Python numpy.copysign() 使用实例

The following are code examples for showing how to use . They are extracted from open source Python projects. You can vote up the examples you like or vote down the exmaples you don’t like. You can also save this page to your account.

Example 1

def dec2dms(dec):
    """
    ADW: This should really be replaced by astropy
    """
    DEGREE = 360.
    HOUR = 24.
    MINUTE = 60.
    SECOND = 3600.
    
    if isinstance(dec,basestring):
        dec = float(dec)

    sign = numpy.copysign(1.0,dec)

    fdeg = np.abs(dec)
    deg = int(fdeg)
    
    fminute = (fdeg - deg)*MINUTE
    minute = int(fminute)
    
    second = (fminute - minute)*MINUTE

    deg = int(deg * sign)
    return (deg, minute, second) 

Example 2

def dms2dec(dms):
    """
    Convert latitude from degrees,minutes,seconds in string or 3-array
   format to decimal degrees.
    """
    DEGREE = 360.
    HOUR = 24.
    MINUTE = 60.
    SECOND = 3600.

    # Be careful here, degree needs to be a float so that negative zero
    # can have its signbit set:
    # http://docs.scipy.org/doc/numpy-1.7.0/reference/c-api.coremath.html#NPY_NZERO

    if isinstance(dms,basestring):
        degree,minute,second = numpy.array(re.split('[dms]',hms))[:3].astype(float)
    else:
        degree,minute,second = dms.T

    sign = numpy.copysign(1.0,degree)
    decimal = numpy.abs(degree) + minute * 1./MINUTE + second * 1./SECOND
    decimal *= sign
    return decimal 

Example 3

def test_copysign():
    assert_(np.copysign(1, -1) == -1)
    with np.errstate(divide="ignore"):
        assert_(1 / np.copysign(0, -1) < 0)
        assert_(1 / np.copysign(0, 1) > 0)
    assert_(np.signbit(np.copysign(np.nan, -1)))
    assert_(not np.signbit(np.copysign(np.nan, 1))) 

Example 4

def copy_sign(x: Number = 1.0, y: Number = -1.0) -> Number:
    return np.copysign(x, y) 

Example 5

def range_(start: Float = 0.0,
           stop: Float = 1.0,
           step: Float = 0.1,
           ) -> [Float]:
    if stop < start:
        step = np.copysign(step, -1)
    return np.arange(start, stop, step) 

Example 6

def sample_at_prob(self, prob, mean, var, rstate=None):
        """
        """
        shape = mean.shape[0]
        # Get a sample from a distribution N(0,I)
        scale = spstat.norm.ppf(prob, loc=0, scale=1)
        v = spstat.multivariate_normal.rvs(
            mean=None,
            cov=1,
            size=shape,
            random_state=rstate)

        v *= np.fabs(scale) / np.sqrt((v**2).sum())

        # Spectral decomposition of target dist covariance
        eigs, vects = np.linalg.eigh(var)

        assert eigs.shape[0] == shape, 'Too few eigenvalues'
        assert np.all(eigs >= 0.0), 'Negative eigenvalues'
        assert np.all(np.isreal(eigs)), 'Imaginary eigenvalues'
        assert np.all(np.fabs(
            np.dot(vects.T, vects) - np.eye(shape)) < 1E-14),\
            'Eigenvectors are not orthogonal'


        # Calculate map from N(0,I) to N(0,E)
        a_mat = np.dot(vects.T, np.dot(np.diag(np.sqrt(eigs)), vects))

        # Add the mean to get N(u,E)
        #return mean + np.copysign(np.dot(a_mat, v), scale)

        return mean + scale * np.diag(np.sqrt(var)) 

Example 7

def compute_edge_types(machina, edge_index):
    """Classify the internal edges by type, and find the singular graph.
    The edge type is determined by concatenating the matchings around the edges one-ring."""
    # For each internal edge of the tetrahedral mesh.
    for ei in edge_index:
        try:
            one_ring = machina.one_rings[ei]
        except KeyError:
            continue # Not an internal edge.
        
        # Concatenate the matchings around the edge to find its type.
        edge_type = np.identity(3)
        for fi in one_ring['faces']:
            matching = []
            # Recall that in the one-ring, if 'fi' is negative, it is
            # a 't-s' pair, as opposed to a 's-t' pair.
            # If pair order is reversed, invert/transpose rotation matrix.
            # Use copysign to distinguish +0 from -0.
            if np.copysign(1, fi) > 0:
                matching = chiral_symmetries[machina.matchings[fi]]
            else:
                matching = chiral_symmetries[machina.matchings[-fi]].T
            # Concatenate transforms
            edge_type = np.dot(edge_type, matching)
        
        # Locate singular (not identity) and improper (not restricted) edges.
        is_singular, is_improper = True, True
        for si, restricted_type in enumerate(chiral_symmetries[0:9]):
            if np.allclose(edge_type, restricted_type):
                if si == 0 : is_singular = False
                is_improper = False
                break

        # Classify as proper(0), singular(1), improper (2)
        if is_singular: machina.edge_types[ei] = 1
        if is_improper: machina.edge_types[ei] = 2 

