The following are code examples for showing how to use . They are extracted from open source Python projects. You can vote up the examples you like or vote down the exmaples you don’t like. You can also save this page to your account.
Example 1
def test_ddof_too_big(self): nanfuncs = [np.nanvar, np.nanstd] stdfuncs = [np.var, np.std] dsize = [len(d) for d in _rdat] for nf, rf in zip(nanfuncs, stdfuncs): for ddof in range(5): with warnings.catch_warnings(record=True) as w: warnings.simplefilter('always') tgt = [ddof >= d for d in dsize] res = nf(_ndat, axis=1, ddof=ddof) assert_equal(np.isnan(res), tgt) if any(tgt): assert_(len(w) == 1) assert_(issubclass(w[0].category, RuntimeWarning)) else: assert_(len(w) == 0)
Example 2
def calculate_feature_statistics(feature_id): feature = Feature.objects.get(pk=feature_id) dataframe = _get_dataframe(feature.dataset.id) feature_col = dataframe[feature.name] feature.min = np.amin(feature_col).item() feature.max = np.amax(feature_col).item() feature.mean = np.mean(feature_col).item() feature.variance = np.nanvar(feature_col).item() unique_values = np.unique(feature_col) integer_check = (np.mod(unique_values, 1) == 0).all() feature.is_categorical = integer_check and (unique_values.size < 10) if feature.is_categorical: feature.categories = list(unique_values) feature.save(update_fields=['min', 'max', 'variance', 'mean', 'is_categorical', 'categories']) del unique_values, feature
Example 3
def test_ddof_too_big(self): nanfuncs = [np.nanvar, np.nanstd] stdfuncs = [np.var, np.std] dsize = [len(d) for d in _rdat] for nf, rf in zip(nanfuncs, stdfuncs): for ddof in range(5): with warnings.catch_warnings(record=True) as w: warnings.simplefilter('always') tgt = [ddof >= d for d in dsize] res = nf(_ndat, axis=1, ddof=ddof) assert_equal(np.isnan(res), tgt) if any(tgt): assert_(len(w) == 1) assert_(issubclass(w[0].category, RuntimeWarning)) else: assert_(len(w) == 0)
Example 4
def corr(data): ns = data.shape[0]; nt = data.shape[1]; pairs = make_pairs(ns); npp = len(pairs); mean = np.nanmean(data, axis = 0); var = np.nanvar(data - mean, axis = 0); c = np.zeros(nt); for p in pairs: c += np.nanmean( (data[p[0]] - mean) * (data[p[1]] - mean), axis = 0) / var; c /= npp; return c;
Example 5
def test_ddof_too_big(self): nanfuncs = [np.nanvar, np.nanstd] stdfuncs = [np.var, np.std] dsize = [len(d) for d in _rdat] for nf, rf in zip(nanfuncs, stdfuncs): for ddof in range(5): with warnings.catch_warnings(record=True) as w: warnings.simplefilter('always') tgt = [ddof >= d for d in dsize] res = nf(_ndat, axis=1, ddof=ddof) assert_equal(np.isnan(res), tgt) if any(tgt): assert_(len(w) == 1) assert_(issubclass(w[0].category, RuntimeWarning)) else: assert_(len(w) == 0)
Example 6
def test_ddof_too_big(self): nanfuncs = [np.nanvar, np.nanstd] stdfuncs = [np.var, np.std] dsize = [len(d) for d in _rdat] for nf, rf in zip(nanfuncs, stdfuncs): for ddof in range(5): with warnings.catch_warnings(record=True) as w: warnings.simplefilter('always') tgt = [ddof >= d for d in dsize] res = nf(_ndat, axis=1, ddof=ddof) assert_equal(np.isnan(res), tgt) if any(tgt): assert_(len(w) == 1) assert_(issubclass(w[0].category, RuntimeWarning)) else: assert_(len(w) == 0)
Example 7
def test_dtype_from_dtype(self): mat = np.eye(3) codes = 'efdgFDG' for nf, rf in zip(self.nanfuncs, self.stdfuncs): for c in codes: with suppress_warnings() as sup: if nf in {np.nanstd, np.nanvar} and c in 'FDG': # Giving the warning is a small bug, see gh-8000 sup.filter(np.ComplexWarning) tgt = rf(mat, dtype=np.dtype(c), axis=1).dtype.type res = nf(mat, dtype=np.dtype(c), axis=1).dtype.type assert_(res is tgt) # scalar case tgt = rf(mat, dtype=np.dtype(c), axis=None).dtype.type res = nf(mat, dtype=np.dtype(c), axis=None).dtype.type assert_(res is tgt)
Example 8
