Python numpy.poly() 使用实例

The following are code examples for showing how to use . They are extracted from open source Python projects. You can vote up the examples you like or vote down the exmaples you don’t like. You can also save this page to your account.

Example 1

def estimate_time_constant(y, p=2, sn=None, lags=5, fudge_factor=1.):
    """
    Estimate AR model parameters through the autocovariance function

    Parameters
    ----------
    y : array, shape (T,)
        One dimensional array containing the fluorescence intensities with
        one entry per time-bin.
    p : positive integer
        order of AR system
    sn : float
        sn standard deviation, estimated if not provided.
    lags : positive integer
        number of additional lags where he autocovariance is computed
    fudge_factor : float (0< fudge_factor <= 1)
        shrinkage factor to reduce bias

    Returns
    -------
    g : estimated coefficients of the AR process
    """

    if sn is None:
        sn = GetSn(y)

    lags += p
    xc = axcov(y, lags)
    xc = xc[:, np.newaxis]

    A = scipy.linalg.toeplitz(xc[lags + np.arange(lags)],
                              xc[lags + np.arange(p)]) - sn**2 * np.eye(lags, p)
    g = np.linalg.lstsq(A, xc[lags + 1:])[0]
    gr = np.roots(np.concatenate([np.array([1]), -g.flatten()]))
    gr = (gr + gr.conjugate()) / 2.
    gr[gr > 1] = 0.95 + np.random.normal(0, 0.01, np.sum(gr > 1))
    gr[gr < 0] = 0.15 + np.random.normal(0, 0.01, np.sum(gr < 0))
    g = np.poly(fudge_factor * gr)
    g = -g[1:]

    return g.flatten() 

Example 2

def test_poly(self):
        assert_array_almost_equal(np.poly([3, -np.sqrt(2), np.sqrt(2)]),
                                  [1, -3, -2, 6])

        # From matlab docs
        A = [[1, 2, 3], [4, 5, 6], [7, 8, 0]]
        assert_array_almost_equal(np.poly(A), [1, -6, -72, -27])

        # Should produce real output for perfect conjugates
        assert_(np.isrealobj(np.poly([+1.082j, +2.613j, -2.613j, -1.082j])))
        assert_(np.isrealobj(np.poly([0+1j, -0+-1j, 1+2j,
                                      1-2j, 1.+3.5j, 1-3.5j])))
        assert_(np.isrealobj(np.poly([1j, -1j, 1+2j, 1-2j, 1+3j, 1-3.j])))
        assert_(np.isrealobj(np.poly([1j, -1j, 1+2j, 1-2j])))
        assert_(np.isrealobj(np.poly([1j, -1j, 2j, -2j])))
        assert_(np.isrealobj(np.poly([1j, -1j])))
        assert_(np.isrealobj(np.poly([1, -1])))

        assert_(np.iscomplexobj(np.poly([1j, -1.0000001j])))

        np.random.seed(42)
        a = np.random.randn(100) + 1j*np.random.randn(100)
        assert_(np.isrealobj(np.poly(np.concatenate((a, np.conjugate(a)))))) 

Example 3

def test_objects(self):
        from decimal import Decimal
        p = np.poly1d([Decimal('4.0'), Decimal('3.0'), Decimal('2.0')])
        p2 = p * Decimal('1.333333333333333')
        assert_(p2[1] == Decimal("3.9999999999999990"))
        p2 = p.deriv()
        assert_(p2[1] == Decimal('8.0'))
        p2 = p.integ()
        assert_(p2[3] == Decimal("1.333333333333333333333333333"))
        assert_(p2[2] == Decimal('1.5'))
        assert_(np.issubdtype(p2.coeffs.dtype, np.object_))
        p = np.poly([Decimal(1), Decimal(2)])
        assert_equal(np.poly([Decimal(1), Decimal(2)]),
                     [1, Decimal(-3), Decimal(2)]) 