Example 8

def test_copysign():
    assert_(np.copysign(1, -1) == -1)
    with np.errstate(divide="ignore"):
        assert_(1 / np.copysign(0, -1) < 0)
        assert_(1 / np.copysign(0, 1) > 0)
    assert_(np.signbit(np.copysign(np.nan, -1)))
    assert_(not np.signbit(np.copysign(np.nan, 1))) 

Example 9

def _fWeightsInv(self, pop):
        return 4*np.copysign(np.power(np.abs(pop), 1/5), pop) 

Example 10

def __init__(self, file, isomer, *args):
      # Frequencies in waveunmbers
      self.frequency_wn = []

      # Extract the Force constants from a g09 logfile and generate the
      # mass-weighted Hessian matrix in Hartree/(amu Bohr^2)
      mw_hessmat = read_hess(file, isomer)

      # Convert from atomic units - a bit ugly
      unit_conversion = ENERGY_AU / (BOHR_RADIUS**2 * ATOMIC_MASS_UNIT) / ((SPEED_OF_LIGHT * 2 * np.pi)**2)
      eigs = np.linalg.eigvalsh(mw_hessmat * unit_conversion)
      freqs = [ np.copysign(np.sqrt(np.abs(freq)),freq) for freq in eigs ]

      # 5 or 6 small normal modes will be removed (depending on whether the molecule is linear or non-linear)
      if is_linear(file) == 'linear': trans_rot_modes = 5
      else: trans_rot_modes = 6

      # Keep a single imaginary frequency. It should be larger than the predefined cut-off
      if np.abs(freqs[0]) > freq_cutoff:
         self.im_frequency_wn = -1.0 * freqs[0]
         trans_rot_modes = trans_rot_modes + 1
      for freq in freqs[trans_rot_modes:]: self.frequency_wn.append(freq)

      # Calculate the excitation factor (EXC), the ZPE (ZPE) and Teller-Redlich product factor (PF)
      # returns a 1D-array of all terms
      self.PF = calc_product_factor(self.frequency_wn, freq_scale_factor)
      self.ZPE = calc_zpe_factor(self.frequency_wn, temperature, freq_scale_factor)
      self.EXC = calc_excitation_factor(self.frequency_wn, temperature, freq_scale_factor) 

Example 11

def test_copysign():
    assert_(np.copysign(1, -1) == -1)
    with np.errstate(divide="ignore"):
        assert_(1 / np.copysign(0, -1) < 0)
        assert_(1 / np.copysign(0, 1) > 0)
    assert_(np.signbit(np.copysign(np.nan, -1)))
    assert_(not np.signbit(np.copysign(np.nan, 1))) 

Example 12

def test_copysign():
    assert_(np.copysign(1, -1) == -1)
    with np.errstate(divide="ignore"):
        assert_(1 / np.copysign(0, -1) < 0)
        assert_(1 / np.copysign(0, 1) > 0)
    assert_(np.signbit(np.copysign(np.nan, -1)))
    assert_(not np.signbit(np.copysign(np.nan, 1))) 

Example 13

def test_copysign():
    assert_(np.copysign(1, -1) == -1)
    with np.errstate(divide="ignore"):
        assert_(1 / np.copysign(0, -1) < 0)
        assert_(1 / np.copysign(0, 1) > 0)
    assert_(np.signbit(np.copysign(np.nan, -1)))
    assert_(not np.signbit(np.copysign(np.nan, 1))) 

Example 14

def test_copysign():
    assert_(np.copysign(1, -1) == -1)
    with np.errstate(divide="ignore"):
        assert_(1 / np.copysign(0, -1) < 0)
        assert_(1 / np.copysign(0, 1) > 0)
    assert_(np.signbit(np.copysign(np.nan, -1)))
    assert_(not np.signbit(np.copysign(np.nan, 1))) 

Example 15

def initialize(self):
        (cube_result, cube_hit_t_min, cube_hit_t_max) = self.grid.aabb.intersects(self.ray)
        if cube_result:
            cube_hit_point = self.ray.origin + (cube_hit_t_min) * self.ray.direction
            self.t_min = cube_hit_t_min
            self.cube_hit_t_min = cube_hit_t_min

#            print "DDA: Cube Hit Point:", cube_hit_point

            self.step_x = np.copysign(1., self.ray.direction[0])
            self.step_y = np.copysign(1., self.ray.direction[1])

            self.t_delta_x = (self.step_x / self.ray.direction[0])
            self.t_delta_y = (self.step_y / self.ray.direction[1])

            self.t_max_x = diff_distance(cube_hit_point[0], self.ray.direction[0])
            self.t_max_y = diff_distance(cube_hit_point[1], self.ray.direction[1])

            if cube_hit_point[0] < 0:
                cube_hit_point[0] -= 1
            if cube_hit_point[1] < 0:
                cube_hit_point[1] -= 1
            self.voxel = np.array(cube_hit_point, dtype=int)
            # print("DDA: Initial Voxel:" , self.voxel)
            '''
            this conditional solves the problem where the "cube_hit_point" is just
            outside the grid because of floating point imprecision.
            '''
            while self.voxel[0] < self.grid.aabb.low[0] or self.voxel[1] < self.grid.aabb.low[1]\
            or self.voxel[0] >= self.grid.aabb.high[0] or self.voxel[1] >= self.grid.aabb.high[1]:
                print("DDA: Skyping:", self.voxel)
                if not self.step():
                    return False

            return True
        else:
            return False 

Example 16

def _copysign(x1, x2):
    """Slow replacement for np.copysign, which was introduced in numpy 1.4"""
    return np.abs(x1) * np.sign(x2) 

