The following are code examples for showing how to use . They are extracted from open source Python projects. You can vote up the examples you like or vote down the exmaples you don’t like. You can also save this page to your account.
Example 1
def test_remainder_basic(self): dt = np.typecodes['AllInteger'] + np.typecodes['Float'] for dt1, dt2 in itertools.product(dt, dt): for sg1, sg2 in itertools.product((+1, -1), (+1, -1)): if sg1 == -1 and dt1 in np.typecodes['UnsignedInteger']: continue if sg2 == -1 and dt2 in np.typecodes['UnsignedInteger']: continue fmt = 'dt1: %s, dt2: %s, sg1: %s, sg2: %s' msg = fmt % (dt1, dt2, sg1, sg2) a = np.array(sg1*71, dtype=dt1) b = np.array(sg2*19, dtype=dt2) div = np.floor_divide(a, b) rem = np.remainder(a, b) assert_equal(div*b + rem, a, err_msg=msg) if sg2 == -1: assert_(b < rem <= 0, msg) else: assert_(b > rem >= 0, msg)
Example 2
def test_float_remainder_exact(self): # test that float results are exact for small integers. This also # holds for the same integers scaled by powers of two. nlst = list(range(-127, 0)) plst = list(range(1, 128)) dividend = nlst + [0] + plst divisor = nlst + plst arg = list(itertools.product(dividend, divisor)) tgt = list(divmod(*t) for t in arg) a, b = np.array(arg, dtype=int).T # convert exact integer results from Python to float so that # signed zero can be used, it is checked. tgtdiv, tgtrem = np.array(tgt, dtype=float).T tgtdiv = np.where((tgtdiv == 0.0) & ((b < 0) ^ (a < 0)), -0.0, tgtdiv) tgtrem = np.where((tgtrem == 0.0) & (b < 0), -0.0, tgtrem) for dt in np.typecodes['Float']: msg = 'dtype: %s' % (dt,) fa = a.astype(dt) fb = b.astype(dt) div = np.floor_divide(fa, fb) rem = np.remainder(fa, fb) assert_equal(div, tgtdiv, err_msg=msg) assert_equal(rem, tgtrem, err_msg=msg)
Example 3
def test_float_remainder_roundoff(self): # gh-6127 dt = np.typecodes['Float'] for dt1, dt2 in itertools.product(dt, dt): for sg1, sg2 in itertools.product((+1, -1), (+1, -1)): fmt = 'dt1: %s, dt2: %s, sg1: %s, sg2: %s' msg = fmt % (dt1, dt2, sg1, sg2) a = np.array(sg1*78*6e-8, dtype=dt1) b = np.array(sg2*6e-8, dtype=dt2) div = np.floor_divide(a, b) rem = np.remainder(a, b) # Equal assertion should hold when fmod is used assert_equal(div*b + rem, a, err_msg=msg) if sg2 == -1: assert_(b < rem <= 0, msg) else: assert_(b > rem >= 0, msg)
Example 4
def __ifloordiv__(self, other): """ Floor divide self by other in-place. """ other_data = getdata(other) dom_mask = _DomainSafeDivide().__call__(self._data, other_data) other_mask = getmask(other) new_mask = mask_or(other_mask, dom_mask) # The following 3 lines control the domain filling if dom_mask.any(): (_, fval) = ufunc_fills[np.floor_divide] other_data = np.where(dom_mask, fval, other_data) self._mask |= new_mask self._data.__ifloordiv__(np.where(self._mask, self.dtype.type(1), other_data)) return self
Example 5
def calc_l1_norm_itae(meas_values, desired_values, step_width): """ Calculate the L1-Norm of the ITAE (Integral of Time-multiplied Absolute value of Error). Args: step_width (float): Time difference between measurements. desired_values (array-like): Desired values. meas_values (array-like): Measured values. """ def e_func(_t): _idx = np.floor_divide(_t, step_width).astype(int) e = t * np.abs(desired_values[_idx, ..., 0] - meas_values[_idx, ..., 0]) return e t = np.array([x * step_width for x in range(len(desired_values))]) err = e_func(t) l1norm_itae = simps(err, t) return l1norm_itae