Example 4

def test_zero_dims(self):
        try:
            np.poly(np.zeros((0, 0)))
        except ValueError:
            pass 

Example 5

def test_poly_int_overflow(self):
        """
        Regression test for gh-5096.
        """
        v = np.arange(1, 21)
        assert_almost_equal(np.poly(v), np.poly(np.diag(v))) 

Example 6

def lsf_to_lpc(all_lsf):
    if len(all_lsf.shape) < 2:
        all_lsf = all_lsf[None]
    order = all_lsf.shape[1]
    all_lpc = np.zeros((len(all_lsf), order + 1))
    for i in range(len(all_lsf)):
        lsf = all_lsf[i]
        zeros = np.exp(1j * lsf)
        sum_zeros = zeros[::2]
        diff_zeros = zeros[1::2]
        sum_zeros = np.hstack((sum_zeros, np.conj(sum_zeros)))
        diff_zeros = np.hstack((diff_zeros, np.conj(diff_zeros)))
        sum_filt = np.poly(sum_zeros)
        diff_filt = np.poly(diff_zeros)

        if order % 2 != 0:
            deconv_diff = sg.convolve(diff_filt, [1, 0, -1])
            deconv_sum = sum_filt
        else:
            deconv_diff = sg.convolve(diff_filt, [1, -1])
            deconv_sum = sg.convolve(sum_filt, [1, 1])

        lpc = .5 * (deconv_sum + deconv_diff)
        # Last coefficient is 0 and not returned
        all_lpc[i] = lpc[:-1]
    return np.squeeze(all_lpc) 

Example 7

def lsf_to_lpc(all_lsf):
    if len(all_lsf.shape) < 2:
        all_lsf = all_lsf[None]
    order = all_lsf.shape[1]
    all_lpc = np.zeros((len(all_lsf), order + 1))
    for i in range(len(all_lsf)):
        lsf = all_lsf[i]
        zeros = np.exp(1j * lsf)
        sum_zeros = zeros[::2]
        diff_zeros = zeros[1::2]
        sum_zeros = np.hstack((sum_zeros, np.conj(sum_zeros)))
        diff_zeros = np.hstack((diff_zeros, np.conj(diff_zeros)))
        sum_filt = np.poly(sum_zeros)
        diff_filt = np.poly(diff_zeros)

        if order % 2 != 0:
            deconv_diff = sg.convolve(diff_filt, [1, 0, -1])
            deconv_sum = sum_filt
        else:
            deconv_diff = sg.convolve(diff_filt, [1, -1])
            deconv_sum = sg.convolve(sum_filt, [1, 1])

        lpc = .5 * (deconv_sum + deconv_diff)
        # Last coefficient is 0 and not returned
        all_lpc[i] = lpc[:-1]
    return np.squeeze(all_lpc) 

Example 8

def test_objects(self):
        from decimal import Decimal
        p = np.poly1d([Decimal('4.0'), Decimal('3.0'), Decimal('2.0')])
        p2 = p * Decimal('1.333333333333333')
        assert_(p2[1] == Decimal("3.9999999999999990"))
        p2 = p.deriv()
        assert_(p2[1] == Decimal('8.0'))
        p2 = p.integ()
        assert_(p2[3] == Decimal("1.333333333333333333333333333"))
        assert_(p2[2] == Decimal('1.5'))
        assert_(np.issubdtype(p2.coeffs.dtype, np.object_))
        p = np.poly([Decimal(1), Decimal(2)])
        assert_equal(np.poly([Decimal(1), Decimal(2)]),
                     [1, Decimal(-3), Decimal(2)]) 

Example 9

def test_zero_dims(self):
        try:
            np.poly(np.zeros((0, 0)))
        except ValueError:
            pass 

Example 10

def test_poly_int_overflow(self):
        """
        Regression test for gh-5096.
        """
        v = np.arange(1, 21)
        assert_almost_equal(np.poly(v), np.poly(np.diag(v))) 

