The following are code examples for showing how to use . They are extracted from open source Python projects. You can vote up the examples you like or vote down the exmaples you don’t like. You can also save this page to your account.
Example 1
def imin(arrays, axis, ignore_nan = False): """ Minimum of a stream of arrays along an axis. Parameters ---------- arrays : iterable Arrays to be reduced. axis : int or None, optional Axis along which the minimum is found. The default is to find the minimum along the 'stream axis', as if all arrays in ``array`` were stacked along a new dimension. If ``axis = None``, arrays in ``arrays`` are flattened before reduction. ignore_nan : bool, optional If True, NaNs are ignored. Default is propagation of NaNs. Yields ------ online_min : ndarray Cumulative minimum. """ ufunc = np.fmin if ignore_nan else np.minimum yield from ireduce_ufunc(arrays, ufunc, axis)
Example 2
def test_reduce(self): dflt = np.typecodes['AllFloat'] dint = np.typecodes['AllInteger'] seq1 = np.arange(11) seq2 = seq1[::-1] func = np.fmin.reduce for dt in dint: tmp1 = seq1.astype(dt) tmp2 = seq2.astype(dt) assert_equal(func(tmp1), 0) assert_equal(func(tmp2), 0) for dt in dflt: tmp1 = seq1.astype(dt) tmp2 = seq2.astype(dt) assert_equal(func(tmp1), 0) assert_equal(func(tmp2), 0) tmp1[::2] = np.nan tmp2[::2] = np.nan assert_equal(func(tmp1), 1) assert_equal(func(tmp2), 1)
Example 3
def test_reduce(self): dflt = np.typecodes['AllFloat'] dint = np.typecodes['AllInteger'] seq1 = np.arange(11) seq2 = seq1[::-1] func = np.fmin.reduce for dt in dint: tmp1 = seq1.astype(dt) tmp2 = seq2.astype(dt) assert_equal(func(tmp1), 0) assert_equal(func(tmp2), 0) for dt in dflt: tmp1 = seq1.astype(dt) tmp2 = seq2.astype(dt) assert_equal(func(tmp1), 0) assert_equal(func(tmp2), 0) tmp1[::2] = np.nan tmp2[::2] = np.nan assert_equal(func(tmp1), 1) assert_equal(func(tmp2), 1)
Example 4
def __init__(self, dim=3): assert dim == 3 centers = numpy.array([ [.1, .8, .3], ]) e_mat = numpy.array([ [5, 5, 5], ]) coefs = numpy.array([-5]) def kernel(x): r2 = self.dist_sq(x, centers, e_mat) return numpy.exp(-r2) super(McCourt14, self).__init__(dim, kernel, e_mat, coefs, centers) self.min_loc = [.1, .8, .3] self.fmin = -5 self.fmax = 0.00030641748 self.classifiers = ['boring', 'unimodal']
Example 5
def __init__(self, dim=3): assert dim == 3 centers = numpy.array([ [.1, .8, .3], ]) e_mat = numpy.array([ [7, 7, 7], ]) coefs = numpy.array([-5]) def kernel(x): r = numpy.sqrt(self.dist_sq(x, centers, e_mat)) return numpy.exp(-r) super(McCourt15, self).__init__(dim, kernel, e_mat, coefs, centers) self.min_loc = [.1, .8, .3] self.fmin = -5 self.fmax = 0.00030641748 self.classifiers = ['boring', 'unimodal', 'nonsmooth']
Example 6
def __init__(self, dim=4): assert dim == 4 centers = numpy.array([ [.3, .8, .3, .6], [.4, .9, .4, .7], ]) e_mat = numpy.array([ [5, 5, 5, 5], [5, 5, 5, 5], ]) coefs = numpy.array([-5, 5]) def kernel(x): r2 = self.dist_sq(x, centers, e_mat) return 1 / numpy.sqrt(1 + r2) super(McCourt16, self).__init__(dim, kernel, e_mat, coefs, centers) self.min_loc = [.1858, .6858, .1858, .4858] self.fmin = -0.84221700966 self.fmax = 0.84132432380 self.classifiers = ['boring', 'unimodal']
Example 7
def __init__(self, dim=7): assert dim == 7 centers = numpy.array([ [.3, .8, .3, .6, .2, .8, .5], [.8, .3, .8, .2, .5, .2, .8], [.2, .7, .2, .5, .4, .7, .3], ]) e_mat = numpy.array([ [4, 4, 4, 4, 4, 4, 4], [4, 4, 4, 4, 4, 4, 4], [4, 4, 4, 4, 4, 4, 4], ]) coefs = numpy.array([-5, 5, 5]) def kernel(x): r2 = self.dist_sq(x, centers, e_mat) return 1 / numpy.sqrt(1 + r2) super(McCourt17, self).__init__(dim, kernel, e_mat, coefs, centers) self.min_loc = [.3125, .9166, .3125, .7062, .0397, .9270, .5979] self.fmin = -0.47089199032 self.fmax = 4.98733340158 self.classifiers = ['boring', 'unimodal']
