Python numpy.fmax() 使用实例

The following are code examples for showing how to use . They are extracted from open source Python projects. You can vote up the examples you like or vote down the exmaples you don’t like. You can also save this page to your account.

Example 1

def imax(arrays, axis, ignore_nan = False):
    """ 
    Maximum of a stream of arrays along an axis.

    Parameters
    ----------
    arrays : iterable
        Arrays to be reduced.
    axis : int or None, optional
        Axis along which the maximum is found. The default
        is to find the maximum along the 'stream axis', as if all arrays in ``array``
        were stacked along a new dimension. If ``axis = None``, arrays in ``arrays`` are flattened
        before reduction.
    ignore_nan : bool, optional
        If True, NaNs are ignored. Default is propagation of NaNs.

    Yields
    ------
    online_max : ndarray
        Cumulative maximum.
    """
    ufunc = np.fmax if ignore_nan else np.maximum
    yield from ireduce_ufunc(arrays, ufunc, axis) 

Example 2

def test_reduce(self):
        dflt = np.typecodes['AllFloat']
        dint = np.typecodes['AllInteger']
        seq1 = np.arange(11)
        seq2 = seq1[::-1]
        func = np.fmax.reduce
        for dt in dint:
            tmp1 = seq1.astype(dt)
            tmp2 = seq2.astype(dt)
            assert_equal(func(tmp1), 10)
            assert_equal(func(tmp2), 10)
        for dt in dflt:
            tmp1 = seq1.astype(dt)
            tmp2 = seq2.astype(dt)
            assert_equal(func(tmp1), 10)
            assert_equal(func(tmp2), 10)
            tmp1[::2] = np.nan
            tmp2[::2] = np.nan
            assert_equal(func(tmp1), 9)
            assert_equal(func(tmp2), 9) 

Example 3

def fea_plot(xg_model, feature, label, type = 'weight', max_num_features = None):
    fig, AX = plt.subplots(nrows=1, ncols=2)
    xgb.plot_importance(xg_model, xlabel=type, importance_type='weight', ax=AX[0], max_num_features=max_num_features)

    fscore = xg_model.get_score(importance_type=type)
    fscore = sorted(fscore.items(), key=itemgetter(1), reverse=True) # sort scores
    fea_index = get_fea_index(fscore, max_num_features)
    feature = feature[:, fea_index]
    dimension = len(fea_index)
    X = range(1, dimension+1)
    Yp = np.mean(feature[np.where(label==1)[0]], axis=0)
    Yn = np.mean(feature[np.where(label!=1)[0]], axis=0)
    for i in range(0, dimension):
        param = np.fmax(Yp[i], Yn[i])
        Yp[i] /= param
        Yn[i] /= param
    p1 = AX[1].bar(X, +Yp, facecolor='#ff9999', edgecolor='white')
    p2 = AX[1].bar(X, -Yn, facecolor='#9999ff', edgecolor='white')
    AX[1].legend((p1,p2), ('Malware', 'Normal'))
    AX[1].set_title('Comparison of selected features by their means')
    AX[1].set_xlabel('Feature Index')
    AX[1].set_ylabel('Mean Value')
    AX[1].set_ylim(-1.1, 1.1)
    plt.xticks(X, fea_index+1, rotation=80)
    plt.suptitle('Feature Selection results') 

Example 4

def test_obj_value_points_correctly_class_far_from_hyperplane(self):
        bias = 0.0

        w = np.array([-1, 1, bias])
        l = self.svm.l2reg
        X = np.array([[5, 0.3], [1, -0.8], [1, 6], [-0.6, 3]])
        Y = np.array([-1, -1, 1, 1])

        # compute loss for all X -> 1-yi*(xi*w+b)
        out = np.fmax(0, 1 - Y * (X.dot(w[0:-1]) + w[-1]))

        expectedObj = 1.0

        result, _ = self.svm._obj_func(w, X, Y, out)

        self.assertAlmostEqual(expectedObj, result) 

Example 5

def test_reduce(self):
        dflt = np.typecodes['AllFloat']
        dint = np.typecodes['AllInteger']
        seq1 = np.arange(11)
        seq2 = seq1[::-1]
        func = np.fmax.reduce
        for dt in dint:
            tmp1 = seq1.astype(dt)
            tmp2 = seq2.astype(dt)
            assert_equal(func(tmp1), 10)
            assert_equal(func(tmp2), 10)
        for dt in dflt:
            tmp1 = seq1.astype(dt)
            tmp2 = seq2.astype(dt)
            assert_equal(func(tmp1), 10)
            assert_equal(func(tmp2), 10)
            tmp1[::2] = np.nan
            tmp2[::2] = np.nan
            assert_equal(func(tmp1), 9)
            assert_equal(func(tmp2), 9) 