Example 17

def differential_func(cls, x):
        return np.copysign(np.ones(x.shape), x) 

Example 18

def test_copysign():
    assert_(np.copysign(1, -1) == -1)
    with np.errstate(divide="ignore"):
        assert_(1 / np.copysign(0, -1) < 0)
        assert_(1 / np.copysign(0, 1) > 0)
    assert_(np.signbit(np.copysign(np.nan, -1)))
    assert_(not np.signbit(np.copysign(np.nan, 1))) 

Example 19

def test_half_ufuncs(self):
        """Test the various ufuncs"""

        a = np.array([0, 1, 2, 4, 2], dtype=float16)
        b = np.array([-2, 5, 1, 4, 3], dtype=float16)
        c = np.array([0, -1, -np.inf, np.nan, 6], dtype=float16)

        assert_equal(np.add(a, b), [-2, 6, 3, 8, 5])
        assert_equal(np.subtract(a, b), [2, -4, 1, 0, -1])
        assert_equal(np.multiply(a, b), [0, 5, 2, 16, 6])
        assert_equal(np.divide(a, b), [0, 0.199951171875, 2, 1, 0.66650390625])

        assert_equal(np.equal(a, b), [False, False, False, True, False])
        assert_equal(np.not_equal(a, b), [True, True, True, False, True])
        assert_equal(np.less(a, b), [False, True, False, False, True])
        assert_equal(np.less_equal(a, b), [False, True, False, True, True])
        assert_equal(np.greater(a, b), [True, False, True, False, False])
        assert_equal(np.greater_equal(a, b), [True, False, True, True, False])
        assert_equal(np.logical_and(a, b), [False, True, True, True, True])
        assert_equal(np.logical_or(a, b), [True, True, True, True, True])
        assert_equal(np.logical_xor(a, b), [True, False, False, False, False])
        assert_equal(np.logical_not(a), [True, False, False, False, False])

        assert_equal(np.isnan(c), [False, False, False, True, False])
        assert_equal(np.isinf(c), [False, False, True, False, False])
        assert_equal(np.isfinite(c), [True, True, False, False, True])
        assert_equal(np.signbit(b), [True, False, False, False, False])

        assert_equal(np.copysign(b, a), [2, 5, 1, 4, 3])

        assert_equal(np.maximum(a, b), [0, 5, 2, 4, 3])
        x = np.maximum(b, c)
        assert_(np.isnan(x[3]))
        x[3] = 0
        assert_equal(x, [0, 5, 1, 0, 6])
        assert_equal(np.minimum(a, b), [-2, 1, 1, 4, 2])
        x = np.minimum(b, c)
        assert_(np.isnan(x[3]))
        x[3] = 0
        assert_equal(x, [-2, -1, -np.inf, 0, 3])
        assert_equal(np.fmax(a, b), [0, 5, 2, 4, 3])
        assert_equal(np.fmax(b, c), [0, 5, 1, 4, 6])
        assert_equal(np.fmin(a, b), [-2, 1, 1, 4, 2])
        assert_equal(np.fmin(b, c), [-2, -1, -np.inf, 4, 3])

        assert_equal(np.floor_divide(a, b), [0, 0, 2, 1, 0])
        assert_equal(np.remainder(a, b), [0, 1, 0, 0, 2])
        assert_equal(np.square(b), [4, 25, 1, 16, 9])
        assert_equal(np.reciprocal(b), [-0.5, 0.199951171875, 1, 0.25, 0.333251953125])
        assert_equal(np.ones_like(b), [1, 1, 1, 1, 1])
        assert_equal(np.conjugate(b), b)
        assert_equal(np.absolute(b), [2, 5, 1, 4, 3])
        assert_equal(np.negative(b), [2, -5, -1, -4, -3])
        assert_equal(np.sign(b), [-1, 1, 1, 1, 1])
        assert_equal(np.modf(b), ([0, 0, 0, 0, 0], b))
        assert_equal(np.frexp(b), ([-0.5, 0.625, 0.5, 0.5, 0.75], [2, 3, 1, 3, 2]))
        assert_equal(np.ldexp(b, [0, 1, 2, 4, 2]), [-2, 10, 4, 64, 12]) 

Example 20

def test_eod_order_cancel_minute(self, direction, minute_emission):
        """
        Test that EOD order cancel works in minute mode for both shorts and
        longs, and both daily emission and minute emission
        """
        # order 1000 shares of asset1.  the volume is only 1 share per bar,
        # so the order should be cancelled at the end of the day.
        algo = self.prep_algo(
            "set_cancel_policy(cancel_policy.EODCancel())",
            amount=np.copysign(1000, direction),
            minute_emission=minute_emission
        )

        log_catcher = TestHandler()
        with log_catcher:
            results = algo.run(self.data_portal)

            for daily_positions in results.positions:
                self.assertEqual(1, len(daily_positions))
                self.assertEqual(
                    np.copysign(389, direction),
                    daily_positions[0]["amount"],
                )
                self.assertEqual(1, results.positions[0][0]["sid"])