Example 8
def __init__(self, dim=2): full_min_loc_vec = [ 2.202905513296628, 1.570796322320509, 1.284991564577549, 1.923058467505610, 1.720469766517768, 1.570796319218113, 1.454413962081172, 1.756086513575824, 1.655717409323190, 1.570796319387859, 1.497728796097675, 1.923739461688219, ] full_fmin_vec = [ 0.8013034100985499, 1, 0.9590912698958649, 0.9384624184720668, 0.9888010806214966, 1, 0.9932271353558245, 0.9828720362721659, 0.9963943649250527, 1, 0.9973305415507061, 0.9383447102236013, ] assert dim <= len(full_min_loc_vec) super(Michalewicz, self).__init__(dim) self.bounds = lzip([0] * self.dim, [pi] * self.dim) self.min_loc = full_min_loc_vec[:dim] self.fmin = -sum(full_fmin_vec[:dim]) self.fmax = 0.0 self.classifiers = ['boring', 'complicated']
Example 9
def do_evaluate(self, x): zh1 = (lambda v: 9 - v[0] - v[1]) zh2 = (lambda v: (v[0] - 3) ** 2 + (v[1] - 2) ** 2 - 16) zh3 = (lambda v: v[0] * v[1] - 14) zp = (lambda v: 100 * (1 + v)) px = [ zh1(x), zp(zh2(x)) * sign(zh2(x)), zp(zh3(x)) * sign(zh3(x)), zp(-x[0]) * sign(x[0]), zp(-x[1]) * sign(x[1]) ] return numpy.fmin(max(px), self.fmax) # Below are all 1D functions
Example 10
def test_reduce(self): dflt = np.typecodes['AllFloat'] dint = np.typecodes['AllInteger'] seq1 = np.arange(11) seq2 = seq1[::-1] func = np.fmin.reduce for dt in dint: tmp1 = seq1.astype(dt) tmp2 = seq2.astype(dt) assert_equal(func(tmp1), 0) assert_equal(func(tmp2), 0) for dt in dflt: tmp1 = seq1.astype(dt) tmp2 = seq2.astype(dt) assert_equal(func(tmp1), 0) assert_equal(func(tmp2), 0) tmp1[::2] = np.nan tmp2[::2] = np.nan assert_equal(func(tmp1), 1) assert_equal(func(tmp2), 1)
Example 11
def test_NotImplemented_not_returned(self): # See gh-5964 and gh-2091. Some of these functions are not operator # related and were fixed for other reasons in the past. binary_funcs = [ np.power, np.add, np.subtract, np.multiply, np.divide, np.true_divide, np.floor_divide, np.bitwise_and, np.bitwise_or, np.bitwise_xor, np.left_shift, np.right_shift, np.fmax, np.fmin, np.fmod, np.hypot, np.logaddexp, np.logaddexp2, np.logical_and, np.logical_or, np.logical_xor, np.maximum, np.minimum, np.mod ] # These functions still return NotImplemented. Will be fixed in # future. # bad = [np.greater, np.greater_equal, np.less, np.less_equal, np.not_equal] a = np.array('1') b = 1 for f in binary_funcs: assert_raises(TypeError, f, a, b)
Example 12
def test_reduce(self): dflt = np.typecodes['AllFloat'] dint = np.typecodes['AllInteger'] seq1 = np.arange(11) seq2 = seq1[::-1] func = np.fmin.reduce for dt in dint: tmp1 = seq1.astype(dt) tmp2 = seq2.astype(dt) assert_equal(func(tmp1), 0) assert_equal(func(tmp2), 0) for dt in dflt: tmp1 = seq1.astype(dt) tmp2 = seq2.astype(dt) assert_equal(func(tmp1), 0) assert_equal(func(tmp2), 0) tmp1[::2] = np.nan tmp2[::2] = np.nan assert_equal(func(tmp1), 1) assert_equal(func(tmp2), 1)
Example 13
def test_NotImplemented_not_returned(self): # See gh-5964 and gh-2091. Some of these functions are not operator # related and were fixed for other reasons in the past. binary_funcs = [ np.power, np.add, np.subtract, np.multiply, np.divide, np.true_divide, np.floor_divide, np.bitwise_and, np.bitwise_or, np.bitwise_xor, np.left_shift, np.right_shift, np.fmax, np.fmin, np.fmod, np.hypot, np.logaddexp, np.logaddexp2, np.logical_and, np.logical_or, np.logical_xor, np.maximum, np.minimum, np.mod ] # These functions still return NotImplemented. Will be fixed in # future. # bad = [np.greater, np.greater_equal, np.less, np.less_equal, np.not_equal] a = np.array('1') b = 1 for f in binary_funcs: assert_raises(TypeError, f, a, b)
