Python numpy.long() 使用实例

The following are code examples for showing how to use . They are extracted from open source Python projects. You can vote up the examples you like or vote down the exmaples you don’t like. You can also save this page to your account.

Example 1

def _is_integer(x):
    """Determine whether some object ``x`` is an
    integer type (int, long, etc). This is part of the 
    ``fixes`` module, since Python 3 removes the long
    datatype, we have to check the version major.

    Parameters
    ----------

    x : object
        The item to assess whether is an integer.


    Returns
    -------

    bool
        True if ``x`` is an integer type
    """
    return (not isinstance(x, (bool, np.bool))) and \
        isinstance(x, (numbers.Integral, int, np.int, np.long, long))  # no long type in python 3 

Example 2

def test_object_array_self_reference(self):
        # Object arrays with references to themselves can cause problems
        a = np.array(0, dtype=object)
        a[()] = a
        assert_raises(TypeError, int, a)
        assert_raises(TypeError, long, a)
        assert_raises(TypeError, float, a)
        assert_raises(TypeError, oct, a)
        assert_raises(TypeError, hex, a)

        # Test the same for a circular reference.
        b = np.array(a, dtype=object)
        a[()] = b
        assert_raises(TypeError, int, a)
        # Numpy has no tp_traverse currently, so circular references
        # cannot be detected. So resolve it:
        a[()] = 0

        # This was causing a to become like the above
        a = np.array(0, dtype=object)
        a[...] += 1
        assert_equal(a, 1) 

Example 3

def test_attribute_wrapper():
    def attribute_value_test(attribute_value):
        node = make_node('Abs', ['X'], [], name='test_node', test_attribute=attribute_value)
        model = make_model(make_graph([node], 'test_graph', [
            make_tensor_value_info('X', onnx.TensorProto.FLOAT, [1, 2]),
        ], []), producer_name='ngraph')
        wrapped_attribute = ModelWrapper(model).graph.node[0].get_attribute('test_attribute')
        return wrapped_attribute.get_value()

    tensor = make_tensor('test_tensor', onnx.TensorProto.FLOAT, [1], [1])

    assert attribute_value_test(1) == 1
    assert type(attribute_value_test(1)) == np.long
    assert attribute_value_test(1.0) == 1.0
    assert type(attribute_value_test(1.0)) == np.float
    assert attribute_value_test('test') == 'test'
    assert attribute_value_test(tensor)._proto == tensor

    assert attribute_value_test([1, 2, 3]) == [1, 2, 3]
    assert attribute_value_test([1.0, 2.0, 3.0]) == [1.0, 2.0, 3.0]
    assert attribute_value_test(['test1', 'test2']) == ['test1', 'test2']
    assert attribute_value_test([tensor, tensor])[1]._proto == tensor 

Example 4

def test_object_array_self_reference(self):
        # Object arrays with references to themselves can cause problems
        a = np.array(0, dtype=object)
        a[()] = a
        assert_raises(TypeError, int, a)
        assert_raises(TypeError, long, a)
        assert_raises(TypeError, float, a)
        assert_raises(TypeError, oct, a)
        assert_raises(TypeError, hex, a)

        # Test the same for a circular reference.
        b = np.array(a, dtype=object)
        a[()] = b
        assert_raises(TypeError, int, a)
        # Numpy has no tp_traverse currently, so circular references
        # cannot be detected. So resolve it:
        a[()] = 0

        # This was causing a to become like the above
        a = np.array(0, dtype=object)
        a[...] += 1
        assert_equal(a, 1) 

Example 5

def test_object_array_self_reference(self):
        # Object arrays with references to themselves can cause problems
        a = np.array(0, dtype=object)
        a[()] = a
        assert_raises(TypeError, int, a)
        assert_raises(TypeError, long, a)
        assert_raises(TypeError, float, a)
        assert_raises(TypeError, oct, a)
        assert_raises(TypeError, hex, a)

        # Test the same for a circular reference.
        b = np.array(a, dtype=object)
        a[()] = b
        assert_raises(TypeError, int, a)
        # Numpy has no tp_traverse currently, so circular references
        # cannot be detected. So resolve it:
        a[()] = 0

        # This was causing a to become like the above
        a = np.array(0, dtype=object)
        a[...] += 1
        assert_equal(a, 1) 