            # should be an order on day1, but no more orders afterwards
            np.testing.assert_array_equal([1, 0, 0],
                                          list(map(len, results.orders)))

            # should be 389 txns on day 1, but no more afterwards
            np.testing.assert_array_equal([389, 0, 0],
                                          list(map(len, results.transactions)))

            the_order = results.orders[0][0]

            self.assertEqual(ORDER_STATUS.CANCELLED, the_order["status"])
            self.assertEqual(np.copysign(389, direction), the_order["filled"])

            warnings = [record for record in log_catcher.records if
                        record.level == WARNING]

            self.assertEqual(1, len(warnings))

            if direction == 1:
                self.assertEqual(
                    "Your order for 1000 shares of ASSET1 has been partially "
                    "filled. 389 shares were successfully purchased. "
                    "611 shares were not filled by the end of day and "
                    "were canceled.",
                    str(warnings[0].message)
                )
            elif direction == -1:
                self.assertEqual(
                    "Your order for -1000 shares of ASSET1 has been partially "
                    "filled. 389 shares were successfully sold. "
                    "611 shares were not filled by the end of day and "
                    "were canceled.",
                    str(warnings[0].message)
                ) 

Example 21

def test_half_ufuncs(self):
        """Test the various ufuncs"""

        a = np.array([0, 1, 2, 4, 2], dtype=float16)
        b = np.array([-2, 5, 1, 4, 3], dtype=float16)
        c = np.array([0, -1, -np.inf, np.nan, 6], dtype=float16)

        assert_equal(np.add(a, b), [-2, 6, 3, 8, 5])
        assert_equal(np.subtract(a, b), [2, -4, 1, 0, -1])
        assert_equal(np.multiply(a, b), [0, 5, 2, 16, 6])
        assert_equal(np.divide(a, b), [0, 0.199951171875, 2, 1, 0.66650390625])

        assert_equal(np.equal(a, b), [False, False, False, True, False])
        assert_equal(np.not_equal(a, b), [True, True, True, False, True])
        assert_equal(np.less(a, b), [False, True, False, False, True])
        assert_equal(np.less_equal(a, b), [False, True, False, True, True])
        assert_equal(np.greater(a, b), [True, False, True, False, False])
        assert_equal(np.greater_equal(a, b), [True, False, True, True, False])
        assert_equal(np.logical_and(a, b), [False, True, True, True, True])
        assert_equal(np.logical_or(a, b), [True, True, True, True, True])
        assert_equal(np.logical_xor(a, b), [True, False, False, False, False])
        assert_equal(np.logical_not(a), [True, False, False, False, False])

        assert_equal(np.isnan(c), [False, False, False, True, False])
        assert_equal(np.isinf(c), [False, False, True, False, False])
        assert_equal(np.isfinite(c), [True, True, False, False, True])
        assert_equal(np.signbit(b), [True, False, False, False, False])

        assert_equal(np.copysign(b, a), [2, 5, 1, 4, 3])

        assert_equal(np.maximum(a, b), [0, 5, 2, 4, 3])
        x = np.maximum(b, c)
        assert_(np.isnan(x[3]))
        x[3] = 0
        assert_equal(x, [0, 5, 1, 0, 6])
        assert_equal(np.minimum(a, b), [-2, 1, 1, 4, 2])
        x = np.minimum(b, c)
        assert_(np.isnan(x[3]))
        x[3] = 0
        assert_equal(x, [-2, -1, -np.inf, 0, 3])
        assert_equal(np.fmax(a, b), [0, 5, 2, 4, 3])
        assert_equal(np.fmax(b, c), [0, 5, 1, 4, 6])
        assert_equal(np.fmin(a, b), [-2, 1, 1, 4, 2])
        assert_equal(np.fmin(b, c), [-2, -1, -np.inf, 4, 3])

        assert_equal(np.floor_divide(a, b), [0, 0, 2, 1, 0])
        assert_equal(np.remainder(a, b), [0, 1, 0, 0, 2])
        assert_equal(np.square(b), [4, 25, 1, 16, 9])
        assert_equal(np.reciprocal(b), [-0.5, 0.199951171875, 1, 0.25, 0.333251953125])
        assert_equal(np.ones_like(b), [1, 1, 1, 1, 1])
        assert_equal(np.conjugate(b), b)
        assert_equal(np.absolute(b), [2, 5, 1, 4, 3])
        assert_equal(np.negative(b), [2, -5, -1, -4, -3])
        assert_equal(np.sign(b), [-1, 1, 1, 1, 1])
        assert_equal(np.modf(b), ([0, 0, 0, 0, 0], b))
        assert_equal(np.frexp(b), ([-0.5, 0.625, 0.5, 0.5, 0.75], [2, 3, 1, 3, 2]))
        assert_equal(np.ldexp(b, [0, 1, 2, 4, 2]), [-2, 10, 4, 64, 12]) 