Example 14
def test_reduce(self): dflt = np.typecodes['AllFloat'] dint = np.typecodes['AllInteger'] seq1 = np.arange(11) seq2 = seq1[::-1] func = np.fmin.reduce for dt in dint: tmp1 = seq1.astype(dt) tmp2 = seq2.astype(dt) assert_equal(func(tmp1), 0) assert_equal(func(tmp2), 0) for dt in dflt: tmp1 = seq1.astype(dt) tmp2 = seq2.astype(dt) assert_equal(func(tmp1), 0) assert_equal(func(tmp2), 0) tmp1[::2] = np.nan tmp2[::2] = np.nan assert_equal(func(tmp1), 1) assert_equal(func(tmp2), 1)
Example 15
def test_NotImplemented_not_returned(self): # See gh-5964 and gh-2091. Some of these functions are not operator # related and were fixed for other reasons in the past. binary_funcs = [ np.power, np.add, np.subtract, np.multiply, np.divide, np.true_divide, np.floor_divide, np.bitwise_and, np.bitwise_or, np.bitwise_xor, np.left_shift, np.right_shift, np.fmax, np.fmin, np.fmod, np.hypot, np.logaddexp, np.logaddexp2, np.logical_and, np.logical_or, np.logical_xor, np.maximum, np.minimum, np.mod ] # These functions still return NotImplemented. Will be fixed in # future. # bad = [np.greater, np.greater_equal, np.less, np.less_equal, np.not_equal] a = np.array('1') b = 1 for f in binary_funcs: assert_raises(TypeError, f, a, b)
Example 16
def test_reduce(self): dflt = np.typecodes['AllFloat'] dint = np.typecodes['AllInteger'] seq1 = np.arange(11) seq2 = seq1[::-1] func = np.fmin.reduce for dt in dint: tmp1 = seq1.astype(dt) tmp2 = seq2.astype(dt) assert_equal(func(tmp1), 0) assert_equal(func(tmp2), 0) for dt in dflt: tmp1 = seq1.astype(dt) tmp2 = seq2.astype(dt) assert_equal(func(tmp1), 0) assert_equal(func(tmp2), 0) tmp1[::2] = np.nan tmp2[::2] = np.nan assert_equal(func(tmp1), 1) assert_equal(func(tmp2), 1)
Example 17
def test_NotImplemented_not_returned(self): # See gh-5964 and gh-2091. Some of these functions are not operator # related and were fixed for other reasons in the past. binary_funcs = [ np.power, np.add, np.subtract, np.multiply, np.divide, np.true_divide, np.floor_divide, np.bitwise_and, np.bitwise_or, np.bitwise_xor, np.left_shift, np.right_shift, np.fmax, np.fmin, np.fmod, np.hypot, np.logaddexp, np.logaddexp2, np.logical_and, np.logical_or, np.logical_xor, np.maximum, np.minimum, np.mod ] # These functions still return NotImplemented. Will be fixed in # future. # bad = [np.greater, np.greater_equal, np.less, np.less_equal, np.not_equal] a = np.array('1') b = 1 for f in binary_funcs: assert_raises(TypeError, f, a, b)
Example 18
def sample_v_given_h(self, h, eps=1e-5): mean_v = self.mean_v.eval(feed_dict={self.hidden: h}) if not self.beta_sampling: rnds = np.random.randn(mean_v.shape[0], mean_v.shape[1]).astype(h.dtype) return np.clip(mean_v + rnds * self.sigma, eps, 1. - eps) mvvm = mean_v * (1 - mean_v) var_v = np.fmin(mvvm, self.sigma**2) operand = (mvvm + 1.5 * eps) / (var_v + eps) - 1 alpha = mean_v * operand + eps beta = (1 - mean_v) * operand + eps return np.random.beta(alpha, beta).astype(h.dtype)
Example 19