Example 11

def estimate_time_constant(fluor, p = 2, sn = None, lags = 5, fudge_factor = 1.):
    """    
    Estimate AR model parameters through the autocovariance function    
    Inputs
    ----------
    fluor        : nparray
        One dimensional array containing the fluorescence intensities with
        one entry per time-bin.
    p            : positive integer
        order of AR system  
    sn           : float
        noise standard deviation, estimated if not provided.
    lags         : positive integer
        number of additional lags where he autocovariance is computed
    fudge_factor : float (0< fudge_factor <= 1)
        shrinkage factor to reduce bias
        
    Return
    -----------
    g       : estimated coefficients of the AR process
    """    
    

    if sn is None:
        sn = GetSn(fluor)
        
    lags += p
    xc = axcov(fluor,lags)        
    xc = xc[:,np.newaxis]
    
    A = scipy.linalg.toeplitz(xc[lags+np.arange(lags)],xc[lags+np.arange(p)]) - sn**2*np.eye(lags,p)
    g = np.linalg.lstsq(A,xc[lags+1:])[0]
    gr = np.roots(np.concatenate([np.array([1]),-g.flatten()]))
    gr = (gr+gr.conjugate())/2.
    gr[gr>1] = 0.95 + np.random.normal(0,0.01,np.sum(gr>1))
    gr[gr<0] = 0.15 + np.random.normal(0,0.01,np.sum(gr<0))
    g = np.poly(fudge_factor*gr)
    g = -g[1:]    
        
    return g.flatten() 

Example 12

def test_objects(self):
        from decimal import Decimal
        p = np.poly1d([Decimal('4.0'), Decimal('3.0'), Decimal('2.0')])
        p2 = p * Decimal('1.333333333333333')
        assert_(p2[1] == Decimal("3.9999999999999990"))
        p2 = p.deriv()
        assert_(p2[1] == Decimal('8.0'))
        p2 = p.integ()
        assert_(p2[3] == Decimal("1.333333333333333333333333333"))
        assert_(p2[2] == Decimal('1.5'))
        assert_(np.issubdtype(p2.coeffs.dtype, np.object_))
        p = np.poly([Decimal(1), Decimal(2)])
        assert_equal(np.poly([Decimal(1), Decimal(2)]),
                     [1, Decimal(-3), Decimal(2)]) 

Example 13

def test_zero_dims(self):
        try:
            np.poly(np.zeros((0, 0)))
        except ValueError:
            pass 

Example 14

def test_poly_int_overflow(self):
        """
        Regression test for gh-5096.
        """
        v = np.arange(1, 21)
        assert_almost_equal(np.poly(v), np.poly(np.diag(v))) 

Example 15

def z_coeff(Poles,Zeros,fs,g,fg,fo = 'none'):
    if fg == np.inf:
        fg = fs/2
    if fo == 'none':
        beta = 1.0
    else:
        beta = f_warp(fo,fs)/fo
    a = np.poly(z_from_f(beta*np.array(Poles),fs))
    b = np.poly(z_from_f(beta*np.array(Zeros),fs))
    gain = 10.**(g/20.)/abs(Fz_at_f(beta*np.array(Poles),beta*np.array(Zeros),fg,fs))
    
    return (a,b*gain) 

Example 16

def test_objects(self):
        from decimal import Decimal
        p = np.poly1d([Decimal('4.0'), Decimal('3.0'), Decimal('2.0')])
        p2 = p * Decimal('1.333333333333333')
        assert_(p2[1] == Decimal("3.9999999999999990"))
        p2 = p.deriv()
        assert_(p2[1] == Decimal('8.0'))
        p2 = p.integ()
        assert_(p2[3] == Decimal("1.333333333333333333333333333"))
        assert_(p2[2] == Decimal('1.5'))
        assert_(np.issubdtype(p2.coeffs.dtype, np.object_))
        p = np.poly([Decimal(1), Decimal(2)])
        assert_equal(np.poly([Decimal(1), Decimal(2)]),
                     [1, Decimal(-3), Decimal(2)]) 