Example 6

def test_reduce(self):
        dflt = np.typecodes['AllFloat']
        dint = np.typecodes['AllInteger']
        seq1 = np.arange(11)
        seq2 = seq1[::-1]
        func = np.fmax.reduce
        for dt in dint:
            tmp1 = seq1.astype(dt)
            tmp2 = seq2.astype(dt)
            assert_equal(func(tmp1), 10)
            assert_equal(func(tmp2), 10)
        for dt in dflt:
            tmp1 = seq1.astype(dt)
            tmp2 = seq2.astype(dt)
            assert_equal(func(tmp1), 10)
            assert_equal(func(tmp2), 10)
            tmp1[::2] = np.nan
            tmp2[::2] = np.nan
            assert_equal(func(tmp1), 9)
            assert_equal(func(tmp2), 9) 

Example 7

def test_NotImplemented_not_returned(self):
        # See gh-5964 and gh-2091. Some of these functions are not operator
        # related and were fixed for other reasons in the past.
        binary_funcs = [
            np.power, np.add, np.subtract, np.multiply, np.divide,
            np.true_divide, np.floor_divide, np.bitwise_and, np.bitwise_or,
            np.bitwise_xor, np.left_shift, np.right_shift, np.fmax,
            np.fmin, np.fmod, np.hypot, np.logaddexp, np.logaddexp2,
            np.logical_and, np.logical_or, np.logical_xor, np.maximum,
            np.minimum, np.mod
            ]

        # These functions still return NotImplemented. Will be fixed in
        # future.
        # bad = [np.greater, np.greater_equal, np.less, np.less_equal, np.not_equal]

        a = np.array('1')
        b = 1
        for f in binary_funcs:
            assert_raises(TypeError, f, a, b) 

Example 8

def test_reduce(self):
        dflt = np.typecodes['AllFloat']
        dint = np.typecodes['AllInteger']
        seq1 = np.arange(11)
        seq2 = seq1[::-1]
        func = np.fmax.reduce
        for dt in dint:
            tmp1 = seq1.astype(dt)
            tmp2 = seq2.astype(dt)
            assert_equal(func(tmp1), 10)
            assert_equal(func(tmp2), 10)
        for dt in dflt:
            tmp1 = seq1.astype(dt)
            tmp2 = seq2.astype(dt)
            assert_equal(func(tmp1), 10)
            assert_equal(func(tmp2), 10)
            tmp1[::2] = np.nan
            tmp2[::2] = np.nan
            assert_equal(func(tmp1), 9)
            assert_equal(func(tmp2), 9) 

Example 9

def test_NotImplemented_not_returned(self):
        # See gh-5964 and gh-2091. Some of these functions are not operator
        # related and were fixed for other reasons in the past.
        binary_funcs = [
            np.power, np.add, np.subtract, np.multiply, np.divide,
            np.true_divide, np.floor_divide, np.bitwise_and, np.bitwise_or,
            np.bitwise_xor, np.left_shift, np.right_shift, np.fmax,
            np.fmin, np.fmod, np.hypot, np.logaddexp, np.logaddexp2,
            np.logical_and, np.logical_or, np.logical_xor, np.maximum,
            np.minimum, np.mod
            ]

        # These functions still return NotImplemented. Will be fixed in
        # future.
        # bad = [np.greater, np.greater_equal, np.less, np.less_equal, np.not_equal]

        a = np.array('1')
        b = 1
        for f in binary_funcs:
            assert_raises(TypeError, f, a, b) 

Example 10

def test_reduce(self):
        dflt = np.typecodes['AllFloat']
        dint = np.typecodes['AllInteger']
        seq1 = np.arange(11)
        seq2 = seq1[::-1]
        func = np.fmax.reduce
        for dt in dint:
            tmp1 = seq1.astype(dt)
            tmp2 = seq2.astype(dt)
            assert_equal(func(tmp1), 10)
            assert_equal(func(tmp2), 10)
        for dt in dflt:
            tmp1 = seq1.astype(dt)
            tmp2 = seq2.astype(dt)
            assert_equal(func(tmp1), 10)
            assert_equal(func(tmp2), 10)
            tmp1[::2] = np.nan
            tmp2[::2] = np.nan
            assert_equal(func(tmp1), 9)
            assert_equal(func(tmp2), 9) 

Example 11

def test_NotImplemented_not_returned(self):
        # See gh-5964 and gh-2091. Some of these functions are not operator
        # related and were fixed for other reasons in the past.
        binary_funcs = [
            np.power, np.add, np.subtract, np.multiply, np.divide,
            np.true_divide, np.floor_divide, np.bitwise_and, np.bitwise_or,
            np.bitwise_xor, np.left_shift, np.right_shift, np.fmax,
            np.fmin, np.fmod, np.hypot, np.logaddexp, np.logaddexp2,
            np.logical_and, np.logical_or, np.logical_xor, np.maximum,
            np.minimum, np.mod
            ]

        # These functions still return NotImplemented. Will be fixed in
        # future.
        # bad = [np.greater, np.greater_equal, np.less, np.less_equal, np.not_equal]

        a = np.array('1')
        b = 1
        for f in binary_funcs:
            assert_raises(TypeError, f, a, b) 