Example 6
def calc_l1_norm_abs(meas_values, desired_values, step_width): """ Calculate the L1-Norm of the absolute error. Args: step_width (float): Time difference between measurements. desired_values (array-like): Desired values. meas_values (array-like): Measured values. """ def e_func(_t): _idx = np.floor_divide(_t, step_width).astype(int) e = np.abs(desired_values[_idx, ..., 0] - meas_values[_idx, ..., 0]) return e t = np.array([x * step_width for x in range(len(desired_values))]) err = e_func(t) l1norm_abs = simps(err, t) return l1norm_abs
Example 7
def test_remainder_basic(self): dt = np.typecodes['AllInteger'] + np.typecodes['Float'] for dt1, dt2 in itertools.product(dt, dt): for sg1, sg2 in itertools.product((+1, -1), (+1, -1)): if sg1 == -1 and dt1 in np.typecodes['UnsignedInteger']: continue if sg2 == -1 and dt2 in np.typecodes['UnsignedInteger']: continue fmt = 'dt1: %s, dt2: %s, sg1: %s, sg2: %s' msg = fmt % (dt1, dt2, sg1, sg2) a = np.array(sg1*71, dtype=dt1) b = np.array(sg2*19, dtype=dt2) div = np.floor_divide(a, b) rem = np.remainder(a, b) assert_equal(div*b + rem, a, err_msg=msg) if sg2 == -1: assert_(b < rem <= 0, msg) else: assert_(b > rem >= 0, msg)
Example 8
def test_float_remainder_exact(self): # test that float results are exact for small integers. This also # holds for the same integers scaled by powers of two. nlst = list(range(-127, 0)) plst = list(range(1, 128)) dividend = nlst + [0] + plst divisor = nlst + plst arg = list(itertools.product(dividend, divisor)) tgt = list(divmod(*t) for t in arg) a, b = np.array(arg, dtype=int).T # convert exact integer results from Python to float so that # signed zero can be used, it is checked. tgtdiv, tgtrem = np.array(tgt, dtype=float).T tgtdiv = np.where((tgtdiv == 0.0) & ((b < 0) ^ (a < 0)), -0.0, tgtdiv) tgtrem = np.where((tgtrem == 0.0) & (b < 0), -0.0, tgtrem) for dt in np.typecodes['Float']: msg = 'dtype: %s' % (dt,) fa = a.astype(dt) fb = b.astype(dt) div = np.floor_divide(fa, fb) rem = np.remainder(fa, fb) assert_equal(div, tgtdiv, err_msg=msg) assert_equal(rem, tgtrem, err_msg=msg)
Example 9
def test_float_remainder_roundoff(self): # gh-6127 dt = np.typecodes['Float'] for dt1, dt2 in itertools.product(dt, dt): for sg1, sg2 in itertools.product((+1, -1), (+1, -1)): fmt = 'dt1: %s, dt2: %s, sg1: %s, sg2: %s' msg = fmt % (dt1, dt2, sg1, sg2) a = np.array(sg1*78*6e-8, dtype=dt1) b = np.array(sg2*6e-8, dtype=dt2) div = np.floor_divide(a, b) rem = np.remainder(a, b) # Equal assertion should hold when fmod is used assert_equal(div*b + rem, a, err_msg=msg) if sg2 == -1: assert_(b < rem <= 0, msg) else: assert_(b > rem >= 0, msg)
Example 10
def __ifloordiv__(self, other): """ Floor divide self by other in-place. """ other_data = getdata(other) dom_mask = _DomainSafeDivide().__call__(self._data, other_data) other_mask = getmask(other) new_mask = mask_or(other_mask, dom_mask) # The following 3 lines control the domain filling if dom_mask.any(): (_, fval) = ufunc_fills[np.floor_divide] other_data = np.where(dom_mask, fval, other_data) self._mask |= new_mask self._data.__ifloordiv__(np.where(self._mask, self.dtype.type(1), other_data)) return self
Example 11