Example 22

def test_half_ufuncs(self):
        """Test the various ufuncs"""

        a = np.array([0, 1, 2, 4, 2], dtype=float16)
        b = np.array([-2, 5, 1, 4, 3], dtype=float16)
        c = np.array([0, -1, -np.inf, np.nan, 6], dtype=float16)

        assert_equal(np.add(a, b), [-2, 6, 3, 8, 5])
        assert_equal(np.subtract(a, b), [2, -4, 1, 0, -1])
        assert_equal(np.multiply(a, b), [0, 5, 2, 16, 6])
        assert_equal(np.divide(a, b), [0, 0.199951171875, 2, 1, 0.66650390625])

        assert_equal(np.equal(a, b), [False, False, False, True, False])
        assert_equal(np.not_equal(a, b), [True, True, True, False, True])
        assert_equal(np.less(a, b), [False, True, False, False, True])
        assert_equal(np.less_equal(a, b), [False, True, False, True, True])
        assert_equal(np.greater(a, b), [True, False, True, False, False])
        assert_equal(np.greater_equal(a, b), [True, False, True, True, False])
        assert_equal(np.logical_and(a, b), [False, True, True, True, True])
        assert_equal(np.logical_or(a, b), [True, True, True, True, True])
        assert_equal(np.logical_xor(a, b), [True, False, False, False, False])
        assert_equal(np.logical_not(a), [True, False, False, False, False])

        assert_equal(np.isnan(c), [False, False, False, True, False])
        assert_equal(np.isinf(c), [False, False, True, False, False])
        assert_equal(np.isfinite(c), [True, True, False, False, True])
        assert_equal(np.signbit(b), [True, False, False, False, False])

        assert_equal(np.copysign(b, a), [2, 5, 1, 4, 3])

        assert_equal(np.maximum(a, b), [0, 5, 2, 4, 3])
        x = np.maximum(b, c)
        assert_(np.isnan(x[3]))
        x[3] = 0
        assert_equal(x, [0, 5, 1, 0, 6])
        assert_equal(np.minimum(a, b), [-2, 1, 1, 4, 2])
        x = np.minimum(b, c)
        assert_(np.isnan(x[3]))
        x[3] = 0
        assert_equal(x, [-2, -1, -np.inf, 0, 3])
        assert_equal(np.fmax(a, b), [0, 5, 2, 4, 3])
        assert_equal(np.fmax(b, c), [0, 5, 1, 4, 6])
        assert_equal(np.fmin(a, b), [-2, 1, 1, 4, 2])
        assert_equal(np.fmin(b, c), [-2, -1, -np.inf, 4, 3])

        assert_equal(np.floor_divide(a, b), [0, 0, 2, 1, 0])
        assert_equal(np.remainder(a, b), [0, 1, 0, 0, 2])
        assert_equal(np.square(b), [4, 25, 1, 16, 9])
        assert_equal(np.reciprocal(b), [-0.5, 0.199951171875, 1, 0.25, 0.333251953125])
        assert_equal(np.ones_like(b), [1, 1, 1, 1, 1])
        assert_equal(np.conjugate(b), b)
        assert_equal(np.absolute(b), [2, 5, 1, 4, 3])
        assert_equal(np.negative(b), [2, -5, -1, -4, -3])
        assert_equal(np.sign(b), [-1, 1, 1, 1, 1])
        assert_equal(np.modf(b), ([0, 0, 0, 0, 0], b))
        assert_equal(np.frexp(b), ([-0.5, 0.625, 0.5, 0.5, 0.75], [2, 3, 1, 3, 2]))
        assert_equal(np.ldexp(b, [0, 1, 2, 4, 2]), [-2, 10, 4, 64, 12]) 

Example 23

def test_half_ufuncs(self):
        """Test the various ufuncs"""

        a = np.array([0, 1, 2, 4, 2], dtype=float16)
        b = np.array([-2, 5, 1, 4, 3], dtype=float16)
        c = np.array([0, -1, -np.inf, np.nan, 6], dtype=float16)

        assert_equal(np.add(a, b), [-2, 6, 3, 8, 5])
        assert_equal(np.subtract(a, b), [2, -4, 1, 0, -1])
        assert_equal(np.multiply(a, b), [0, 5, 2, 16, 6])
        assert_equal(np.divide(a, b), [0, 0.199951171875, 2, 1, 0.66650390625])

        assert_equal(np.equal(a, b), [False, False, False, True, False])
        assert_equal(np.not_equal(a, b), [True, True, True, False, True])
        assert_equal(np.less(a, b), [False, True, False, False, True])
        assert_equal(np.less_equal(a, b), [False, True, False, True, True])
        assert_equal(np.greater(a, b), [True, False, True, False, False])
        assert_equal(np.greater_equal(a, b), [True, False, True, True, False])
        assert_equal(np.logical_and(a, b), [False, True, True, True, True])
        assert_equal(np.logical_or(a, b), [True, True, True, True, True])
        assert_equal(np.logical_xor(a, b), [True, False, False, False, False])
        assert_equal(np.logical_not(a), [True, False, False, False, False])

        assert_equal(np.isnan(c), [False, False, False, True, False])
        assert_equal(np.isinf(c), [False, False, True, False, False])
        assert_equal(np.isfinite(c), [True, True, False, False, True])
        assert_equal(np.signbit(b), [True, False, False, False, False])

        assert_equal(np.copysign(b, a), [2, 5, 1, 4, 3])