Example 12

def test_reduce(self):
        dflt = np.typecodes['AllFloat']
        dint = np.typecodes['AllInteger']
        seq1 = np.arange(11)
        seq2 = seq1[::-1]
        func = np.fmax.reduce
        for dt in dint:
            tmp1 = seq1.astype(dt)
            tmp2 = seq2.astype(dt)
            assert_equal(func(tmp1), 10)
            assert_equal(func(tmp2), 10)
        for dt in dflt:
            tmp1 = seq1.astype(dt)
            tmp2 = seq2.astype(dt)
            assert_equal(func(tmp1), 10)
            assert_equal(func(tmp2), 10)
            tmp1[::2] = np.nan
            tmp2[::2] = np.nan
            assert_equal(func(tmp1), 9)
            assert_equal(func(tmp2), 9) 

Example 13

def test_NotImplemented_not_returned(self):
        # See gh-5964 and gh-2091. Some of these functions are not operator
        # related and were fixed for other reasons in the past.
        binary_funcs = [
            np.power, np.add, np.subtract, np.multiply, np.divide,
            np.true_divide, np.floor_divide, np.bitwise_and, np.bitwise_or,
            np.bitwise_xor, np.left_shift, np.right_shift, np.fmax,
            np.fmin, np.fmod, np.hypot, np.logaddexp, np.logaddexp2,
            np.logical_and, np.logical_or, np.logical_xor, np.maximum,
            np.minimum, np.mod
            ]

        # These functions still return NotImplemented. Will be fixed in
        # future.
        # bad = [np.greater, np.greater_equal, np.less, np.less_equal, np.not_equal]

        a = np.array('1')
        b = 1
        for f in binary_funcs:
            assert_raises(TypeError, f, a, b) 

Example 14

def variability_prob(ndvi, ndsi, whiteness):
    """Use the probability of the spectral variability
    to identify clouds over land.

    Equation 15 (Zhu and Woodcock, 2012)

    Parameters
    ----------
    ndvi: ndarray
    ndsi: ndarray
    whiteness: ndarray

    Output
    ------
    ndarray :
        probability of cloud over land based on variability
    """
    ndi_max = np.fmax(np.absolute(ndvi), np.absolute(ndsi))
    f_max =  1.0 - np.fmax(ndi_max, whiteness)
    return f_max


# Eq 16, land_cloud_prob
# lCloud_Prob = lTemperature_Prob x Variability_Prob 

Example 15

def test_reduce(self):
        dflt = np.typecodes['AllFloat']
        dint = np.typecodes['AllInteger']
        seq1 = np.arange(11)
        seq2 = seq1[::-1]
        func = np.fmax.reduce
        for dt in dint:
            tmp1 = seq1.astype(dt)
            tmp2 = seq2.astype(dt)
            assert_equal(func(tmp1), 10)
            assert_equal(func(tmp2), 10)
        for dt in dflt:
            tmp1 = seq1.astype(dt)
            tmp2 = seq2.astype(dt)
            assert_equal(func(tmp1), 10)
            assert_equal(func(tmp2), 10)
            tmp1[::2] = np.nan
            tmp2[::2] = np.nan
            assert_equal(func(tmp1), 9)
            assert_equal(func(tmp2), 9) 

Example 16

def test_NotImplemented_not_returned(self):
        # See gh-5964 and gh-2091. Some of these functions are not operator
        # related and were fixed for other reasons in the past.
        binary_funcs = [
            np.power, np.add, np.subtract, np.multiply, np.divide,
            np.true_divide, np.floor_divide, np.bitwise_and, np.bitwise_or,
            np.bitwise_xor, np.left_shift, np.right_shift, np.fmax,
            np.fmin, np.fmod, np.hypot, np.logaddexp, np.logaddexp2,
            np.logical_and, np.logical_or, np.logical_xor, np.maximum,
            np.minimum, np.mod
            ]

        # These functions still return NotImplemented. Will be fixed in
        # future.
        # bad = [np.greater, np.greater_equal, np.less, np.less_equal, np.not_equal]

        a = np.array('1')
        b = 1
        for f in binary_funcs:
            assert_raises(TypeError, f, a, b) 

Example 17

def test_reduce_complex(self):
        assert_equal(np.fmax.reduce([1, 2j]), 1)
        assert_equal(np.fmax.reduce([1+3j, 2j]), 1+3j) 

Example 18

def test_float_nans(self):
        nan = np.nan
        arg1 = np.array([0,   nan, nan])
        arg2 = np.array([nan, 0,   nan])
        out = np.array([0,   0,   nan])
        assert_equal(np.fmax(arg1, arg2), out) 