def test_NotImplemented_not_returned(self): # See gh-5964 and gh-2091. Some of these functions are not operator # related and were fixed for other reasons in the past. binary_funcs = [ np.power, np.add, np.subtract, np.multiply, np.divide, np.true_divide, np.floor_divide, np.bitwise_and, np.bitwise_or, np.bitwise_xor, np.left_shift, np.right_shift, np.fmax, np.fmin, np.fmod, np.hypot, np.logaddexp, np.logaddexp2, np.logical_and, np.logical_or, np.logical_xor, np.maximum, np.minimum, np.mod ] # These functions still return NotImplemented. Will be fixed in # future. # bad = [np.greater, np.greater_equal, np.less, np.less_equal, np.not_equal] a = np.array('1') b = 1 for f in binary_funcs: assert_raises(TypeError, f, a, b)
Example 12
def test_NotImplemented_not_returned(self): # See gh-5964 and gh-2091. Some of these functions are not operator # related and were fixed for other reasons in the past. binary_funcs = [ np.power, np.add, np.subtract, np.multiply, np.divide, np.true_divide, np.floor_divide, np.bitwise_and, np.bitwise_or, np.bitwise_xor, np.left_shift, np.right_shift, np.fmax, np.fmin, np.fmod, np.hypot, np.logaddexp, np.logaddexp2, np.logical_and, np.logical_or, np.logical_xor, np.maximum, np.minimum, np.mod ] # These functions still return NotImplemented. Will be fixed in # future. # bad = [np.greater, np.greater_equal, np.less, np.less_equal, np.not_equal] a = np.array('1') b = 1 for f in binary_funcs: assert_raises(TypeError, f, a, b)
Example 13
def test_remainder_basic(self): dt = np.typecodes['AllInteger'] + np.typecodes['Float'] for dt1, dt2 in itertools.product(dt, dt): for sg1, sg2 in itertools.product((+1, -1), (+1, -1)): if sg1 == -1 and dt1 in np.typecodes['UnsignedInteger']: continue if sg2 == -1 and dt2 in np.typecodes['UnsignedInteger']: continue fmt = 'dt1: %s, dt2: %s, sg1: %s, sg2: %s' msg = fmt % (dt1, dt2, sg1, sg2) a = np.array(sg1*71, dtype=dt1) b = np.array(sg2*19, dtype=dt2) div = np.floor_divide(a, b) rem = np.remainder(a, b) assert_equal(div*b + rem, a, err_msg=msg) if sg2 == -1: assert_(b < rem <= 0, msg) else: assert_(b > rem >= 0, msg)
Example 14
def test_float_remainder_exact(self): # test that float results are exact for small integers. This also # holds for the same integers scaled by powers of two. nlst = list(range(-127, 0)) plst = list(range(1, 128)) dividend = nlst + [0] + plst divisor = nlst + plst arg = list(itertools.product(dividend, divisor)) tgt = list(divmod(*t) for t in arg) a, b = np.array(arg, dtype=int).T # convert exact integer results from Python to float so that # signed zero can be used, it is checked. tgtdiv, tgtrem = np.array(tgt, dtype=float).T tgtdiv = np.where((tgtdiv == 0.0) & ((b < 0) ^ (a < 0)), -0.0, tgtdiv) tgtrem = np.where((tgtrem == 0.0) & (b < 0), -0.0, tgtrem) for dt in np.typecodes['Float']: msg = 'dtype: %s' % (dt,) fa = a.astype(dt) fb = b.astype(dt) div = np.floor_divide(fa, fb) rem = np.remainder(fa, fb) assert_equal(div, tgtdiv, err_msg=msg) assert_equal(rem, tgtrem, err_msg=msg)
Example 15
def test_float_remainder_roundoff(self): # gh-6127 dt = np.typecodes['Float'] for dt1, dt2 in itertools.product(dt, dt): for sg1, sg2 in itertools.product((+1, -1), (+1, -1)): fmt = 'dt1: %s, dt2: %s, sg1: %s, sg2: %s' msg = fmt % (dt1, dt2, sg1, sg2) a = np.array(sg1*78*6e-8, dtype=dt1) b = np.array(sg2*6e-8, dtype=dt2) div = np.floor_divide(a, b) rem = np.remainder(a, b) # Equal assertion should hold when fmod is used assert_equal(div*b + rem, a, err_msg=msg) if sg2 == -1: assert_(b < rem <= 0, msg) else: assert_(b > rem >= 0, msg)