Example 6

def test_object_array_self_reference(self):
        # Object arrays with references to themselves can cause problems
        a = np.array(0, dtype=object)
        a[()] = a
        assert_raises(TypeError, int, a)
        assert_raises(TypeError, long, a)
        assert_raises(TypeError, float, a)
        assert_raises(TypeError, oct, a)
        assert_raises(TypeError, hex, a)

        # Test the same for a circular reference.
        b = np.array(a, dtype=object)
        a[()] = b
        assert_raises(TypeError, int, a)
        # Numpy has no tp_traverse currently, so circular references
        # cannot be detected. So resolve it:
        a[()] = 0

        # This was causing a to become like the above
        a = np.array(0, dtype=object)
        a[...] += 1
        assert_equal(a, 1) 

Example 7

def test_respect_dtype_singleton(self):
        # See gh-7203
        for dt in self.itype:
            lbnd = 0 if dt is np.bool_ else np.iinfo(dt).min
            ubnd = 2 if dt is np.bool_ else np.iinfo(dt).max + 1

            sample = self.rfunc(lbnd, ubnd, dtype=dt)
            self.assertEqual(sample.dtype, np.dtype(dt))

        for dt in (np.bool, np.int, np.long):
            lbnd = 0 if dt is np.bool else np.iinfo(dt).min
            ubnd = 2 if dt is np.bool else np.iinfo(dt).max + 1

            # gh-7284: Ensure that we get Python data types
            sample = self.rfunc(lbnd, ubnd, dtype=dt)
            self.assertFalse(hasattr(sample, 'dtype'))
            self.assertEqual(type(sample), dt) 

Example 8

def test_object_array_self_reference(self):
        # Object arrays with references to themselves can cause problems
        a = np.array(0, dtype=object)
        a[()] = a
        assert_raises(TypeError, int, a)
        assert_raises(TypeError, long, a)
        assert_raises(TypeError, float, a)
        assert_raises(TypeError, oct, a)
        assert_raises(TypeError, hex, a)

        # Test the same for a circular reference.
        b = np.array(a, dtype=object)
        a[()] = b
        assert_raises(TypeError, int, a)
        # Numpy has no tp_traverse currently, so circular references
        # cannot be detected. So resolve it:
        a[()] = 0

        # This was causing a to become like the above
        a = np.array(0, dtype=object)
        a[...] += 1
        assert_equal(a, 1) 

Example 9

def test_object_array_self_reference(self):
        # Object arrays with references to themselves can cause problems
        a = np.array(0, dtype=object)
        a[()] = a
        assert_raises(TypeError, int, a)
        assert_raises(TypeError, long, a)
        assert_raises(TypeError, float, a)
        assert_raises(TypeError, oct, a)
        assert_raises(TypeError, hex, a)

        # Test the same for a circular reference.
        b = np.array(a, dtype=object)
        a[()] = b
        assert_raises(TypeError, int, a)
        # NumPy has no tp_traverse currently, so circular references
        # cannot be detected. So resolve it:
        a[()] = 0

        # This was causing a to become like the above
        a = np.array(0, dtype=object)
        a[...] += 1
        assert_equal(a, 1) 

Example 10

def test_object_array_self_reference(self):
        # Object arrays with references to themselves can cause problems
        a = np.array(0, dtype=object)
        a[()] = a
        assert_raises(TypeError, int, a)
        assert_raises(TypeError, long, a)
        assert_raises(TypeError, float, a)
        assert_raises(TypeError, oct, a)
        assert_raises(TypeError, hex, a)

        # Test the same for a circular reference.
        b = np.array(a, dtype=object)
        a[()] = b
        assert_raises(TypeError, int, a)
        # Numpy has no tp_traverse currently, so circular references
        # cannot be detected. So resolve it:
        a[()] = 0

        # This was causing a to become like the above
        a = np.array(0, dtype=object)
        a[...] += 1
        assert_equal(a, 1) 

Example 11

def _extract_field_names(self, event):
        # extract field names from sids (price, volume etc), make sure
        # every sid has the same fields.
        sid_keys = []
        for sid in itervalues(event.data):
            keys = set([name for name, value in sid.items()
                        if isinstance(value,
                                      (int,
                                       float,
                                       numpy.integer,
                                       numpy.float,
                                       numpy.long))
                        ])
            sid_keys.append(keys)