Example 19

def test_complex_nans(self):
        nan = np.nan
        for cnan in [complex(nan, 0), complex(0, nan), complex(nan, nan)]:
            arg1 = np.array([0, cnan, cnan], dtype=np.complex)
            arg2 = np.array([cnan, 0, cnan], dtype=np.complex)
            out = np.array([0,    0, nan], dtype=np.complex)
            assert_equal(np.fmax(arg1, arg2), out) 

Example 20

def test_NotImplemented_not_returned(self):
        # See gh-5964 and gh-2091. Some of these functions are not operator
        # related and were fixed for other reasons in the past.
        binary_funcs = [
            np.power, np.add, np.subtract, np.multiply, np.divide,
            np.true_divide, np.floor_divide, np.bitwise_and, np.bitwise_or,
            np.bitwise_xor, np.left_shift, np.right_shift, np.fmax,
            np.fmin, np.fmod, np.hypot, np.logaddexp, np.logaddexp2,
            np.logical_and, np.logical_or, np.logical_xor, np.maximum,
            np.minimum, np.mod
            ]

        # These functions still return NotImplemented. Will be fixed in
        # future.
        # bad = [np.greater, np.greater_equal, np.less, np.less_equal, np.not_equal]

        a = np.array('1')
        b = 1
        for f in binary_funcs:
            assert_raises(TypeError, f, a, b) 

Example 21

def _obj_func(self, w, X, Y, out):
        """
        Computes primal value end gradient
        Parameters
        ----------
        w : {array-like} - hyperplane normal vector
        X : {array-like, sparse matrix}, shape = [n_samples, n_features]
            Training vector, where n_samples in the number of samples and
            n_features is the number of features.
        Y : array-like, shape = [n_samples]
            Target vector relative to X
        out: loss function values
        Returns
        -------
        (obj,grad) : tuple, obj - function value, grad - gradient
            
        """

        l2reg = self.l2reg

        # we remember bias, to recover it after gradient computation
        bias = w[-1]
        # set bias to zero, don't penalize b
        w[-1] = 0

        max_out = np.fmax(0, out)
        obj = np.sum(max_out ** 2) / 2 + l2reg * w.dot(w) / 2

        grad = l2reg * w - np.append([np.dot(max_out * Y, X)], [np.sum(max_out * Y)])

        w[-1] = bias

        return (obj, grad) 

Example 22

def test_obj_value_points_correctly_class_close_to_hyperplane(self):
        bias = 0.0
        w = np.array([-1, 1, bias])
        l = self.svm.l2reg
        X = np.array([[0.5, 0.3], [1, 0.8], [1, 1.4], [0.6, 0.9]])
        Y = np.array([-1, -1, 1, 1])

        # compute loss for all X -> 1-yi*(xi*w+b)
        out = np.fmax(0, 1 - Y * (X.dot(w[0:-1]) + w[-1]))

        expectedObj = 2.0650000000000004

        result, _ = self.svm._obj_func(w, X, Y, out)

        self.assertAlmostEqual(expectedObj, result) 

Example 23

def test_obj_grad_points(self):
        bias = 0.0
        w = np.array([-1, 1, bias])
        l = self.svm.l2reg
        X = np.array([[0.5, 0.3], [1, 0.8], [1, 1.4], [0.6, 0.9]])
        Y = np.array([-1, -1, 1, 1])

        # compute loss for all X -> 1-yi*(xi*w+b)
        out = np.fmax(0, 1 - Y * (X.dot(w[0:-1]) + w[-1]))

        expected = np.array([-0.82, 0.41, 0.3])

        (obj, grad) = self.svm._obj_func(w, X, Y, out)

        np.testing.assert_array_almost_equal(expected, grad) 

Example 24

def _scale_cosine_similarity(x, metric='cosine', inverse=False):
    """ Given a cosine similarity on L2 normalized data,
    appriximately convert it to Jaccard similarity, and/or
    normalize it to the [0, 1] interval

    Parameters
    ----------
    x : {float, ndarray}
      the cosine similarity value
    metric : str
      the conversion to apply one of ['cosine', 'jaccard']
    inverse : bool
      perform the inverse de-normalization operation
    """
    valid_metrics = ['cosine', 'jaccard', 'cosine_norm', 'jaccard_norm',
                     'cosine-positive']
    if metric not in valid_metrics:
        raise ValueError('metric {} not supported, must be in {}'
                         .format(metric, valid_metrics))
    if metric == 'cosine':
        return x
    elif metric == 'cosine-positive':
        if isinstance(x, (int, float)):
            return max(x, 0.0)
        else:
            return np.fmax(x, 0.0)

    if metric.startswith('jaccard'):
        if not inverse:
            x = cosine2jaccard_similarity(x)
        else:
            x = jaccard2cosine_similarity(x)

    if metric.endswith('norm'):
        x = _normalize_similarity(x, metric=metric.split('_')[0],
                                  inverse=inverse)

    return x 

Example 25

def test_reduce_complex(self):
        assert_equal(np.fmax.reduce([1, 2j]), 1)
        assert_equal(np.fmax.reduce([1+3j, 2j]), 1+3j) 