Example 16
def test_NotImplemented_not_returned(self): # See gh-5964 and gh-2091. Some of these functions are not operator # related and were fixed for other reasons in the past. binary_funcs = [ np.power, np.add, np.subtract, np.multiply, np.divide, np.true_divide, np.floor_divide, np.bitwise_and, np.bitwise_or, np.bitwise_xor, np.left_shift, np.right_shift, np.fmax, np.fmin, np.fmod, np.hypot, np.logaddexp, np.logaddexp2, np.logical_and, np.logical_or, np.logical_xor, np.maximum, np.minimum, np.mod ] # These functions still return NotImplemented. Will be fixed in # future. # bad = [np.greater, np.greater_equal, np.less, np.less_equal, np.not_equal] a = np.array('1') b = 1 for f in binary_funcs: assert_raises(TypeError, f, a, b)
Example 17
def __ifloordiv__(self, other): """ Floor divide self by other in-place. """ other_data = getdata(other) dom_mask = _DomainSafeDivide().__call__(self._data, other_data) other_mask = getmask(other) new_mask = mask_or(other_mask, dom_mask) # The following 3 lines control the domain filling if dom_mask.any(): (_, fval) = ufunc_fills[np.floor_divide] other_data = np.where(dom_mask, fval, other_data) self._mask |= new_mask self._data.__ifloordiv__(np.where(self._mask, self.dtype.type(1), other_data)) return self
Example 18
def test_remainder_basic(self): dt = np.typecodes['AllInteger'] + np.typecodes['Float'] for dt1, dt2 in itertools.product(dt, dt): for sg1, sg2 in itertools.product((+1, -1), (+1, -1)): if sg1 == -1 and dt1 in np.typecodes['UnsignedInteger']: continue if sg2 == -1 and dt2 in np.typecodes['UnsignedInteger']: continue fmt = 'dt1: %s, dt2: %s, sg1: %s, sg2: %s' msg = fmt % (dt1, dt2, sg1, sg2) a = np.array(sg1*71, dtype=dt1) b = np.array(sg2*19, dtype=dt2) div = np.floor_divide(a, b) rem = np.remainder(a, b) assert_equal(div*b + rem, a, err_msg=msg) if sg2 == -1: assert_(b < rem <= 0, msg) else: assert_(b > rem >= 0, msg)
Example 19
def test_float_remainder_exact(self): # test that float results are exact for small integers. This also # holds for the same integers scaled by powers of two. nlst = list(range(-127, 0)) plst = list(range(1, 128)) dividend = nlst + [0] + plst divisor = nlst + plst arg = list(itertools.product(dividend, divisor)) tgt = list(divmod(*t) for t in arg) a, b = np.array(arg, dtype=int).T # convert exact integer results from Python to float so that # signed zero can be used, it is checked. tgtdiv, tgtrem = np.array(tgt, dtype=float).T tgtdiv = np.where((tgtdiv == 0.0) & ((b < 0) ^ (a < 0)), -0.0, tgtdiv) tgtrem = np.where((tgtrem == 0.0) & (b < 0), -0.0, tgtrem) for dt in np.typecodes['Float']: msg = 'dtype: %s' % (dt,) fa = a.astype(dt) fb = b.astype(dt) div = np.floor_divide(fa, fb) rem = np.remainder(fa, fb) assert_equal(div, tgtdiv, err_msg=msg) assert_equal(rem, tgtrem, err_msg=msg)
Example 20
def test_float_remainder_roundoff(self): # gh-6127 dt = np.typecodes['Float'] for dt1, dt2 in itertools.product(dt, dt): for sg1, sg2 in itertools.product((+1, -1), (+1, -1)): fmt = 'dt1: %s, dt2: %s, sg1: %s, sg2: %s' msg = fmt % (dt1, dt2, sg1, sg2) a = np.array(sg1*78*6e-8, dtype=dt1) b = np.array(sg2*6e-8, dtype=dt2) div = np.floor_divide(a, b) rem = np.remainder(a, b) # Equal assertion should hold when fmod is used assert_equal(div*b + rem, a, err_msg=msg) if sg2 == -1: assert_(b < rem <= 0, msg) else: assert_(b > rem >= 0, msg)