def sample_h_given_v(self, v, eps=1e-5): mean_h = self.mean_h.eval(feed_dict={self.visible: v}) if not self.beta_sampling: rnds = np.random.randn(mean_h.shape[0], mean_h.shape[1]).astype(v.dtype) return np.clip(mean_h + rnds * self.sigma, eps, 1. - eps) mhhm = mean_h * (1 - mean_h) # Handle the cases where h is close to 0.0 or 1.0 # Normally beta distribution will give a sample close to 0.0 or 1.0, # breaking requirement that there be some variation (sample dispersion # close to 0.0 when it ought to be close to self.sigma). small_h = self.sigma**2 > mhhm small_count = np.sum(small_h) if small_count: # We randomize these cases with probability self.sigma. switch = np.random.rand(small_count) < self.sigma if np.sum(switch): mean_h[small_h][switch] = np.random.rand(np.sum(switch)) mhhm = mean_h * (1 - mean_h) var_h = np.fmin(mhhm, self.sigma**2) operand = (mhhm + 1.5 * eps) / (var_h + eps) - 1 alpha = mean_h * operand + eps beta = (1 - mean_h) * operand + eps return np.random.beta(alpha, beta).astype(v.dtype)
Example 20
def test_reduce_complex(self): assert_equal(np.fmin.reduce([1, 2j]), 2j) assert_equal(np.fmin.reduce([1+3j, 2j]), 2j)
Example 21
def test_float_nans(self): nan = np.nan arg1 = np.array([0, nan, nan]) arg2 = np.array([nan, 0, nan]) out = np.array([0, 0, nan]) assert_equal(np.fmin(arg1, arg2), out)
Example 22
def test_complex_nans(self): nan = np.nan for cnan in [complex(nan, 0), complex(0, nan), complex(nan, nan)]: arg1 = np.array([0, cnan, cnan], dtype=np.complex) arg2 = np.array([cnan, 0, cnan], dtype=np.complex) out = np.array([0, 0, nan], dtype=np.complex) assert_equal(np.fmin(arg1, arg2), out)
Example 23
def test_NotImplemented_not_returned(self): # See gh-5964 and gh-2091. Some of these functions are not operator # related and were fixed for other reasons in the past. binary_funcs = [ np.power, np.add, np.subtract, np.multiply, np.divide, np.true_divide, np.floor_divide, np.bitwise_and, np.bitwise_or, np.bitwise_xor, np.left_shift, np.right_shift, np.fmax, np.fmin, np.fmod, np.hypot, np.logaddexp, np.logaddexp2, np.logical_and, np.logical_or, np.logical_xor, np.maximum, np.minimum, np.mod ] # These functions still return NotImplemented. Will be fixed in # future. # bad = [np.greater, np.greater_equal, np.less, np.less_equal, np.not_equal] a = np.array('1') b = 1 for f in binary_funcs: assert_raises(TypeError, f, a, b)
Example 24
def test_reduce_complex(self): assert_equal(np.fmin.reduce([1, 2j]), 2j) assert_equal(np.fmin.reduce([1+3j, 2j]), 2j)
Example 25
def test_float_nans(self): nan = np.nan arg1 = np.array([0, nan, nan]) arg2 = np.array([nan, 0, nan]) out = np.array([0, 0, nan]) assert_equal(np.fmin(arg1, arg2), out)
Example 26
def test_complex_nans(self): nan = np.nan for cnan in [complex(nan, 0), complex(0, nan), complex(nan, nan)]: arg1 = np.array([0, cnan, cnan], dtype=np.complex) arg2 = np.array([cnan, 0, cnan], dtype=np.complex) out = np.array([0, 0, nan], dtype=np.complex) assert_equal(np.fmin(arg1, arg2), out)
Example 27
def test_NotImplemented_not_returned(self): # See gh-5964 and gh-2091. Some of these functions are not operator # related and were fixed for other reasons in the past. binary_funcs = [ np.power, np.add, np.subtract, np.multiply, np.divide, np.true_divide, np.floor_divide, np.bitwise_and, np.bitwise_or, np.bitwise_xor, np.left_shift, np.right_shift, np.fmax, np.fmin, np.fmod, np.hypot, np.logaddexp, np.logaddexp2, np.logical_and, np.logical_or, np.logical_xor, np.maximum, np.minimum, np.mod ] # These functions still return NotImplemented. Will be fixed in # future. # bad = [np.greater, np.greater_equal, np.less, np.less_equal, np.not_equal] a = np.array('1') b = 1 for f in binary_funcs: assert_raises(TypeError, f, a, b)
Example 28