        assert_equal(np.maximum(a, b), [0, 5, 2, 4, 3])
        x = np.maximum(b, c)
        assert_(np.isnan(x[3]))
        x[3] = 0
        assert_equal(x, [0, 5, 1, 0, 6])
        assert_equal(np.minimum(a, b), [-2, 1, 1, 4, 2])
        x = np.minimum(b, c)
        assert_(np.isnan(x[3]))
        x[3] = 0
        assert_equal(x, [-2, -1, -np.inf, 0, 3])
        assert_equal(np.fmax(a, b), [0, 5, 2, 4, 3])
        assert_equal(np.fmax(b, c), [0, 5, 1, 4, 6])
        assert_equal(np.fmin(a, b), [-2, 1, 1, 4, 2])
        assert_equal(np.fmin(b, c), [-2, -1, -np.inf, 4, 3])

        assert_equal(np.floor_divide(a, b), [0, 0, 2, 1, 0])
        assert_equal(np.remainder(a, b), [0, 1, 0, 0, 2])
        assert_equal(np.square(b), [4, 25, 1, 16, 9])
        assert_equal(np.reciprocal(b), [-0.5, 0.199951171875, 1, 0.25, 0.333251953125])
        assert_equal(np.ones_like(b), [1, 1, 1, 1, 1])
        assert_equal(np.conjugate(b), b)
        assert_equal(np.absolute(b), [2, 5, 1, 4, 3])
        assert_equal(np.negative(b), [2, -5, -1, -4, -3])
        assert_equal(np.sign(b), [-1, 1, 1, 1, 1])
        assert_equal(np.modf(b), ([0, 0, 0, 0, 0], b))
        assert_equal(np.frexp(b), ([-0.5, 0.625, 0.5, 0.5, 0.75], [2, 3, 1, 3, 2]))
        assert_equal(np.ldexp(b, [0, 1, 2, 4, 2]), [-2, 10, 4, 64, 12]) 

Example 24

def test_half_ufuncs(self):
        """Test the various ufuncs"""

        a = np.array([0, 1, 2, 4, 2], dtype=float16)
        b = np.array([-2, 5, 1, 4, 3], dtype=float16)
        c = np.array([0, -1, -np.inf, np.nan, 6], dtype=float16)

        assert_equal(np.add(a, b), [-2, 6, 3, 8, 5])
        assert_equal(np.subtract(a, b), [2, -4, 1, 0, -1])
        assert_equal(np.multiply(a, b), [0, 5, 2, 16, 6])
        assert_equal(np.divide(a, b), [0, 0.199951171875, 2, 1, 0.66650390625])

        assert_equal(np.equal(a, b), [False, False, False, True, False])
        assert_equal(np.not_equal(a, b), [True, True, True, False, True])
        assert_equal(np.less(a, b), [False, True, False, False, True])
        assert_equal(np.less_equal(a, b), [False, True, False, True, True])
        assert_equal(np.greater(a, b), [True, False, True, False, False])
        assert_equal(np.greater_equal(a, b), [True, False, True, True, False])
        assert_equal(np.logical_and(a, b), [False, True, True, True, True])
        assert_equal(np.logical_or(a, b), [True, True, True, True, True])
        assert_equal(np.logical_xor(a, b), [True, False, False, False, False])
        assert_equal(np.logical_not(a), [True, False, False, False, False])

        assert_equal(np.isnan(c), [False, False, False, True, False])
        assert_equal(np.isinf(c), [False, False, True, False, False])
        assert_equal(np.isfinite(c), [True, True, False, False, True])
        assert_equal(np.signbit(b), [True, False, False, False, False])

        assert_equal(np.copysign(b, a), [2, 5, 1, 4, 3])

        assert_equal(np.maximum(a, b), [0, 5, 2, 4, 3])
        x = np.maximum(b, c)
        assert_(np.isnan(x[3]))
        x[3] = 0
        assert_equal(x, [0, 5, 1, 0, 6])
        assert_equal(np.minimum(a, b), [-2, 1, 1, 4, 2])
        x = np.minimum(b, c)
        assert_(np.isnan(x[3]))
        x[3] = 0
        assert_equal(x, [-2, -1, -np.inf, 0, 3])
        assert_equal(np.fmax(a, b), [0, 5, 2, 4, 3])
        assert_equal(np.fmax(b, c), [0, 5, 1, 4, 6])
        assert_equal(np.fmin(a, b), [-2, 1, 1, 4, 2])
        assert_equal(np.fmin(b, c), [-2, -1, -np.inf, 4, 3])

        assert_equal(np.floor_divide(a, b), [0, 0, 2, 1, 0])
        assert_equal(np.remainder(a, b), [0, 1, 0, 0, 2])
        assert_equal(np.square(b), [4, 25, 1, 16, 9])
        assert_equal(np.reciprocal(b), [-0.5, 0.199951171875, 1, 0.25, 0.333251953125])
        assert_equal(np.ones_like(b), [1, 1, 1, 1, 1])
        assert_equal(np.conjugate(b), b)
        assert_equal(np.absolute(b), [2, 5, 1, 4, 3])
        assert_equal(np.negative(b), [2, -5, -1, -4, -3])
        assert_equal(np.sign(b), [-1, 1, 1, 1, 1])
        assert_equal(np.modf(b), ([0, 0, 0, 0, 0], b))
        assert_equal(np.frexp(b), ([-0.5, 0.625, 0.5, 0.5, 0.75], [2, 3, 1, 3, 2]))
        assert_equal(np.ldexp(b, [0, 1, 2, 4, 2]), [-2, 10, 4, 64, 12]) 