Example 26

def test_float_nans(self):
        nan = np.nan
        arg1 = np.array([0,   nan, nan])
        arg2 = np.array([nan, 0,   nan])
        out = np.array([0,   0,   nan])
        assert_equal(np.fmax(arg1, arg2), out) 

Example 27

def test_complex_nans(self):
        nan = np.nan
        for cnan in [complex(nan, 0), complex(0, nan), complex(nan, nan)]:
            arg1 = np.array([0, cnan, cnan], dtype=np.complex)
            arg2 = np.array([cnan, 0, cnan], dtype=np.complex)
            out = np.array([0,    0, nan], dtype=np.complex)
            assert_equal(np.fmax(arg1, arg2), out) 

Example 28

def test_NotImplemented_not_returned(self):
        # See gh-5964 and gh-2091. Some of these functions are not operator
        # related and were fixed for other reasons in the past.
        binary_funcs = [
            np.power, np.add, np.subtract, np.multiply, np.divide,
            np.true_divide, np.floor_divide, np.bitwise_and, np.bitwise_or,
            np.bitwise_xor, np.left_shift, np.right_shift, np.fmax,
            np.fmin, np.fmod, np.hypot, np.logaddexp, np.logaddexp2,
            np.logical_and, np.logical_or, np.logical_xor, np.maximum,
            np.minimum, np.mod
            ]

        # These functions still return NotImplemented. Will be fixed in
        # future.
        # bad = [np.greater, np.greater_equal, np.less, np.less_equal, np.not_equal]

        a = np.array('1')
        b = 1
        for f in binary_funcs:
            assert_raises(TypeError, f, a, b) 

Example 29

def forward_cpu(self, inputs):
        x, = inputs
        # y = log(1 + exp(beta * x)) / beta
        bx = self.beta * x
        y = (numpy.fmax(bx, 0) +
             numpy.log1p(numpy.exp(-numpy.fabs(bx)))) * self.beta_inv
        return utils.force_array(y.astype(x.dtype)), 

Example 30

def test_reduce_complex(self):
        assert_equal(np.fmax.reduce([1, 2j]), 1)
        assert_equal(np.fmax.reduce([1+3j, 2j]), 1+3j) 

Example 31

def test_float_nans(self):
        nan = np.nan
        arg1 = np.array([0,   nan, nan])
        arg2 = np.array([nan, 0,   nan])
        out = np.array([0,   0,   nan])
        assert_equal(np.fmax(arg1, arg2), out) 

Example 32

def test_complex_nans(self):
        nan = np.nan
        for cnan in [complex(nan, 0), complex(0, nan), complex(nan, nan)]:
            arg1 = np.array([0, cnan, cnan], dtype=np.complex)
            arg2 = np.array([cnan, 0, cnan], dtype=np.complex)
            out = np.array([0,    0, nan], dtype=np.complex)
            assert_equal(np.fmax(arg1, arg2), out) 

Example 33

def twoFactorGaussianExample(inds,t_max=1.0,tau_max=3.0,b0=0.0759,b1=-0.0439,k=0.4454,a2=0.5,s1=0.02,s2=0.01,K=0.5,verbose=False):
    
    '''
    Compute the two factor Gaussian Example in Beck-Tempone-Szepessy-Zouraris
    '''
    

    f0 = lambda tau: b0+b1*np.exp(-1.0*k*tau)

    F = lambda x: np.exp(-1.0*x)
    G = lambda x: np.fmax(np.exp(-1.0*x)-K)
    Psi = lambda x: 1.0*x
    U = lambda x: 0.0*x
    
    d1 = lambda s: s1*s1*s
    d20 = lambda s: np.exp(-0.5*a2*s)
    d2 = lambda s: 2*s2*s2/a2*d20(s)*(1.0-d20(s))
    
    drift = lambda s: d1(s)+d2(s) 

    v1 = lambda s: s1*np.ones(np.shape(s))
    v2 = lambda s: s2*d20(s)

    vols = [v1,v2]

    identifierString = 'Evaluating the Two Factor Gaussian example.\n'
    identifierString += 's1: %f, s2: %f, b0: %f, tau_max: %f, t_max: %f\n'%(s1,s2,b0,tau_max,t_max)
    identifierString += 'k: %f, a2: %f, K: %f, b1: %f'%(k,a2,K,b1)

    return multiLevelHjmModel(inds,F,G,U,Psi,drift,vols,f0,t_max=t_max,tau_max=tau_max,identifierString=identifierString,verbose=verbose) 

Example 34

def test_reduce_complex(self):
        assert_equal(np.fmax.reduce([1, 2j]), 1)
        assert_equal(np.fmax.reduce([1+3j, 2j]), 1+3j) 

Example 35

def test_float_nans(self):
        nan = np.nan
        arg1 = np.array([0,   nan, nan])
        arg2 = np.array([nan, 0,   nan])
        out = np.array([0,   0,   nan])
        assert_equal(np.fmax(arg1, arg2), out) 