Example 21
def test_NotImplemented_not_returned(self): # See gh-5964 and gh-2091. Some of these functions are not operator # related and were fixed for other reasons in the past. binary_funcs = [ np.power, np.add, np.subtract, np.multiply, np.divide, np.true_divide, np.floor_divide, np.bitwise_and, np.bitwise_or, np.bitwise_xor, np.left_shift, np.right_shift, np.fmax, np.fmin, np.fmod, np.hypot, np.logaddexp, np.logaddexp2, np.logical_and, np.logical_or, np.logical_xor, np.maximum, np.minimum, np.mod ] # These functions still return NotImplemented. Will be fixed in # future. # bad = [np.greater, np.greater_equal, np.less, np.less_equal, np.not_equal] a = np.array('1') b = 1 for f in binary_funcs: assert_raises(TypeError, f, a, b)
Example 22
def __ifloordiv__(self, other): """ Floor divide self by other in-place. """ other_data = getdata(other) dom_mask = _DomainSafeDivide().__call__(self._data, other_data) other_mask = getmask(other) new_mask = mask_or(other_mask, dom_mask) # The following 3 lines control the domain filling if dom_mask.any(): (_, fval) = ufunc_fills[np.floor_divide] other_data = np.where(dom_mask, fval, other_data) self._mask |= new_mask self._data.__ifloordiv__(np.where(self._mask, self.dtype.type(1), other_data)) return self
Example 23
def test_remainder_basic(self): dt = np.typecodes['AllInteger'] + np.typecodes['Float'] for dt1, dt2 in itertools.product(dt, dt): for sg1, sg2 in itertools.product((+1, -1), (+1, -1)): if sg1 == -1 and dt1 in np.typecodes['UnsignedInteger']: continue if sg2 == -1 and dt2 in np.typecodes['UnsignedInteger']: continue fmt = 'dt1: %s, dt2: %s, sg1: %s, sg2: %s' msg = fmt % (dt1, dt2, sg1, sg2) a = np.array(sg1*71, dtype=dt1) b = np.array(sg2*19, dtype=dt2) div = np.floor_divide(a, b) rem = np.remainder(a, b) assert_equal(div*b + rem, a, err_msg=msg) if sg2 == -1: assert_(b < rem <= 0, msg) else: assert_(b > rem >= 0, msg)
Example 24
def test_float_remainder_exact(self): # test that float results are exact for small integers. This also # holds for the same integers scaled by powers of two. nlst = list(range(-127, 0)) plst = list(range(1, 128)) dividend = nlst + [0] + plst divisor = nlst + plst arg = list(itertools.product(dividend, divisor)) tgt = list(divmod(*t) for t in arg) a, b = np.array(arg, dtype=int).T # convert exact integer results from Python to float so that # signed zero can be used, it is checked. tgtdiv, tgtrem = np.array(tgt, dtype=float).T tgtdiv = np.where((tgtdiv == 0.0) & ((b < 0) ^ (a < 0)), -0.0, tgtdiv) tgtrem = np.where((tgtrem == 0.0) & (b < 0), -0.0, tgtrem) for dt in np.typecodes['Float']: msg = 'dtype: %s' % (dt,) fa = a.astype(dt) fb = b.astype(dt) div = np.floor_divide(fa, fb) rem = np.remainder(fa, fb) assert_equal(div, tgtdiv, err_msg=msg) assert_equal(rem, tgtrem, err_msg=msg)
Example 25
def test_float_remainder_roundoff(self): # gh-6127 dt = np.typecodes['Float'] for dt1, dt2 in itertools.product(dt, dt): for sg1, sg2 in itertools.product((+1, -1), (+1, -1)): fmt = 'dt1: %s, dt2: %s, sg1: %s, sg2: %s' msg = fmt % (dt1, dt2, sg1, sg2) a = np.array(sg1*78*6e-8, dtype=dt1) b = np.array(sg2*6e-8, dtype=dt2) div = np.floor_divide(a, b) rem = np.remainder(a, b) # Equal assertion should hold when fmod is used assert_equal(div*b + rem, a, err_msg=msg) if sg2 == -1: assert_(b < rem <= 0, msg) else: assert_(b > rem >= 0, msg)