Example 25

def _load(self,filename):
        kwargs = dict(delimiter=[1,1,4,15,3,3,8,3,3,7],usecols=[1,2]+range(4,10),dtype=['S1']+[int]+6*[float])
        if filename is None: 
            raw = []
            for basename in ['VII_239A/ngcpos.dat','VII_239A/icpos.dat']:
                filename = os.path.join(self.DATADIR,basename)
                raw.append(np.genfromtxt(filename,**kwargs))
            raw = numpy.concatenate(raw)
        else:
            raw = numpy.genfromtxt(filename,**kwargs)
        self.filename = filename

        # Some entries are missing...
        raw['f4'] = numpy.where(numpy.isnan(raw['f4']),0,raw['f4'])
        raw['f7'] = numpy.where(numpy.isnan(raw['f7']),0,raw['f7'])

        self.data.resize(len(raw))
        names = numpy.where(raw['f0'] == 'N', 'NGC %04i', 'IC %04i')
        self.data['name'] = numpy.char.mod(names,raw['f1'])

        ra = raw[['f2','f3','f4']].view(float).reshape(len(raw),-1)
        dec = raw[['f5','f6','f7']].view(float).reshape(len(raw),-1)
        self.data['ra'] = ugali.utils.projector.hms2dec(ra)
        self.data['dec'] = ugali.utils.projector.dms2dec(dec)

        glon,glat = cel2gal(self.data['ra'],self.data['dec'])
        self.data['glon'],self.data['glat'] = glon,glat

#class Steinicke10(SourceCatalog):
#    """
#    Another modern compilation of the New General Catalogue
#    (people still don't agree on the composition of NGC...)
#    """
#    def _load(self,filename):
#        if filename is None: 
#            filename = os.path.join(self.DATADIR,"NI2013.csv")
# 
#        raw = numpy.genfromtxt(filename,delimiter=',',usecols=[5,6]+range(13,20),dtype=['S1',int]+3*[float]+['S1']+3*[float])
# 
#        self.data.resize(len(raw))
#        names = numpy.where(raw['f0'] == 'N', 'NGC %04i', 'IC %04i')
#        self.data['name'] = numpy.char.mod(names,raw['f1'])
# 
#        sign = numpy.where(raw['f5'] == '-',-1,1)
#        ra = raw[['f2','f3','f4']].view(float).reshape(len(raw),-1)
#        dec = raw[['f6','f7','f8']].view(float).reshape(len(raw),-1)
#        dec[:,0] = numpy.copysign(dec[:,0], sign)
# 
#        self.data['ra'] = ugali.utils.projector.hms2dec(ra)
#        self.data['dec'] = ugali.utils.projector.dms2dec(dec)
# 
#        glon,glat = ugali.utils.projector.celToGal(self.data['ra'],self.data['dec'])
#        self.data['glon'],self.data['glat'] = glon,glat 

Example 26

def test_half_ufuncs(self):
        """Test the various ufuncs"""

        a = np.array([0, 1, 2, 4, 2], dtype=float16)
        b = np.array([-2, 5, 1, 4, 3], dtype=float16)
        c = np.array([0, -1, -np.inf, np.nan, 6], dtype=float16)

        assert_equal(np.add(a, b), [-2, 6, 3, 8, 5])
        assert_equal(np.subtract(a, b), [2, -4, 1, 0, -1])
        assert_equal(np.multiply(a, b), [0, 5, 2, 16, 6])
        assert_equal(np.divide(a, b), [0, 0.199951171875, 2, 1, 0.66650390625])

        assert_equal(np.equal(a, b), [False, False, False, True, False])
        assert_equal(np.not_equal(a, b), [True, True, True, False, True])
        assert_equal(np.less(a, b), [False, True, False, False, True])
        assert_equal(np.less_equal(a, b), [False, True, False, True, True])
        assert_equal(np.greater(a, b), [True, False, True, False, False])
        assert_equal(np.greater_equal(a, b), [True, False, True, True, False])
        assert_equal(np.logical_and(a, b), [False, True, True, True, True])
        assert_equal(np.logical_or(a, b), [True, True, True, True, True])
        assert_equal(np.logical_xor(a, b), [True, False, False, False, False])
        assert_equal(np.logical_not(a), [True, False, False, False, False])

        assert_equal(np.isnan(c), [False, False, False, True, False])
        assert_equal(np.isinf(c), [False, False, True, False, False])
        assert_equal(np.isfinite(c), [True, True, False, False, True])
        assert_equal(np.signbit(b), [True, False, False, False, False])

        assert_equal(np.copysign(b, a), [2, 5, 1, 4, 3])