def test_dtype_from_char(self): mat = np.eye(3) codes = 'efdgFDG' for nf, rf in zip(self.nanfuncs, self.stdfuncs): for c in codes: with suppress_warnings() as sup: if nf in {np.nanstd, np.nanvar} and c in 'FDG': # Giving the warning is a small bug, see gh-8000 sup.filter(np.ComplexWarning) tgt = rf(mat, dtype=c, axis=1).dtype.type res = nf(mat, dtype=c, axis=1).dtype.type assert_(res is tgt) # scalar case tgt = rf(mat, dtype=c, axis=None).dtype.type res = nf(mat, dtype=c, axis=None).dtype.type assert_(res is tgt)
Example 9
def test_ddof_too_big(self): nanfuncs = [np.nanvar, np.nanstd] stdfuncs = [np.var, np.std] dsize = [len(d) for d in _rdat] for nf, rf in zip(nanfuncs, stdfuncs): for ddof in range(5): with suppress_warnings() as sup: sup.record(RuntimeWarning) sup.filter(np.ComplexWarning) tgt = [ddof >= d for d in dsize] res = nf(_ndat, axis=1, ddof=ddof) assert_equal(np.isnan(res), tgt) if any(tgt): assert_(len(sup.log) == 1) else: assert_(len(sup.log) == 0)
Example 10
def compute(self, today, assets, out, close): # prepare X matrix (x_is - x_bar) X = range(self.window_length) X_bar = np.nanmean(X) X_vector = X - X_bar X_matrix = np.tile(X_vector, (len(close.T), 1)).T # prepare Y matrix (y_is - y_bar) Y_bar = np.nanmean(close, axis=0) Y_bars = np.tile(Y_bar, (self.window_length, 1)) Y_matrix = close - Y_bars # prepare variance of X X_var = np.nanvar(X) # multiply X matrix an Y matrix and sum (dot product) # then divide by variance of X # this gives the MLE of Beta out[:] = (np.sum((X_matrix * Y_matrix), axis=0) / X_var) / (self.window_length)
Example 11
def compute(self, today, assets, out, close): # prepare X matrix (x_is - x_bar) X = range(self.window_length) X_bar = np.nanmean(X) X_vector = X - X_bar X_matrix = np.tile(X_vector, (len(close.T), 1)).T # prepare Y vectors (y_is - y_bar) Y_bar = np.nanmean(close, axis=0) Y_bars = np.tile(Y_bar, (self.window_length, 1)) Y_matrix = close - Y_bars # multiply X matrix an Y matrix and sum (dot product) # then divide by variance of X # this gives the MLE of Beta betas = (np.sum((X_matrix * Y_matrix), axis=0) / X_var) / (self.window_length) # prepare variance of X X_var = np.nanvar(X) # now use to get to MLE of alpha out[:] = Y_bar - (betas * X_bar)
Example 12
def test_ddof_too_big(self): nanfuncs = [np.nanvar, np.nanstd] stdfuncs = [np.var, np.std] dsize = [len(d) for d in _rdat] for nf, rf in zip(nanfuncs, stdfuncs): for ddof in range(5): with warnings.catch_warnings(record=True) as w: warnings.simplefilter('always') tgt = [ddof >= d for d in dsize] res = nf(_ndat, axis=1, ddof=ddof) assert_equal(np.isnan(res), tgt) if any(tgt): assert_(len(w) == 1) assert_(issubclass(w[0].category, RuntimeWarning)) else: assert_(len(w) == 0)
Example 13
def test_nanvar(self): tgt = np.var(self.mat) for mat in self.integer_arrays(): assert_equal(np.nanvar(mat), tgt) tgt = np.var(mat, ddof=1) for mat in self.integer_arrays(): assert_equal(np.nanvar(mat, ddof=1), tgt)
Example 14
def test_ddof(self): nanfuncs = [np.nanvar, np.nanstd] stdfuncs = [np.var, np.std] for nf, rf in zip(nanfuncs, stdfuncs): for ddof in [0, 1]: tgt = [rf(d, ddof=ddof) for d in _rdat] res = nf(_ndat, axis=1, ddof=ddof) assert_almost_equal(res, tgt)
Example 15
def mean_var(data): # TODO: assert is a np.array mean = np.nanmean(data, axis=0) var = np.nanvar(data, axis=0) return [mean, var]
Example 16
def test_basic_stats(x): s = SummaryStats() s.update(x) assert s.count() == np.count_nonzero(~np.isnan(x)) np.testing.assert_allclose(s.sum(), np.nansum(x), rtol=RTOL, atol=ATOL) np.testing.assert_equal(s.min(), np.nanmin(x) if len(x) else np.nan) np.testing.assert_equal(s.max(), np.nanmax(x) if len(x) else np.nan) np.testing.assert_allclose(s.mean(), np.nanmean(x) if len(x) else np.nan, rtol=RTOL, atol=ATOL) np.testing.assert_allclose(s.var(), np.nanvar(x) if len(x) else np.nan, rtol=RTOL, atol=ATOL) np.testing.assert_allclose(s.std(), np.nanstd(x) if len(x) else np.nan, rtol=RTOL, atol=ATOL)
Example 17