        # with CUSTOM data events, there may be different fields
        # per sid. So the allowable keys are the union of all events.
        union = set.union(*sid_keys)
        unwanted_fields = {
            'portfolio',
            'sid',
            'dt',
            'type',
            'source_id',
            '_initial_len',
        }
        return union - unwanted_fields 

Example 12

def fit(self, X):
        _X = self.__aggregate_dataset(X)
        self.polynomial = np.polyfit(_X['expenses'].astype(np.long),
                                     _X['distance_traveled'].astype(np.long),
                                     3)
        self._polynomial_fn = np.poly1d(self.polynomial)
        return self 

Example 13

def test_is_numeric():
    assert is_numeric(1)
    assert is_numeric(1.)
    assert is_numeric(np.long(1))
    assert is_numeric(np.int(1.0))
    assert is_numeric(np.float(1))
    assert is_numeric(1e-12)
    assert not is_numeric('a')
    assert not is_numeric(True) 

Example 14

def score(self, X, y=None):
        """Returns the score on the given data, if the estimator has been refit.
        This uses the score defined by ``scoring`` where provided, and the
        ``best_estimator_.score`` method otherwise.

        Parameters
        ----------
        X : array-like or pandas DataFrame, shape = [n_samples, n_features]
            Input data, where n_samples is the number of samples and
            n_features is the number of features.

        y : array-like, shape = [n_samples] or [n_samples, n_output], optional
            Target relative to X for classification or regression;
            None for unsupervised learning.

        Returns
        -------
        score : float

        Notes
        -----
         * The long-standing behavior of this method changed in version 0.16.
         * It no longer uses the metric provided by ``estimator.score`` if the
           ``scoring`` parameter was set when fitting.
        """
        X = _validate_X(X)
        y = _validate_y(y)

        if not hasattr(self, 'scorer_') or self.scorer_ is None:
            raise ValueError("No score function explicitly defined, "
                             "and the estimator doesn't provide one %s"
                             % self.best_estimator_)

        # we've already fit, and we have a scorer
        if self.scoring is not None and hasattr(self.best_estimator_, 'score'):
            warnings.warn("The long-standing behavior to use the estimator's "
                          "score function in {0}.score has changed. The "
                          "scoring parameter is now used."
                          "".format(self.__class__.__name__),
                          UserWarning)
        return self.scorer_(self.best_estimator_, X, y) 

Example 15

def is_integer(x):
    """Determine whether some object ``x`` is an
    integer type (int, long, etc).

    Parameters
    ----------

    x : object
        The item to assess


    Returns
    -------

    bool
        True if ``x`` is an integer type
    """
    try:
        python_major_version = sys.version_info.major
        assert(python_major_version == 2 or python_major_version == 3)
        if python_major_version == 2:
            return (not isinstance(x, (bool, np.bool))) and \
                isinstance(x, (numbers.Integral, int, long, np.int, np.long))
        elif python_major_version == 3:
            return (not isinstance(x, (bool, np.bool))) and \
                isinstance(x, (numbers.Integral, int, np.int, np.long))
    except AssertionError:
        _, _, tb = sys.exc_info()
        traceback.print_tb(tb)  # Fixed format
        tb_info = traceback.extract_tb(tb)
        filename, line, func, text = tb_info[-1]

        print('An error occurred on line {} in statement {}'.format(line, text))
        exit(1)
    return _is_integer(x) 

Example 16

def __init__(self, weights=None, size_average=None):
        super(ClassNLLCriterion, self).__init__()
        if size_average:
            self.size_average = size_average
        else:
            self.size_average = True

        if weights:
            # assert(weights:dim() == 1, "weights input should be 1-D Tensor")
            self.weights = weights
        self.output_tensor = np.zeros(1)
        self.total_weight_tensor = np.ones(1)
        self.target = np.zeros(1)  # , dtype=np.long) 

Example 17

def test_signed_integer_division_overflow(self):
        # Ticket #1317.
        def test_type(t):
            min = np.array([np.iinfo(t).min])
            min //= -1

        with np.errstate(divide="ignore"):
            for t in (np.int8, np.int16, np.int32, np.int64, np.int, np.long):
                test_type(t) 