Example 26
def test_NotImplemented_not_returned(self): # See gh-5964 and gh-2091. Some of these functions are not operator # related and were fixed for other reasons in the past. binary_funcs = [ np.power, np.add, np.subtract, np.multiply, np.divide, np.true_divide, np.floor_divide, np.bitwise_and, np.bitwise_or, np.bitwise_xor, np.left_shift, np.right_shift, np.fmax, np.fmin, np.fmod, np.hypot, np.logaddexp, np.logaddexp2, np.logical_and, np.logical_or, np.logical_xor, np.maximum, np.minimum, np.mod ] # These functions still return NotImplemented. Will be fixed in # future. # bad = [np.greater, np.greater_equal, np.less, np.less_equal, np.not_equal] a = np.array('1') b = 1 for f in binary_funcs: assert_raises(TypeError, f, a, b)
Example 27
def __ifloordiv__(self, other): """ Floor divide self by other in-place. """ other_data = getdata(other) dom_mask = _DomainSafeDivide().__call__(self._data, other_data) other_mask = getmask(other) new_mask = mask_or(other_mask, dom_mask) # The following 3 lines control the domain filling if dom_mask.any(): (_, fval) = ufunc_fills[np.floor_divide] other_data = np.where(dom_mask, fval, other_data) self._mask |= new_mask self._data.__ifloordiv__(np.where(self._mask, self.dtype.type(1), other_data)) return self
Example 28
def _window_slicing_sequence(self, X, window, shape_1X, y=None, stride=1): """ Slicing procedure for sequences (aka shape_1X = [.., 1]). :param X: np.array Array containing the input samples. Must be of shape [n_samples, data] where data is a 1D array. :param window: int Size of the window to use for slicing. :param shape_1X: list or np.array Shape of a single sample [n_lines, n_col]. :param y: np.array (default=None) Target values. :param stride: int (default=1) Step used when slicing the data. :return: np.array and np.array Arrays containing the sliced sequences and target values (empty if 'y' is None). """ if shape_1X[1] < window: raise ValueError('window must be smaller than the sequence dimension') len_iter = np.floor_divide((shape_1X[1] - window), stride) + 1 iter_array = np.arange(0, stride*len_iter, stride) ind_1X = np.arange(np.prod(shape_1X)) inds_to_take = [ind_1X[i:i+window] for i in iter_array] sliced_sqce = np.take(X, inds_to_take, axis=1).reshape(-1, window) if y is not None: sliced_target = np.repeat(y, len_iter) elif y is None: sliced_target = None return sliced_sqce, sliced_target
Example 29
def lab2npy(input_path, out, frame_rate= 0.01): """ frame_rate : sampling rate, typically 10 ms (or 0.01s) """ name=os.path.basename(input_path) df=pd.read_table(input_path, sep=" ", header=None) df.columns=["onset", "offset", "phone", "score"] #onset and offset are in 100* nanosecond. Need to be put in second df["onset"]=df["onset"]*10**(-7) df["offset"]=df["offset"]*10**(-7) phones=['a{}'.format(i) for i in range(1, 49)] list_feats=[] R=np.empty(1) R[0]=frame_rate for i in range(len(df)): on=df["onset"].iloc[i] off=df["offset"].iloc[i] nb_frame=int(np.floor_divide((off-on),R[0])) for ff in range(nb_frame): one_hot=np.empty(len(phones)) for j in range(len(phones)): if df["phone"][i]==phones[j]: one_hot[j]=1 else: one_hot[j]=0 list_feats.append(one_hot) arr_feats = np.array(list_feats) directory=out + "/npy/" try: os.stat(directory) except: os.mkdir(directory) np.save(directory + "/"+ name.split(".")[0], arr=arr_feats, allow_pickle=False)