def fit(self, X, y=None): self.variances_ = np.nanvar(X, 0) return self
Example 18
def test_nanvar(self): tgt = np.var(self.mat) for mat in self.integer_arrays(): assert_equal(np.nanvar(mat), tgt) tgt = np.var(mat, ddof=1) for mat in self.integer_arrays(): assert_equal(np.nanvar(mat, ddof=1), tgt)
Example 19
def test_ddof(self): nanfuncs = [np.nanvar, np.nanstd] stdfuncs = [np.var, np.std] for nf, rf in zip(nanfuncs, stdfuncs): for ddof in [0, 1]: tgt = [rf(d, ddof=ddof) for d in _rdat] res = nf(_ndat, axis=1, ddof=ddof) assert_almost_equal(res, tgt)
Example 20
def get_stats(arr): return np.array([ np.nanmean(arr), np.nanvar(arr), np.nanmedian(arr), np.nanstd(arr), arr.shape[0] ])
Example 21
def _calc_var(self): if self.data is None: raise RuntimeError('Fit the data model first.') data = self.data.T # variance calc var = np.nanvar(data, axis=1) total_var = var.sum() self.var_exp = self.eig_vals.cumsum() / total_var
Example 22
def test_nanvar(self): tgt = np.var(self.mat) for mat in self.integer_arrays(): assert_equal(np.nanvar(mat), tgt) tgt = np.var(mat, ddof=1) for mat in self.integer_arrays(): assert_equal(np.nanvar(mat, ddof=1), tgt)
Example 23
def test_ddof(self): nanfuncs = [np.nanvar, np.nanstd] stdfuncs = [np.var, np.std] for nf, rf in zip(nanfuncs, stdfuncs): for ddof in [0, 1]: tgt = [rf(d, ddof=ddof) for d in _rdat] res = nf(_ndat, axis=1, ddof=ddof) assert_almost_equal(res, tgt)
Example 24
def test_nanvar(self): tgt = np.var(self.mat) for mat in self.integer_arrays(): assert_equal(np.nanvar(mat), tgt) tgt = np.var(mat, ddof=1) for mat in self.integer_arrays(): assert_equal(np.nanvar(mat, ddof=1), tgt)
Example 25
def test_ddof(self): nanfuncs = [np.nanvar, np.nanstd] stdfuncs = [np.var, np.std] for nf, rf in zip(nanfuncs, stdfuncs): for ddof in [0, 1]: tgt = [rf(d, ddof=ddof) for d in _rdat] res = nf(_ndat, axis=1, ddof=ddof) assert_almost_equal(res, tgt)
Example 26
def var(self): ''' Variance of displacement :type: float ''' return num.nanvar(self.displacement)
Example 27
def test_nanvar(self): tgt = np.var(self.mat) for mat in self.integer_arrays(): assert_equal(np.nanvar(mat), tgt) tgt = np.var(mat, ddof=1) for mat in self.integer_arrays(): assert_equal(np.nanvar(mat, ddof=1), tgt)
Example 28
def test_ddof(self): nanfuncs = [np.nanvar, np.nanstd] stdfuncs = [np.var, np.std] for nf, rf in zip(nanfuncs, stdfuncs): for ddof in [0, 1]: tgt = [rf(d, ddof=ddof) for d in _rdat] res = nf(_ndat, axis=1, ddof=ddof) assert_almost_equal(res, tgt)
Example 29
def compute(self, today, assets, out, close): # get returns dataset returns = ((close - np.roll(close, 1, axis=0)) / np.roll(close, 1, axis=0))[1:] # get index of benchmark benchmark_index = np.where((assets == 8554) == True)[0][0] # get returns of benchmark benchmark_returns = returns[:, benchmark_index] # prepare X matrix (x_is - x_bar) X = benchmark_returns X_bar = np.nanmean(X) X_vector = X - X_bar X_matrix = np.tile(X_vector, (len(returns.T), 1)).T # prepare Y matrix (y_is - y_bar) Y_bar = np.nanmean(close, axis=0) Y_bars = np.tile(Y_bar, (len(returns), 1)) Y_matrix = returns - Y_bars # prepare variance of X X_var = np.nanvar(X) # multiply X matrix an Y matrix and sum (dot product) # then divide by variance of X # this gives the MLE of Beta out[:] = (np.sum((X_matrix * Y_matrix), axis=0) / X_var) / (len(returns))
Example 30
def compute(self, today, assets, out, data): out[:] = np.nanvar(data, axis=0)
Example 31
def test_nanvar(self): tgt = np.var(self.mat) for mat in self.integer_arrays(): assert_equal(np.nanvar(mat), tgt) tgt = np.var(mat, ddof=1) for mat in self.integer_arrays(): assert_equal(np.nanvar(mat, ddof=1), tgt)
Example 32
def test_ddof(self): nanfuncs = [np.nanvar, np.nanstd] stdfuncs = [np.var, np.std] for nf, rf in zip(nanfuncs, stdfuncs): for ddof in [0, 1]: tgt = [rf(d, ddof=ddof) for d in _rdat] res = nf(_ndat, axis=1, ddof=ddof) assert_almost_equal(res, tgt)