Example 18

def test_array_side_effect(self):
        # The second use of itemsize was throwing an exception because in
        # ctors.c, discover_itemsize was calling PyObject_Length without
        # checking the return code.  This failed to get the length of the
        # number 2, and the exception hung around until something checked
        # PyErr_Occurred() and returned an error.
        assert_equal(np.dtype('S10').itemsize, 10)
        np.array([['abc', 2], ['long   ', '0123456789']], dtype=np.string_)
        assert_equal(np.dtype('S10').itemsize, 10) 

Example 19

def test_sequence_long(self):
        assert_equal(np.array([long(4), long(4)]).dtype, np.long)
        assert_equal(np.array([long(4), 2**80]).dtype, np.object)
        assert_equal(np.array([long(4), 2**80, long(4)]).dtype, np.object)
        assert_equal(np.array([2**80, long(4)]).dtype, np.object) 

Example 20

def test_matrix_multiply(self):
        self.compare_matrix_multiply_results(np.long)
        self.compare_matrix_multiply_results(np.double) 

Example 21

def test_random_integers_max_int(self):
        # Tests whether random_integers can generate the
        # maximum allowed Python int that can be converted
        # into a C long. Previous implementations of this
        # method have thrown an OverflowError when attempting
        # to generate this integer.
        actual = np.random.random_integers(np.iinfo('l').max,
                                           np.iinfo('l').max)
        desired = np.iinfo('l').max
        np.testing.assert_equal(actual, desired) 

Example 22

def test_signed_integer_division_overflow(self):
        # Ticket #1317.
        def test_type(t):
            min = np.array([np.iinfo(t).min])
            min //= -1

        with np.errstate(divide="ignore"):
            for t in (np.int8, np.int16, np.int32, np.int64, np.int, np.long):
                test_type(t) 

Example 23

def test_array_side_effect(self):
        # The second use of itemsize was throwing an exception because in
        # ctors.c, discover_itemsize was calling PyObject_Length without
        # checking the return code.  This failed to get the length of the
        # number 2, and the exception hung around until something checked
        # PyErr_Occurred() and returned an error.
        assert_equal(np.dtype('S10').itemsize, 10)
        np.array([['abc', 2], ['long   ', '0123456789']], dtype=np.string_)
        assert_equal(np.dtype('S10').itemsize, 10) 

Example 24

def test_sequence_long(self):
        assert_equal(np.array([long(4), long(4)]).dtype, np.long)
        assert_equal(np.array([long(4), 2**80]).dtype, np.object)
        assert_equal(np.array([long(4), 2**80, long(4)]).dtype, np.object)
        assert_equal(np.array([2**80, long(4)]).dtype, np.object) 

Example 25

def test_matrix_multiply(self):
        self.compare_matrix_multiply_results(np.long)
        self.compare_matrix_multiply_results(np.double) 

Example 26

def test_random_integers_max_int(self):
        # Tests whether random_integers can generate the
        # maximum allowed Python int that can be converted
        # into a C long. Previous implementations of this
        # method have thrown an OverflowError when attempting
        # to generate this integer.
        actual = np.random.random_integers(np.iinfo('l').max,
                                           np.iinfo('l').max)
        desired = np.iinfo('l').max
        np.testing.assert_equal(actual, desired) 

Example 27

def get_landmarks(self,img,box=None,left=None,top=None,right=None,bottom=None):
		if box is not None:
			left,top,right,bottom = box
		left = np.long(left)
		top = np.long(top)
		right = np.long(right)
		bottom = np.long(bottom)
		bb = dlib.rectangle(left,top,right,bottom)
		landmarks = self.align_tool.findLandmarks(img,bb)
		npLandmarks = np.float32(landmarks)
		npLandmarkIndices = np.array(self.landmarkIndices)
		return npLandmarks[npLandmarkIndices] 

Example 28

def test_signed_integer_division_overflow(self):
        # Ticket #1317.
        def test_type(t):
            min = np.array([np.iinfo(t).min])
            min //= -1

        with np.errstate(divide="ignore"):
            for t in (np.int8, np.int16, np.int32, np.int64, np.int, np.long):
                test_type(t) 