def __init__(self, dim, verify=True): assert dim > 0 self.dim = dim self.verify = verify self.num_evals = 0 self.min_loc = None self.fmin = None self.local_fmin = [] self.fmax = None self.bounds = None self.classifiers = [] # Note(Mike) - Not using the records yet, but will be soon self.records = None self.reset_records()
Example 29
def __init__(self, func, res, verify=True): assert isinstance(func, TestFunction) if res <= 0: raise ValueError('Resolution level must be positive, level={0}'.format(res)) super(Discretizer, self).__init__(func.dim, verify) self.bounds, self.min_loc = func.bounds, func.min_loc self.res = res self.fmax = numpy.floor(self.res * func.fmax) / self.res self.fmin = numpy.floor(self.res * func.fmin) / self.res self.func = func self.classifiers = list(set(self.classifiers) | set(['discrete']))
Example 30
def __init__(self, func, fail_indicator, return_nan=True, verify=True): assert isinstance(func, TestFunction) super(Failifier, self).__init__(func.dim, verify) self.bounds, self.min_loc, self.fmax, self.fmin = func.bounds, func.min_loc, func.fmax, func.fmin self.func = func self.fail_indicator = fail_indicator self.return_nan = return_nan self.classifiers = list(set(self.classifiers) | set(['failure']))
Example 31
def __init__(self, func, constraint_weights, constraint_rhs, constraint_check=None, return_nan=True, verify=True): assert isinstance(func, TestFunction) assert len(constraint_weights) == len(constraint_rhs) super(Constrainer, self).__init__(func.dim, verify) self.bounds, self.min_loc, self.fmax, self.fmin = func.bounds, func.min_loc, func.fmax, func.fmin self.func = func self.constraint_weights = constraint_weights self.constraint_rhs = constraint_rhs self.return_nan = return_nan self.classifiers = list(set(self.classifiers) | set(['constraint'])) if constraint_check is not None: self.constraint_check = constraint_check else: self.constraint_check = Constrainer.default_constraint_check
Example 32
def __init__(self, func, noise_type, level, verify=True): assert isinstance(func, TestFunction) if level <= 0: raise ValueError('Noise level must be positive, level={0}'.format(level)) super(Noisifier, self).__init__(func.dim, verify) self.bounds, self.min_loc, self.fmax, self.fmin = func.bounds, func.min_loc, func.fmax, func.fmin self.type = noise_type self.level = level self.func = func self.classifiers = list(set(self.classifiers) | set(['noisy']))
Example 33
def __init__(self, dim=2): assert dim == 2 super(Adjiman, self).__init__(dim) self.bounds = ([-1, 2], [-1, 1]) self.min_loc = [2, 0.10578] self.fmin = -2.02180678 self.fmax = 1.07715029333 self.classifiers = ['unimodal', 'bound_min']
Example 34
def __init__(self, dim=2): super(Alpine01, self).__init__(dim) self.bounds = lzip([-6] * self.dim, [10] * self.dim) self.min_loc = [0] * self.dim self.fmin = 0 self.fmax = 8.71520568065 * self.dim self.classifiers = ['nonsmooth']
Example 35
def __init__(self, dim=2): assert dim == 2 super(Alpine02, self).__init__(dim) self.bounds = lzip([0] * self.dim, [10] * self.dim) self.min_loc = [7.91705268, 4.81584232] self.fmin = -6.12950389113 self.fmax = 7.88560072413 self.classifiers = ['oscillatory', 'multi_min']
Example 36
def __init__(self, dim=2): super(ArithmeticGeometricMean, self).__init__(dim) self.bounds = lzip([0] * self.dim, [10] * self.dim) self.min_loc = [0] * self.dim self.fmin = 0 self.fmax = (10 * (self.dim - 1.0) / self.dim) ** 2 self.classifiers = ['bound_min', 'boring', 'multi_min']
Example 37
def __init__(self, dim=2): assert dim == 2 super(BartelsConn, self).__init__(dim) self.bounds = lzip([-2] * self.dim, [5] * self.dim) self.min_loc = [0] * self.dim self.fmin = 1 self.fmax = 76.2425864601 self.classifiers = ['nonsmooth', 'unimodal']
