The following are code examples for showing how to use . They are extracted from open source Python projects. You can vote up the examples you like or vote down the exmaples you don’t like. You can also save this page to your account.
Example 1
def local_kaiser3(vec): return(kaiser(len(vec),3*pi))
Example 2
def iFFT(Y, output_length=None, window=False): """ Inverse real-valued Fourier Transform Parameters ---------- Y : array_like Frequency domain data [Nsignals x Nbins] output_length : int, optional Lenght of returned time-domain signal (Default: 2 x len(Y) + 1) win : boolean, optional Weights the resulting time-domain signal with a Hann Returns ------- y : array_like Reconstructed time-domain signal """ Y = _np.atleast_2d(Y) y = _np.fft.irfft(Y, n=output_length) if window: if window not in {'hann', 'hamming', 'blackman', 'kaiser'}: raise ValueError('Selected window must be one of hann, hamming, blackman or kaiser') no_of_signals, no_of_samples = y.shape if window == 'hann': window_array = _np.hanning(no_of_samples) elif window == 'hamming': window_array = _np.hamming(no_of_samples) elif window == 'blackman': window_array = _np.blackman(no_of_samples) elif window == 'kaiser': window_array = _np.kaiser(no_of_samples, 3) y = window_array * y return y
Example 3
def smooth_curve(x): """????????????????????? ???http://glowingpython.blogspot.jp/2012/02/convolution-with-numpy.html """ window_len = 11 s = np.r_[x[window_len - 1:0:-1], x, x[-1:-window_len:-1]] w = np.kaiser(window_len, 2) y = np.convolve(w / w.sum(), s, mode='valid') return y[5:len(y) - 5]
Example 4
def smooth_curve(x): """????????????????????? ???http://glowingpython.blogspot.jp/2012/02/convolution-with-numpy.html """ window_len = 11 s = np.r_[x[window_len-1:0:-1], x, x[-1:-window_len:-1]] w = np.kaiser(window_len, 2) y = np.convolve(w/w.sum(), s, mode='valid') return y[5:len(y)-5]
Example 5
def smooth_curve(x): """ Used to smooth the graph of the loss function reference:http://glowingpython.blogspot.jp/2012/02/convolution-with-numpy.html """ window_len = 11 s = np.r_[x[window_len-1:0:-1], x, x[-1:-window_len:-1]] w = np.kaiser(window_len, 2) y = np.convolve(w/w.sum(), s, mode='valid') return y[5:len(y)-5]
Example 6
def smooth_curve(x): """????????????????????? ???http://glowingpython.blogspot.jp/2012/02/convolution-with-numpy.html """ window_len = 11 s = np.r_[x[window_len-1:0:-1], x, x[-1:-window_len:-1]] w = np.kaiser(window_len, 2) y = np.convolve(w/w.sum(), s, mode='valid') return y[5:len(y)-5]
Example 7
def smooth_curve(x): """????????????????????? ???http://glowingpython.blogspot.jp/2012/02/convolution-with-numpy.html """ window_len = 11 s = np.r_[x[window_len-1:0:-1], x, x[-1:-window_len:-1]] w = np.kaiser(window_len, 2) y = np.convolve(w/w.sum(), s, mode='valid') return y[5:len(y)-5]