Example 17

def test_zero_dims(self):
        try:
            np.poly(np.zeros((0, 0)))
        except ValueError:
            pass 

Example 18

def test_poly_int_overflow(self):
        """
        Regression test for gh-5096.
        """
        v = np.arange(1, 21)
        assert_almost_equal(np.poly(v), np.poly(np.diag(v))) 

Example 19

def test_objects(self):
        from decimal import Decimal
        p = np.poly1d([Decimal('4.0'), Decimal('3.0'), Decimal('2.0')])
        p2 = p * Decimal('1.333333333333333')
        assert_(p2[1] == Decimal("3.9999999999999990"))
        p2 = p.deriv()
        assert_(p2[1] == Decimal('8.0'))
        p2 = p.integ()
        assert_(p2[3] == Decimal("1.333333333333333333333333333"))
        assert_(p2[2] == Decimal('1.5'))
        assert_(np.issubdtype(p2.coeffs.dtype, np.object_))
        p = np.poly([Decimal(1), Decimal(2)])
        assert_equal(np.poly([Decimal(1), Decimal(2)]),
                     [1, Decimal(-3), Decimal(2)]) 

Example 20

def test_zero_dims(self):
        try:
            np.poly(np.zeros((0, 0)))
        except ValueError:
            pass 

Example 21

def test_poly_int_overflow(self):
        """
        Regression test for gh-5096.
        """
        v = np.arange(1, 21)
        assert_almost_equal(np.poly(v), np.poly(np.diag(v))) 

Example 22

def lsf_to_lpc(all_lsf):
    if len(all_lsf.shape) < 2:
        all_lsf = all_lsf[None]
    order = all_lsf.shape[1]
    all_lpc = np.zeros((len(all_lsf), order + 1))
    for i in range(len(all_lsf)):
        lsf = all_lsf[i]
        zeros = np.exp(1j * lsf)
        sum_zeros = zeros[::2]
        diff_zeros = zeros[1::2]
        sum_zeros = np.hstack((sum_zeros, np.conj(sum_zeros)))
        diff_zeros = np.hstack((diff_zeros, np.conj(diff_zeros)))
        sum_filt = np.poly(sum_zeros)
        diff_filt = np.poly(diff_zeros)

        if order % 2 != 0:
            deconv_diff = sg.convolve(diff_filt, [1, 0, -1])
            deconv_sum = sum_filt
        else:
            deconv_diff = sg.convolve(diff_filt, [1, -1])
            deconv_sum = sg.convolve(sum_filt, [1, 1])

        lpc = .5 * (deconv_sum + deconv_diff)
        # Last coefficient is 0 and not returned
        all_lpc[i] = lpc[:-1]
    return np.squeeze(all_lpc) 

Example 23

def lsf_to_lpc(all_lsf):
    if len(all_lsf.shape) < 2:
        all_lsf = all_lsf[None]
    order = all_lsf.shape[1]
    all_lpc = np.zeros((len(all_lsf), order + 1))
    for i in range(len(all_lsf)):
        lsf = all_lsf[i]
        zeros = np.exp(1j * lsf)
        sum_zeros = zeros[::2]
        diff_zeros = zeros[1::2]
        sum_zeros = np.hstack((sum_zeros, np.conj(sum_zeros)))
        diff_zeros = np.hstack((diff_zeros, np.conj(diff_zeros)))
        sum_filt = np.poly(sum_zeros)
        diff_filt = np.poly(diff_zeros)

        if order % 2 != 0:
            deconv_diff = sg.convolve(diff_filt, [1, 0, -1])
            deconv_sum = sum_filt
        else:
            deconv_diff = sg.convolve(diff_filt, [1, -1])
            deconv_sum = sg.convolve(sum_filt, [1, 1])

        lpc = .5 * (deconv_sum + deconv_diff)
        # Last coefficient is 0 and not returned
        all_lpc[i] = lpc[:-1]
    return np.squeeze(all_lpc) 