Example 38
def __init__(self, dim=2): assert dim == 2 super(Bird, self).__init__(dim) self.bounds = lzip([-2 * pi] * self.dim, [2 * pi] * self.dim) self.min_loc = [4.701055751981055, 3.152946019601391] self.fmin = -64.60664462282 self.fmax = 160.63195224589 self.classifiers = ['multi_min']
Example 39
def __init__(self, dim=2): assert dim == 2 super(Bohachevsky, self).__init__(dim) self.bounds = lzip([-15] * self.dim, [8] * self.dim) self.min_loc = [0] * self.dim self.fmin = 0 self.fmax = 675.6 self.classifiers = ['oscillatory']
Example 40
def __init__(self, dim=3): assert dim == 3 super(BoxBetts, self).__init__(dim) self.bounds = ([0.9, 1.2], [9, 11.2], [0.9, 1.2]) self.min_loc = [1, 10, 1] self.fmin = 0 self.fmax = 0.28964792415 self.classifiers = ['boring']
Example 41
def __init__(self, dim=2): assert dim == 2 super(Branin01, self).__init__(dim) self.bounds = [[-5, 10], [0, 15]] self.min_loc = [-pi, 12.275] self.fmin = 0.39788735772973816 self.fmax = 308.129096012 self.classifiers = ['multi_min']
Example 42
def __init__(self, dim=2): assert dim == 2 super(Branin02, self).__init__(dim) self.bounds = [(-5, 15), (-5, 15)] self.min_loc = [-3.2, 12.53] self.fmin = 5.559037 self.fmax = 506.983390872
Example 43
def __init__(self, dim=2): assert dim > 1 super(Brown, self).__init__(dim) self.bounds = lzip([-1] * self.dim, [2] * self.dim) self.min_loc = [0] * self.dim self.fmin = 0 self.fmax = self.do_evaluate(numpy.array([2] * self.dim)) self.classifiers = ['unimodal', 'unscaled']
Example 44
def __init__(self, dim=2): assert dim == 2 super(Bukin06, self).__init__(dim) self.bounds = [(-15, -5), (-3, 3)] self.min_loc = [-10, 1] self.fmin = 0 self.fmax = 229.178784748 self.classifiers = ['nonsmooth']
Example 45
def __init__(self, dim=2): assert dim == 2 super(CarromTable, self).__init__(dim) self.bounds = lzip([-10] * self.dim, [10] * self.dim) self.min_loc = [9.646157266348881, 9.646134286497169] self.fmin = -24.15681551650653 self.fmax = 0 self.classifiers = ['boring', 'multi_min', 'nonsmooth', 'complicated']
Example 46
def __init__(self, dim=2): assert dim == 2 super(Chichinadze, self).__init__(dim) self.bounds = lzip([-30] * self.dim, [30] * self.dim) self.min_loc = [6.189866586965680, 0.5] self.fmin = -42.94438701899098 self.fmax = 1261 self.classifiers = ['oscillatory']
Example 47
def __init__(self, dim=2): assert dim > 1 super(Cigar, self).__init__(dim) self.bounds = lzip([-1] * self.dim, [1] * self.dim) self.min_loc = [0] * self.dim self.fmin = 0 self.fmax = 1 + 1e6 * self.dim self.classifiers = ['unimodal', 'unscaled']
Example 48
def __init__(self, dim=4): assert dim == 4 super(Corana, self).__init__(dim) self.bounds = lzip([-5] * self.dim, [5] * self.dim) self.min_loc = [0] * self.dim self.fglob = 0 self.fmin = 0 self.fmax = 24999.3261012 self.classifiers = ['boring', 'unscaled', 'nonsmooth']
Example 49
def __init__(self, dim=2): super(CosineMixture, self).__init__(dim) self.bounds = lzip([-1] * self.dim, [1] * self.dim) self.min_loc = [0.184872823182918] * self.dim self.fmin = -0.063012202176250 * self.dim self.fmax = 0.9 * self.dim self.classifiers = ['oscillatory', 'multi_min']
Example 50
def __init__(self, dim=2): assert dim == 2 super(CrossInTray, self).__init__(dim) self.bounds = lzip([-10] * self.dim, [10] * self.dim) self.min_loc = [1.349406685353340, 1.349406608602084] self.fmin = -2.062611870822739 self.fmax = -0.25801263059 self.classifiers = ['oscillatory', 'multi_min', 'nonsmooth', 'complicated']