Example 30
def test_floor_division_complex(self): # check that implementation is correct msg = "Complex floor division implementation check" x = np.array([.9 + 1j, -.1 + 1j, .9 + .5*1j, .9 + 2.*1j], dtype=np.complex128) y = np.array([0., -1., 0., 0.], dtype=np.complex128) assert_equal(np.floor_divide(x**2, x), y, err_msg=msg) # check overflow, underflow msg = "Complex floor division overflow/underflow check" x = np.array([1.e+110, 1.e-110], dtype=np.complex128) y = np.floor_divide(x**2, x) assert_equal(y, [1.e+110, 0], err_msg=msg)
Example 31
def test_NotImplemented_not_returned(self): # See gh-5964 and gh-2091. Some of these functions are not operator # related and were fixed for other reasons in the past. binary_funcs = [ np.power, np.add, np.subtract, np.multiply, np.divide, np.true_divide, np.floor_divide, np.bitwise_and, np.bitwise_or, np.bitwise_xor, np.left_shift, np.right_shift, np.fmax, np.fmin, np.fmod, np.hypot, np.logaddexp, np.logaddexp2, np.logical_and, np.logical_or, np.logical_xor, np.maximum, np.minimum, np.mod ] # These functions still return NotImplemented. Will be fixed in # future. # bad = [np.greater, np.greater_equal, np.less, np.less_equal, np.not_equal] a = np.array('1') b = 1 for f in binary_funcs: assert_raises(TypeError, f, a, b)
Example 32
def __floordiv__(self, other): """ Divide other into self, and return a new masked array. """ if self._delegate_binop(other): return NotImplemented return floor_divide(self, other)
Example 33
def __rfloordiv__(self, other): """ Divide self into other, and return a new masked array. """ return floor_divide(other, self)
Example 34
def int_div(x1: Number = 1.0, x2: Number = 2.0) -> Int: return np.floor_divide(x1, x2)
Example 35
def __floordiv__(self, other): return floor_divide(self, other)
Example 36
def __ifloordiv__(self, other): return floor_divide(self, other, self)
Example 37
def __rfloordiv__(self, other): return floor_divide(other, self)
Example 38
def generate_op(self, op, out, x, y): self.append("np.floor_divide({}, {}, out={})", x, y, out)
Example 39
def vox_to_pos(self, vox): return np.floor_divide(vox - self.MOVE_GRID_OFFSET, self.MOVE_DELTA).astype(np.int64)
Example 40
def get_output_margin(model_config): return np.floor_divide(model_config.input_fov_shape - model_config.output_fov_shape, 2)
Example 41
def __init__(self, volume, shape, label_margin=None): self.volume = volume self.shape = shape self.margin = np.floor_divide(self.shape, 2).astype(np.int64) if label_margin is None: label_margin = np.zeros(3, dtype=np.int64) self.label_margin = label_margin self.skip_blank_sections = True self.ctr_min = self.margin self.ctr_max = (np.array(self.volume.shape) - self.margin - 1).astype(np.int64) self.random = np.random.RandomState(CONFIG.random_seed) # If the volume has a mask channel, further limit ctr_min and # ctr_max to lie inside a margin in the AABB of the mask. if self.volume.mask_data is not None: mask_min, mask_max = self.volume.mask_bounds mask_min = self.volume.local_coord_to_world(mask_min) mask_max = self.volume.local_coord_to_world(mask_max) self.ctr_min = np.maximum(self.ctr_min, mask_min + self.label_margin) self.ctr_max = np.minimum(self.ctr_max, mask_max - self.label_margin - 1) if np.any(self.ctr_min >= self.ctr_max): raise ValueError('Cannot generate subvolume bounds: bounds ({}, {}) too small for shape ({})'.format( np.array_str(self.ctr_min), np.array_str(self.ctr_max), np.array_str(self.shape)))