Example 36

def test_complex_nans(self):
        nan = np.nan
        for cnan in [complex(nan, 0), complex(0, nan), complex(nan, nan)]:
            arg1 = np.array([0, cnan, cnan], dtype=np.complex)
            arg2 = np.array([cnan, 0, cnan], dtype=np.complex)
            out = np.array([0,    0, nan], dtype=np.complex)
            assert_equal(np.fmax(arg1, arg2), out) 

Example 37

def test_reduce_complex(self):
        assert_equal(np.fmax.reduce([1, 2j]), 1)
        assert_equal(np.fmax.reduce([1+3j, 2j]), 1+3j) 

Example 38

def test_float_nans(self):
        nan = np.nan
        arg1 = np.array([0,   nan, nan])
        arg2 = np.array([nan, 0,   nan])
        out = np.array([0,   0,   nan])
        assert_equal(np.fmax(arg1, arg2), out) 

Example 39

def test_complex_nans(self):
        nan = np.nan
        for cnan in [complex(nan, 0), complex(0, nan), complex(nan, nan)]:
            arg1 = np.array([0, cnan, cnan], dtype=np.complex)
            arg2 = np.array([cnan, 0, cnan], dtype=np.complex)
            out = np.array([0,    0, nan], dtype=np.complex)
            assert_equal(np.fmax(arg1, arg2), out) 

Example 40

def test_reduce_complex(self):
        assert_equal(np.fmax.reduce([1, 2j]), 1)
        assert_equal(np.fmax.reduce([1+3j, 2j]), 1+3j) 

Example 41

def test_float_nans(self):
        nan = np.nan
        arg1 = np.array([0,   nan, nan])
        arg2 = np.array([nan, 0,   nan])
        out = np.array([0,   0,   nan])
        assert_equal(np.fmax(arg1, arg2), out) 

Example 42

def test_complex_nans(self):
        nan = np.nan
        for cnan in [complex(nan, 0), complex(0, nan), complex(nan, nan)]:
            arg1 = np.array([0, cnan, cnan], dtype=np.complex)
            arg2 = np.array([cnan, 0, cnan], dtype=np.complex)
            out = np.array([0,    0, nan], dtype=np.complex)
            assert_equal(np.fmax(arg1, arg2), out) 

Example 43

def clip_to_window(boxlist, window):
  """Clip bounding boxes to a window.

  This op clips input bounding boxes (represented by bounding box
  corners) to a window, optionally filtering out boxes that do not
  overlap at all with the window.

  Args:
    boxlist: BoxList holding M_in boxes
    window: a numpy array of shape [4] representing the
            [y_min, x_min, y_max, x_max] window to which the op
            should clip boxes.

  Returns:
    a BoxList holding M_out boxes where M_out <= M_in
  """
  y_min, x_min, y_max, x_max = np.array_split(boxlist.get(), 4, axis=1)
  win_y_min = window[0]
  win_x_min = window[1]
  win_y_max = window[2]
  win_x_max = window[3]
  y_min_clipped = np.fmax(np.fmin(y_min, win_y_max), win_y_min)
  y_max_clipped = np.fmax(np.fmin(y_max, win_y_max), win_y_min)
  x_min_clipped = np.fmax(np.fmin(x_min, win_x_max), win_x_min)
  x_max_clipped = np.fmax(np.fmin(x_max, win_x_max), win_x_min)
  clipped = np_box_list.BoxList(
      np.hstack([y_min_clipped, x_min_clipped, y_max_clipped, x_max_clipped]))
  clipped = _copy_extra_fields(clipped, boxlist)
  areas = area(clipped)
  nonzero_area_indices = np.reshape(np.nonzero(np.greater(areas, 0.0)),
                                    [-1]).astype(np.int32)
  return gather(clipped, nonzero_area_indices) 

Example 44

def test_reduce_complex(self):
        assert_equal(np.fmax.reduce([1, 2j]), 1)
        assert_equal(np.fmax.reduce([1+3j, 2j]), 1+3j) 

Example 45

def test_float_nans(self):
        nan = np.nan
        arg1 = np.array([0,   nan, nan])
        arg2 = np.array([nan, 0,   nan])
        out = np.array([0,   0,   nan])
        assert_equal(np.fmax(arg1, arg2), out) 

Example 46

def test_complex_nans(self):
        nan = np.nan
        for cnan in [complex(nan, 0), complex(0, nan), complex(nan, nan)]:
            arg1 = np.array([0, cnan, cnan], dtype=np.complex)
            arg2 = np.array([cnan, 0, cnan], dtype=np.complex)
            out = np.array([0,    0, nan], dtype=np.complex)
            assert_equal(np.fmax(arg1, arg2), out) 

Example 47

def load_contour_data(fpath, normalize=True):
    """ Load contour data from vamp output csv file.
    Initializes DataFrame to have all future columns.