Example 29

def test_array_side_effect(self):
        # The second use of itemsize was throwing an exception because in
        # ctors.c, discover_itemsize was calling PyObject_Length without
        # checking the return code.  This failed to get the length of the
        # number 2, and the exception hung around until something checked
        # PyErr_Occurred() and returned an error.
        assert_equal(np.dtype('S10').itemsize, 10)
        np.array([['abc', 2], ['long   ', '0123456789']], dtype=np.string_)
        assert_equal(np.dtype('S10').itemsize, 10) 

Example 30

def test_sequence_long(self):
        assert_equal(np.array([long(4), long(4)]).dtype, np.long)
        assert_equal(np.array([long(4), 2**80]).dtype, np.object)
        assert_equal(np.array([long(4), 2**80, long(4)]).dtype, np.object)
        assert_equal(np.array([2**80, long(4)]).dtype, np.object) 

Example 31

def test_matrix_multiply(self):
        self.compare_matrix_multiply_results(np.long)
        self.compare_matrix_multiply_results(np.double) 

Example 32

def test_signed_integer_division_overflow(self):
        # Ticket #1317.
        def test_type(t):
            min = np.array([np.iinfo(t).min])
            min //= -1

        with np.errstate(divide="ignore"):
            for t in (np.int8, np.int16, np.int32, np.int64, np.int, np.long):
                test_type(t) 

Example 33

def test_array_side_effect(self):
        # The second use of itemsize was throwing an exception because in
        # ctors.c, discover_itemsize was calling PyObject_Length without
        # checking the return code.  This failed to get the length of the
        # number 2, and the exception hung around until something checked
        # PyErr_Occurred() and returned an error.
        assert_equal(np.dtype('S10').itemsize, 10)
        np.array([['abc', 2], ['long   ', '0123456789']], dtype=np.string_)
        assert_equal(np.dtype('S10').itemsize, 10) 

Example 34

def test_sequence_long(self):
        assert_equal(np.array([long(4), long(4)]).dtype, np.long)
        assert_equal(np.array([long(4), 2**80]).dtype, np.object)
        assert_equal(np.array([long(4), 2**80, long(4)]).dtype, np.object)
        assert_equal(np.array([2**80, long(4)]).dtype, np.object) 

Example 35

def test_matrix_multiply(self):
        self.compare_matrix_multiply_results(np.long)
        self.compare_matrix_multiply_results(np.double) 

Example 36

def test_random_integers_max_int(self):
        # Tests whether random_integers can generate the
        # maximum allowed Python int that can be converted
        # into a C long. Previous implementations of this
        # method have thrown an OverflowError when attempting
        # to generate this integer.
        with suppress_warnings() as sup:
            w = sup.record(DeprecationWarning)
            actual = mt19937.random_integers(np.iinfo('l').max,
                                             np.iinfo('l').max)
            assert_(len(w) == 1)

        desired = np.iinfo('l').max
        assert_equal(actual, desired) 

Example 37

def test_signed_integer_division_overflow(self):
        # Ticket #1317.
        def test_type(t):
            min = np.array([np.iinfo(t).min])
            min //= -1

        with np.errstate(divide="ignore"):
            for t in (np.int8, np.int16, np.int32, np.int64, np.int, np.long):
                test_type(t) 

Example 38

def test_array_side_effect(self):
        # The second use of itemsize was throwing an exception because in
        # ctors.c, discover_itemsize was calling PyObject_Length without
        # checking the return code.  This failed to get the length of the
        # number 2, and the exception hung around until something checked
        # PyErr_Occurred() and returned an error.
        assert_equal(np.dtype('S10').itemsize, 10)
        np.array([['abc', 2], ['long   ', '0123456789']], dtype=np.string_)
        assert_equal(np.dtype('S10').itemsize, 10) 

Example 39

def test_sequence_long(self):
        assert_equal(np.array([long(4), long(4)]).dtype, np.long)
        assert_equal(np.array([long(4), 2**80]).dtype, np.object)
        assert_equal(np.array([long(4), 2**80, long(4)]).dtype, np.object)
        assert_equal(np.array([2**80, long(4)]).dtype, np.object) 

Example 40

def test_matrix_multiply(self):
        self.compare_matrix_multiply_results(np.long)
        self.compare_matrix_multiply_results(np.double) 