Example 24

def lsf_to_lpc(all_lsf):
    if len(all_lsf.shape) < 2:
        all_lsf = all_lsf[None]
    order = all_lsf.shape[1]
    all_lpc = np.zeros((len(all_lsf), order + 1))
    for i in range(len(all_lsf)):
        lsf = all_lsf[i]
        zeros = np.exp(1j * lsf)
        sum_zeros = zeros[::2]
        diff_zeros = zeros[1::2]
        sum_zeros = np.hstack((sum_zeros, np.conj(sum_zeros)))
        diff_zeros = np.hstack((diff_zeros, np.conj(diff_zeros)))
        sum_filt = np.poly(sum_zeros)
        diff_filt = np.poly(diff_zeros)

        if order % 2 != 0:
            deconv_diff = sg.convolve(diff_filt, [1, 0, -1])
            deconv_sum = sum_filt
        else:
            deconv_diff = sg.convolve(diff_filt, [1, -1])
            deconv_sum = sg.convolve(sum_filt, [1, 1])

        lpc = .5 * (deconv_sum + deconv_diff)
        # Last coefficient is 0 and not returned
        all_lpc[i] = lpc[:-1]
    return np.squeeze(all_lpc) 

Example 25

def lsf_to_lpc(all_lsf):
    if len(all_lsf.shape) < 2:
        all_lsf = all_lsf[None]
    order = all_lsf.shape[1]
    all_lpc = np.zeros((len(all_lsf), order + 1))
    for i in range(len(all_lsf)):
        lsf = all_lsf[i]
        zeros = np.exp(1j * lsf)
        sum_zeros = zeros[::2]
        diff_zeros = zeros[1::2]
        sum_zeros = np.hstack((sum_zeros, np.conj(sum_zeros)))
        diff_zeros = np.hstack((diff_zeros, np.conj(diff_zeros)))
        sum_filt = np.poly(sum_zeros)
        diff_filt = np.poly(diff_zeros)

        if order % 2 != 0:
            deconv_diff = sg.convolve(diff_filt, [1, 0, -1])
            deconv_sum = sum_filt
        else:
            deconv_diff = sg.convolve(diff_filt, [1, -1])
            deconv_sum = sg.convolve(sum_filt, [1, 1])

        lpc = .5 * (deconv_sum + deconv_diff)
        # Last coefficient is 0 and not returned
        all_lpc[i] = lpc[:-1]
    return np.squeeze(all_lpc) 

Example 26

def lsf_to_lpc(all_lsf):
    if len(all_lsf.shape) < 2:
        all_lsf = all_lsf[None]
    order = all_lsf.shape[1]
    all_lpc = np.zeros((len(all_lsf), order + 1))
    for i in range(len(all_lsf)):
        lsf = all_lsf[i]
        zeros = np.exp(1j * lsf)
        sum_zeros = zeros[::2]
        diff_zeros = zeros[1::2]
        sum_zeros = np.hstack((sum_zeros, np.conj(sum_zeros)))
        diff_zeros = np.hstack((diff_zeros, np.conj(diff_zeros)))
        sum_filt = np.poly(sum_zeros)
        diff_filt = np.poly(diff_zeros)

        if order % 2 != 0:
            deconv_diff = sg.convolve(diff_filt, [1, 0, -1])
            deconv_sum = sum_filt
        else:
            deconv_diff = sg.convolve(diff_filt, [1, -1])
            deconv_sum = sg.convolve(sum_filt, [1, 1])

        lpc = .5 * (deconv_sum + deconv_diff)
        # Last coefficient is 0 and not returned
        all_lpc[i] = lpc[:-1]
    return np.squeeze(all_lpc) 