    Parameters
    ----------
    fpath : str
        Path to vamp output csv file.

    Returns
    -------
    contour_data : DataFrame
        Pandas data frame with all contour data.
    """
    try:
        contour_data = pd.read_csv(fpath, header=None, index_col=None,
                                   delimiter=',').astype(float)
        del contour_data[0]  # all zeros
        del contour_data[1]  # just an unnecessary  index
        headers = contour_data.columns.values.astype('str')
        headers[0:12] = ['onset', 'offset', 'duration', 'pitch mean', 'pitch std',
                         'salience mean', 'salience std', 'salience tot',
                         'vibrato', 'vib rate', 'vib extent', 'vib coverage']
        contour_data.columns = headers
    except:
        contour_data = loadpickle(fpath)
        # trying to load with pickle

    # Check if there is any column with all nans... it should not be considered
    df = contour_data.isnull().all()
    if np.where(df)[0]:
        contour_data = contour_data.drop(contour_data.columns[np.where(df)[0][0]], axis=1)

    #   To ensure the contour has a duration > 0
    contour_data['duration'] = np.fmax(contour_data['duration'].values,0.001)

    contour_data.num_end_cols = 0
    contour_data['overlap'] = -1  # overlaps are unset
    contour_data['labels'] = -1  # all labels are unset
    contour_data['melodiness'] = ""
    contour_data['mel prob'] = -1
    contour_data.num_end_cols = 4

    if normalize:
        contour_data = normalize_features(contour_data)

    return contour_data 

Example 48

def test_datetime_minmax(self):
        # The metadata of the result should become the GCD
        # of the operand metadata
        a = np.array('1999-03-12T13', dtype='M8[2m]')
        b = np.array('1999-03-12T12', dtype='M8[s]')
        assert_equal(np.minimum(a, b), b)
        assert_equal(np.minimum(a, b).dtype, np.dtype('M8[s]'))
        assert_equal(np.fmin(a, b), b)
        assert_equal(np.fmin(a, b).dtype, np.dtype('M8[s]'))
        assert_equal(np.maximum(a, b), a)
        assert_equal(np.maximum(a, b).dtype, np.dtype('M8[s]'))
        assert_equal(np.fmax(a, b), a)
        assert_equal(np.fmax(a, b).dtype, np.dtype('M8[s]'))
        # Viewed as integers, the comparison is opposite because
        # of the units chosen
        assert_equal(np.minimum(a.view('i8'), b.view('i8')), a.view('i8'))

        # Interaction with NaT
        a = np.array('1999-03-12T13', dtype='M8[2m]')
        dtnat = np.array('NaT', dtype='M8[h]')
        assert_equal(np.minimum(a, dtnat), a)
        assert_equal(np.minimum(dtnat, a), a)
        assert_equal(np.maximum(a, dtnat), a)
        assert_equal(np.maximum(dtnat, a), a)

        # Also do timedelta
        a = np.array(3, dtype='m8[h]')
        b = np.array(3*3600 - 3, dtype='m8[s]')
        assert_equal(np.minimum(a, b), b)
        assert_equal(np.minimum(a, b).dtype, np.dtype('m8[s]'))
        assert_equal(np.fmin(a, b), b)
        assert_equal(np.fmin(a, b).dtype, np.dtype('m8[s]'))
        assert_equal(np.maximum(a, b), a)
        assert_equal(np.maximum(a, b).dtype, np.dtype('m8[s]'))
        assert_equal(np.fmax(a, b), a)
        assert_equal(np.fmax(a, b).dtype, np.dtype('m8[s]'))
        # Viewed as integers, the comparison is opposite because
        # of the units chosen
        assert_equal(np.minimum(a.view('i8'), b.view('i8')), a.view('i8'))

        # should raise between datetime and timedelta
        #
        # TODO: Allowing unsafe casting by
        #       default in ufuncs strikes again... :(
        a = np.array(3, dtype='m8[h]')
        b = np.array('1999-03-12T12', dtype='M8[s]')
        #assert_raises(TypeError, np.minimum, a, b)
        #assert_raises(TypeError, np.maximum, a, b)
        #assert_raises(TypeError, np.fmin, a, b)
        #assert_raises(TypeError, np.fmax, a, b)
        assert_raises(TypeError, np.minimum, a, b, casting='same_kind')
        assert_raises(TypeError, np.maximum, a, b, casting='same_kind')
        assert_raises(TypeError, np.fmin, a, b, casting='same_kind')
        assert_raises(TypeError, np.fmax, a, b, casting='same_kind') 