        assert_equal(np.maximum(a, b), [0, 5, 2, 4, 3])
        x = np.maximum(b, c)
        assert_(np.isnan(x[3]))
        x[3] = 0
        assert_equal(x, [0, 5, 1, 0, 6])
        assert_equal(np.minimum(a, b), [-2, 1, 1, 4, 2])
        x = np.minimum(b, c)
        assert_(np.isnan(x[3]))
        x[3] = 0
        assert_equal(x, [-2, -1, -np.inf, 0, 3])
        assert_equal(np.fmax(a, b), [0, 5, 2, 4, 3])
        assert_equal(np.fmax(b, c), [0, 5, 1, 4, 6])
        assert_equal(np.fmin(a, b), [-2, 1, 1, 4, 2])
        assert_equal(np.fmin(b, c), [-2, -1, -np.inf, 4, 3])

        assert_equal(np.floor_divide(a, b), [0, 0, 2, 1, 0])
        assert_equal(np.remainder(a, b), [0, 1, 0, 0, 2])
        assert_equal(np.square(b), [4, 25, 1, 16, 9])
        assert_equal(np.reciprocal(b), [-0.5, 0.199951171875, 1, 0.25, 0.333251953125])
        assert_equal(np.ones_like(b), [1, 1, 1, 1, 1])
        assert_equal(np.conjugate(b), b)
        assert_equal(np.absolute(b), [2, 5, 1, 4, 3])
        assert_equal(np.negative(b), [2, -5, -1, -4, -3])
        assert_equal(np.sign(b), [-1, 1, 1, 1, 1])
        assert_equal(np.modf(b), ([0, 0, 0, 0, 0], b))
        assert_equal(np.frexp(b), ([-0.5, 0.625, 0.5, 0.5, 0.75], [2, 3, 1, 3, 2]))
        assert_equal(np.ldexp(b, [0, 1, 2, 4, 2]), [-2, 10, 4, 64, 12]) 

Example 27

def test_half_ufuncs(self):
        """Test the various ufuncs"""

        a = np.array([0, 1, 2, 4, 2], dtype=float16)
        b = np.array([-2, 5, 1, 4, 3], dtype=float16)
        c = np.array([0, -1, -np.inf, np.nan, 6], dtype=float16)

        assert_equal(np.add(a, b), [-2, 6, 3, 8, 5])
        assert_equal(np.subtract(a, b), [2, -4, 1, 0, -1])
        assert_equal(np.multiply(a, b), [0, 5, 2, 16, 6])
        assert_equal(np.divide(a, b), [0, 0.199951171875, 2, 1, 0.66650390625])

        assert_equal(np.equal(a, b), [False, False, False, True, False])
        assert_equal(np.not_equal(a, b), [True, True, True, False, True])
        assert_equal(np.less(a, b), [False, True, False, False, True])
        assert_equal(np.less_equal(a, b), [False, True, False, True, True])
        assert_equal(np.greater(a, b), [True, False, True, False, False])
        assert_equal(np.greater_equal(a, b), [True, False, True, True, False])
        assert_equal(np.logical_and(a, b), [False, True, True, True, True])
        assert_equal(np.logical_or(a, b), [True, True, True, True, True])
        assert_equal(np.logical_xor(a, b), [True, False, False, False, False])
        assert_equal(np.logical_not(a), [True, False, False, False, False])

        assert_equal(np.isnan(c), [False, False, False, True, False])
        assert_equal(np.isinf(c), [False, False, True, False, False])
        assert_equal(np.isfinite(c), [True, True, False, False, True])
        assert_equal(np.signbit(b), [True, False, False, False, False])

        assert_equal(np.copysign(b, a), [2, 5, 1, 4, 3])

        assert_equal(np.maximum(a, b), [0, 5, 2, 4, 3])
        x = np.maximum(b, c)
        assert_(np.isnan(x[3]))
        x[3] = 0
        assert_equal(x, [0, 5, 1, 0, 6])
        assert_equal(np.minimum(a, b), [-2, 1, 1, 4, 2])
        x = np.minimum(b, c)
        assert_(np.isnan(x[3]))
        x[3] = 0
        assert_equal(x, [-2, -1, -np.inf, 0, 3])
        assert_equal(np.fmax(a, b), [0, 5, 2, 4, 3])
        assert_equal(np.fmax(b, c), [0, 5, 1, 4, 6])
        assert_equal(np.fmin(a, b), [-2, 1, 1, 4, 2])
        assert_equal(np.fmin(b, c), [-2, -1, -np.inf, 4, 3])

        assert_equal(np.floor_divide(a, b), [0, 0, 2, 1, 0])
        assert_equal(np.remainder(a, b), [0, 1, 0, 0, 2])
        assert_equal(np.square(b), [4, 25, 1, 16, 9])
        assert_equal(np.reciprocal(b), [-0.5, 0.199951171875, 1, 0.25, 0.333251953125])
        assert_equal(np.ones_like(b), [1, 1, 1, 1, 1])
        assert_equal(np.conjugate(b), b)
        assert_equal(np.absolute(b), [2, 5, 1, 4, 3])
        assert_equal(np.negative(b), [2, -5, -1, -4, -3])
        assert_equal(np.sign(b), [-1, 1, 1, 1, 1])
        assert_equal(np.modf(b), ([0, 0, 0, 0, 0], b))
        assert_equal(np.frexp(b), ([-0.5, 0.625, 0.5, 0.5, 0.75], [2, 3, 1, 3, 2]))
        assert_equal(np.ldexp(b, [0, 1, 2, 4, 2]), [-2, 10, 4, 64, 12]) 
点赞