
    self._packed_equality_grads = [
        self._pack(equality_grads) for equality_grads in equalities_grads
    ]
    self._packed_inequality_grads = [
        self._pack(inequality_grads) for inequality_grads in inequalities_grads
    ]

    dims = [_prod(vars_and_shapes_dict[var]) for var in self._vars]
    accumulated_dims = list(_accumulate(dims))
    self._packing_slices = [
        slice(start, end)
        for start, end in zip(accumulated_dims[:-1], accumulated_dims[1:])
    ] 

Example 49

def __init__(self, model, **kwargs):
        """Initialize a slack form of an :class:`NLPModel`.

        :parameters:
            :model:  Original model to be transformed into a slack form.
        """
        self.model = model

        # Save number of variables and constraints prior to transformation
        self.original_n = model.n
        self.original_m = model.m

        # Number of slacks for the constaints
        n_slacks = model.nlowerC + model.nupperC + model.nrangeC
        self.n_slacks = n_slacks

        # Update effective number of variables and constraints
        n = self.original_n + n_slacks
        m = self.original_m

        Lvar = -np.infty * np.ones(n)
        Uvar = +np.infty * np.ones(n)

        # Copy orignal bounds
        Lvar[:self.original_n] = model.Lvar
        Uvar[:self.original_n] = model.Uvar

        # Add bounds corresponding to lower constraints
        bot = self.original_n
        self.sL = range(bot, bot + model.nlowerC)
        Lvar[bot:bot + model.nlowerC] = model.Lcon[model.lowerC]

        # Add bounds corresponding to upper constraints
        bot += model.nlowerC
        self.sU = range(bot, bot + model.nupperC)
        Uvar[bot:bot + model.nupperC] = model.Ucon[model.upperC]

        # Add bounds corresponding to range constraints
        bot += model.nupperC
        self.sR = range(bot, bot + model.nrangeC)
        Lvar[bot:bot + model.nrangeC] = model.Lcon[model.rangeC]
        Uvar[bot:bot + model.nrangeC] = model.Ucon[model.rangeC]

        # No more inequalities. All constraints are now equal to 0
        Lcon = Ucon = np.zeros(m)

        super(SlackModel, self).__init__(n=n, m=m, name='Slack-' + model.name,
                                         Lvar=Lvar, Uvar=Uvar,
                                         Lcon=Lcon, Ucon=Ucon)

        # Redefine primal and dual initial guesses
        self.original_x0 = model.x0[:]
        self.x0 = np.zeros(self.n)
        self.x0[:self.original_n] = self.original_x0[:]

        self.original_pi0 = model.pi0[:]
        self.pi0 = np.zeros(self.m)
        self.pi0[:self.original_m] = self.original_pi0[:]
        return 

Example 50

def lnprobfn(theta, model, obs, sps, verbose=False, spec_noise=None,
             phot_noise=None, residuals=False):
    """Define the likelihood function.
    Given a parameter vector and a dictionary of observational data and a model
    object, return the ln of the posterior. This requires that an sps object
    (and if using spectra and gaussian processes, a GP object) be instantiated.
    """
    from prospect.likelihood import lnlike_spec, lnlike_phot, chi_spec, chi_phot

    # Calculate the prior probability and exit if not within the prior
    lnp_prior = model.prior_product(theta)
    if not np.isfinite(lnp_prior):
        return -np.infty

    # Generate the mean model--
    t1 = time()
    try:
        model_spec, model_phot, model_extras = model.mean_model(theta, obs, sps=sps)
    except(ValueError):
        return -np.infty
    d1 = time() - t1

    # Return chi vectors for least-squares optimization--
    if residuals:
        chispec = chi_spec(model_spec, obs)
        chiphot = chi_phot(model_phot, obs)        
        return np.concatenate([chispec, chiphot])

    # Noise modeling--
    if spec_noise:
        spec_noise.update(**model.params)
    if phot_noise:
        phot_noise.update(**model.params)

    vectors = {
        'spec': model_spec,    # model spectrum
        'phot': model_phot,    # model photometry
        'sed': model._spec,    # object spectrum
        'cal': model._speccal, # object calibration spectrum
        }

    # Calculate likelihoods--
    t2 = time()
    lnp_spec = lnlike_spec(model_spec, obs=obs, spec_noise=spec_noise, **vectors)
    lnp_phot = lnlike_phot(model_phot, obs=obs, phot_noise=phot_noise, **vectors)
    d2 = time() - t2
    if False:
        from prospect.likelihood import write_log
        write_log(theta, lnp_prior, lnp_spec, lnp_phot, d1, d2)

    #if (lnp_prior + lnp_phot + lnp_spec) > 0:
    #    print('Total probability is positive!!', lnp_prior, lnp_phot)
    #    pdb.set_trace()

    return lnp_prior + lnp_phot + lnp_spec 
点赞