Example 27

def lsf_to_lpc(all_lsf):
    if len(all_lsf.shape) < 2:
        all_lsf = all_lsf[None]
    order = all_lsf.shape[1]
    all_lpc = np.zeros((len(all_lsf), order + 1))
    for i in range(len(all_lsf)):
        lsf = all_lsf[i]
        zeros = np.exp(1j * lsf)
        sum_zeros = zeros[::2]
        diff_zeros = zeros[1::2]
        sum_zeros = np.hstack((sum_zeros, np.conj(sum_zeros)))
        diff_zeros = np.hstack((diff_zeros, np.conj(diff_zeros)))
        sum_filt = np.poly(sum_zeros)
        diff_filt = np.poly(diff_zeros)

        if order % 2 != 0:
            deconv_diff = sg.convolve(diff_filt, [1, 0, -1])
            deconv_sum = sum_filt
        else:
            deconv_diff = sg.convolve(diff_filt, [1, -1])
            deconv_sum = sg.convolve(sum_filt, [1, 1])

        lpc = .5 * (deconv_sum + deconv_diff)
        # Last coefficient is 0 and not returned
        all_lpc[i] = lpc[:-1]
    return np.squeeze(all_lpc) 

Example 28

def lsf_to_lpc(all_lsf):
    if len(all_lsf.shape) < 2:
        all_lsf = all_lsf[None]
    order = all_lsf.shape[1]
    all_lpc = np.zeros((len(all_lsf), order + 1))
    for i in range(len(all_lsf)):
        lsf = all_lsf[i]
        zeros = np.exp(1j * lsf)
        sum_zeros = zeros[::2]
        diff_zeros = zeros[1::2]
        sum_zeros = np.hstack((sum_zeros, np.conj(sum_zeros)))
        diff_zeros = np.hstack((diff_zeros, np.conj(diff_zeros)))
        sum_filt = np.poly(sum_zeros)
        diff_filt = np.poly(diff_zeros)

        if order % 2 != 0:
            deconv_diff = sg.convolve(diff_filt, [1, 0, -1])
            deconv_sum = sum_filt
        else:
            deconv_diff = sg.convolve(diff_filt, [1, -1])
            deconv_sum = sg.convolve(sum_filt, [1, 1])

        lpc = .5 * (deconv_sum + deconv_diff)
        # Last coefficient is 0 and not returned
        all_lpc[i] = lpc[:-1]
    return np.squeeze(all_lpc) 

Example 29

def lsf_to_lpc(all_lsf):
    if len(all_lsf.shape) < 2:
        all_lsf = all_lsf[None]
    order = all_lsf.shape[1]
    all_lpc = np.zeros((len(all_lsf), order + 1))
    for i in range(len(all_lsf)):
        lsf = all_lsf[i]
        zeros = np.exp(1j * lsf)
        sum_zeros = zeros[::2]
        diff_zeros = zeros[1::2]
        sum_zeros = np.hstack((sum_zeros, np.conj(sum_zeros)))
        diff_zeros = np.hstack((diff_zeros, np.conj(diff_zeros)))
        sum_filt = np.poly(sum_zeros)
        diff_filt = np.poly(diff_zeros)

        if order % 2 != 0:
            deconv_diff = sg.convolve(diff_filt, [1, 0, -1])
            deconv_sum = sum_filt
        else:
            deconv_diff = sg.convolve(diff_filt, [1, -1])
            deconv_sum = sg.convolve(sum_filt, [1, 1])

        lpc = .5 * (deconv_sum + deconv_diff)
        # Last coefficient is 0 and not returned
        all_lpc[i] = lpc[:-1]
    return np.squeeze(all_lpc) 