Example 49

def test_datetime_minmax(self):
        # The metadata of the result should become the GCD
        # of the operand metadata
        a = np.array('1999-03-12T13', dtype='M8[2m]')
        b = np.array('1999-03-12T12', dtype='M8[s]')
        assert_equal(np.minimum(a, b), b)
        assert_equal(np.minimum(a, b).dtype, np.dtype('M8[s]'))
        assert_equal(np.fmin(a, b), b)
        assert_equal(np.fmin(a, b).dtype, np.dtype('M8[s]'))
        assert_equal(np.maximum(a, b), a)
        assert_equal(np.maximum(a, b).dtype, np.dtype('M8[s]'))
        assert_equal(np.fmax(a, b), a)
        assert_equal(np.fmax(a, b).dtype, np.dtype('M8[s]'))
        # Viewed as integers, the comparison is opposite because
        # of the units chosen
        assert_equal(np.minimum(a.view('i8'), b.view('i8')), a.view('i8'))

        # Interaction with NaT
        a = np.array('1999-03-12T13', dtype='M8[2m]')
        dtnat = np.array('NaT', dtype='M8[h]')
        assert_equal(np.minimum(a, dtnat), a)
        assert_equal(np.minimum(dtnat, a), a)
        assert_equal(np.maximum(a, dtnat), a)
        assert_equal(np.maximum(dtnat, a), a)

        # Also do timedelta
        a = np.array(3, dtype='m8[h]')
        b = np.array(3*3600 - 3, dtype='m8[s]')
        assert_equal(np.minimum(a, b), b)
        assert_equal(np.minimum(a, b).dtype, np.dtype('m8[s]'))
        assert_equal(np.fmin(a, b), b)
        assert_equal(np.fmin(a, b).dtype, np.dtype('m8[s]'))
        assert_equal(np.maximum(a, b), a)
        assert_equal(np.maximum(a, b).dtype, np.dtype('m8[s]'))
        assert_equal(np.fmax(a, b), a)
        assert_equal(np.fmax(a, b).dtype, np.dtype('m8[s]'))
        # Viewed as integers, the comparison is opposite because
        # of the units chosen
        assert_equal(np.minimum(a.view('i8'), b.view('i8')), a.view('i8'))

        # should raise between datetime and timedelta
        #
        # TODO: Allowing unsafe casting by
        #       default in ufuncs strikes again... :(
        a = np.array(3, dtype='m8[h]')
        b = np.array('1999-03-12T12', dtype='M8[s]')
        #assert_raises(TypeError, np.minimum, a, b)
        #assert_raises(TypeError, np.maximum, a, b)
        #assert_raises(TypeError, np.fmin, a, b)
        #assert_raises(TypeError, np.fmax, a, b)
        assert_raises(TypeError, np.minimum, a, b, casting='same_kind')
        assert_raises(TypeError, np.maximum, a, b, casting='same_kind')
        assert_raises(TypeError, np.fmin, a, b, casting='same_kind')
        assert_raises(TypeError, np.fmax, a, b, casting='same_kind') 

Example 50

def gen_anscombe_forward(signal, gauss_std, gauss_mean = 0, poisson_multi = 1):
    """
    Applies the generalized Anscombe variance-stabilization transform
    assuming a mixed Poisson-Gaussian noise model as:

    signal = poisson_multi*Poisson{signal0} + Gauss{gauss_mean, gauss_std},

    where Poisson{} and Gauss{} are generalized descriptions of Poisson and
    Gaussian noise.

    Parameters
    ----------
    signal : ndarray
        Noisy signal (1-,2-,3D)

    gauss_std : float, int
        Standard deviation of Gaussian noise

    poisson_multi : float or int, optional (default = 1)
        Effectively a multiplier that scales the effect of the Poisson
        noise

    gauss_mean : float or int, optional (default = 0)
        Mean Gaussian noise level

    Returns
    -------
    fsignal : ndarray (matched to signal shape)
        "Anscombe-transformed" signal with an approximate unity standard \
        deviation/variance (~ 1)

    Note
    ----
    This software is a direct translation (with minor alterations) of the
    original MATLAB software created by Alessandro Foi and Markku Mäkitalo
    (Tampere University of Technology - 2011-2012). Please cite the references
    below if using this software. http://www.cs.tut.fi/~foi/

    References
    ----------
    [1] J.L. Starck, F. Murtagh, and A. Bijaoui, Image  Processing  and
    Data Analysis, Cambridge University Press, Cambridge, 1998)

    """

    SMALL_VAL = 1

    fsignal = 2/poisson_multi * _np.sqrt(_np.fmax(SMALL_VAL,poisson_multi*signal +
                                    (3/8)*poisson_multi**2 +
                                    gauss_std**2 -
                                    poisson_multi*gauss_mean))
#    fsignal = _ne.evaluate('2/poisson_multi * sqrt(where(poisson_multi*signal + (3/8)*poisson_multi**2 +\
#                            gauss_std**2 - poisson_multi*gauss_mean > SMALL_VAL,\
#                            poisson_multi*signal + (3/8)*poisson_multi**2 +\
#                            gauss_std**2 - poisson_multi*gauss_mean, SMALL_VAL))')
    #fsignal = 2/poisson_multi * _np.sqrt(_np.fmax(SMALL_VAL,fsignal))
    return fsignal 
点赞