Example 42
def __init__(self, parent, partitioning, partition_index): super(PartitionedVolume, self).__init__( parent, parent.resolution, image_data=parent.image_data, label_data=parent.label_data, mask_data=parent.mask_data) self.partitioning = np.asarray(partitioning) self.partition_index = np.asarray(partition_index) partition_shape = np.floor_divide(np.array(self.parent.shape), self.partitioning) self.bounds = ((np.multiply(partition_shape, self.partition_index)).astype(np.int64), (np.multiply(partition_shape, self.partition_index + 1)).astype(np.int64))
Example 43
def shape(self): return tuple(np.floor_divide(np.array(self.parent.shape), self.scale))
Example 44
def test_floor_division_complex(self): # check that implementation is correct msg = "Complex floor division implementation check" x = np.array([.9 + 1j, -.1 + 1j, .9 + .5*1j, .9 + 2.*1j], dtype=np.complex128) y = np.array([0., -1., 0., 0.], dtype=np.complex128) assert_equal(np.floor_divide(x**2, x), y, err_msg=msg) # check overflow, underflow msg = "Complex floor division overflow/underflow check" x = np.array([1.e+110, 1.e-110], dtype=np.complex128) y = np.floor_divide(x**2, x) assert_equal(y, [1.e+110, 0], err_msg=msg)
Example 45
def test_NotImplemented_not_returned(self): # See gh-5964 and gh-2091. Some of these functions are not operator # related and were fixed for other reasons in the past. binary_funcs = [ np.power, np.add, np.subtract, np.multiply, np.divide, np.true_divide, np.floor_divide, np.bitwise_and, np.bitwise_or, np.bitwise_xor, np.left_shift, np.right_shift, np.fmax, np.fmin, np.fmod, np.hypot, np.logaddexp, np.logaddexp2, np.logical_and, np.logical_or, np.logical_xor, np.maximum, np.minimum, np.mod ] # These functions still return NotImplemented. Will be fixed in # future. # bad = [np.greater, np.greater_equal, np.less, np.less_equal, np.not_equal] a = np.array('1') b = 1 for f in binary_funcs: assert_raises(TypeError, f, a, b)
Example 46
def __floordiv__(self, other): """ Divide other into self, and return a new masked array. """ if self._delegate_binop(other): return NotImplemented return floor_divide(self, other)
Example 47
def __rfloordiv__(self, other): """ Divide self into other, and return a new masked array. """ return floor_divide(other, self)
Example 48
def __ifloordiv__(self, other): """ See __div__. """ oth = sanitize_units_mul(self, other) np.floor_divide(self, oth, out=self) return self
Example 49
def plot_minute_histogram(splits): def plot(ax, detections): bins = np.floor_divide(detections['timestamp'], 60).astype('int64') counts = np.bincount(bins) ax.plot(counts) ax.set_xlabel('Minute') ax.set_ylabel('Count') fig = plt.figure() plot_rxtx_matrix(fig, splits, plot) fig.suptitle('Histogram of number of detections per minute')
Example 50
def test_floor_division_complex(self): # check that implementation is correct msg = "Complex floor division implementation check" x = np.array([.9 + 1j, -.1 + 1j, .9 + .5*1j, .9 + 2.*1j], dtype=np.complex128) y = np.array([0., -1., 0., 0.], dtype=np.complex128) assert_equal(np.floor_divide(x**2, x), y, err_msg=msg) # check overflow, underflow msg = "Complex floor division overflow/underflow check" x = np.array([1.e+110, 1.e-110], dtype=np.complex128) y = np.floor_divide(x**2, x) assert_equal(y, [1.e+110, 0], err_msg=msg)