Example 41

def test_random_integers_max_int(self):
        # Tests whether random_integers can generate the
        # maximum allowed Python int that can be converted
        # into a C long. Previous implementations of this
        # method have thrown an OverflowError when attempting
        # to generate this integer.
        actual = np.random.random_integers(np.iinfo('l').max,
                                           np.iinfo('l').max)
        desired = np.iinfo('l').max
        np.testing.assert_equal(actual, desired) 

Example 42

def test_signed_integer_division_overflow(self):
        # Ticket #1317.
        def test_type(t):
            min = np.array([np.iinfo(t).min])
            min //= -1

        with np.errstate(divide="ignore"):
            for t in (np.int8, np.int16, np.int32, np.int64, np.int, np.long):
                test_type(t) 

Example 43

def test_array_side_effect(self):
        # The second use of itemsize was throwing an exception because in
        # ctors.c, discover_itemsize was calling PyObject_Length without
        # checking the return code.  This failed to get the length of the
        # number 2, and the exception hung around until something checked
        # PyErr_Occurred() and returned an error.
        assert_equal(np.dtype('S10').itemsize, 10)
        np.array([['abc', 2], ['long   ', '0123456789']], dtype=np.string_)
        assert_equal(np.dtype('S10').itemsize, 10) 

Example 44

def test_sequence_long(self):
        assert_equal(np.array([long(4), long(4)]).dtype, np.long)
        assert_equal(np.array([long(4), 2**80]).dtype, np.object)
        assert_equal(np.array([long(4), 2**80, long(4)]).dtype, np.object)
        assert_equal(np.array([2**80, long(4)]).dtype, np.object) 

Example 45

def test_matrix_multiply(self):
        self.compare_matrix_multiply_results(np.long)
        self.compare_matrix_multiply_results(np.double) 

Example 46

def test_random_integers_max_int(self):
        # Tests whether random_integers can generate the
        # maximum allowed Python int that can be converted
        # into a C long. Previous implementations of this
        # method have thrown an OverflowError when attempting
        # to generate this integer.
        with suppress_warnings() as sup:
            w = sup.record(DeprecationWarning)
            actual = np.random.random_integers(np.iinfo('l').max,
                                               np.iinfo('l').max)
            assert_(len(w) == 1)

        desired = np.iinfo('l').max
        assert_equal(actual, desired) 

Example 47

def assert_valid_percent(x, eq_lower=False, eq_upper=False):
    # these are all castable to float
    assert_is_type(x, (float, np.float, np.int, int, long, np.long))
    x = float(x)

    # test lower bound:
    if not ((eq_lower and 0. <= x) or ((not eq_lower) and 0. < x)):
        raise ValueError('Expected 0. %s x, but got x=%r'
                         % ('<=' if eq_lower else '<', x))
    if not ((eq_upper and x <= 1.) or ((not eq_upper) and x < 1.)):
        raise ValueError('Expected x %s 1., but got x=%r'
                         % ('<=' if eq_upper else '<', x))
    return x 

Example 48

def get_random_state(random_state):
    # if it's a seed, return a new seeded RandomState
    if isinstance(random_state, (int, np.int, long, np.long, NoneType)):
        return RandomState(random_state)
    # if it's a RandomState, it's been initialized
    elif isinstance(random_state, RandomState):
        return random_state
    else:
        raise TypeError('cannot seed new RandomState with type=%s'
                        % type(random_state)) 

Example 49

def test_signed_integer_division_overflow(self):
        # Ticket #1317.
        def test_type(t):
            min = np.array([np.iinfo(t).min])
            min //= -1

        with np.errstate(divide="ignore"):
            for t in (np.int8, np.int16, np.int32, np.int64, np.int, np.long):
                test_type(t) 

Example 50

def test_array_side_effect(self):
        # The second use of itemsize was throwing an exception because in
        # ctors.c, discover_itemsize was calling PyObject_Length without
        # checking the return code.  This failed to get the length of the
        # number 2, and the exception hung around until something checked
        # PyErr_Occurred() and returned an error.
        assert_equal(np.dtype('S10').itemsize, 10)
        np.array([['abc', 2], ['long   ', '0123456789']], dtype=np.string_)
        assert_equal(np.dtype('S10').itemsize, 10) 
点赞