Example 30

def lsf_to_lpc(all_lsf):
    if len(all_lsf.shape) < 2:
        all_lsf = all_lsf[None]
    order = all_lsf.shape[1]
    all_lpc = np.zeros((len(all_lsf), order + 1))
    for i in range(len(all_lsf)):
        lsf = all_lsf[i]
        zeros = np.exp(1j * lsf)
        sum_zeros = zeros[::2]
        diff_zeros = zeros[1::2]
        sum_zeros = np.hstack((sum_zeros, np.conj(sum_zeros)))
        diff_zeros = np.hstack((diff_zeros, np.conj(diff_zeros)))
        sum_filt = np.poly(sum_zeros)
        diff_filt = np.poly(diff_zeros)

        if order % 2 != 0:
            deconv_diff = sg.convolve(diff_filt, [1, 0, -1])
            deconv_sum = sum_filt
        else:
            deconv_diff = sg.convolve(diff_filt, [1, -1])
            deconv_sum = sg.convolve(sum_filt, [1, 1])

        lpc = .5 * (deconv_sum + deconv_diff)
        # Last coefficient is 0 and not returned
        all_lpc[i] = lpc[:-1]
    return np.squeeze(all_lpc) 

Example 31

def lsf_to_lpc(all_lsf):
    if len(all_lsf.shape) < 2:
        all_lsf = all_lsf[None]
    order = all_lsf.shape[1]
    all_lpc = np.zeros((len(all_lsf), order + 1))
    for i in range(len(all_lsf)):
        lsf = all_lsf[i]
        zeros = np.exp(1j * lsf)
        sum_zeros = zeros[::2]
        diff_zeros = zeros[1::2]
        sum_zeros = np.hstack((sum_zeros, np.conj(sum_zeros)))
        diff_zeros = np.hstack((diff_zeros, np.conj(diff_zeros)))
        sum_filt = np.poly(sum_zeros)
        diff_filt = np.poly(diff_zeros)

        if order % 2 != 0:
            deconv_diff = sg.convolve(diff_filt, [1, 0, -1])
            deconv_sum = sum_filt
        else:
            deconv_diff = sg.convolve(diff_filt, [1, -1])
            deconv_sum = sg.convolve(sum_filt, [1, 1])

        lpc = .5 * (deconv_sum + deconv_diff)
        # Last coefficient is 0 and not returned
        all_lpc[i] = lpc[:-1]
    return np.squeeze(all_lpc) 

Example 32

def lsf_to_lpc(all_lsf):
    if len(all_lsf.shape) < 2:
        all_lsf = all_lsf[None]
    order = all_lsf.shape[1]
    all_lpc = np.zeros((len(all_lsf), order + 1))
    for i in range(len(all_lsf)):
        lsf = all_lsf[i]
        zeros = np.exp(1j * lsf)
        sum_zeros = zeros[::2]
        diff_zeros = zeros[1::2]
        sum_zeros = np.hstack((sum_zeros, np.conj(sum_zeros)))
        diff_zeros = np.hstack((diff_zeros, np.conj(diff_zeros)))
        sum_filt = np.poly(sum_zeros)
        diff_filt = np.poly(diff_zeros)

        if order % 2 != 0:
            deconv_diff = sg.convolve(diff_filt, [1, 0, -1])
            deconv_sum = sum_filt
        else:
            deconv_diff = sg.convolve(diff_filt, [1, -1])
            deconv_sum = sg.convolve(sum_filt, [1, 1])

        lpc = .5 * (deconv_sum + deconv_diff)
        # Last coefficient is 0 and not returned
        all_lpc[i] = lpc[:-1]
    return np.squeeze(all_lpc) 

Example 33

def test_objects(self):
        from decimal import Decimal
        p = np.poly1d([Decimal('4.0'), Decimal('3.0'), Decimal('2.0')])
        p2 = p * Decimal('1.333333333333333')
        assert_(p2[1] == Decimal("3.9999999999999990"))
        p2 = p.deriv()
        assert_(p2[1] == Decimal('8.0'))
        p2 = p.integ()
        assert_(p2[3] == Decimal("1.333333333333333333333333333"))
        assert_(p2[2] == Decimal('1.5'))
        assert_(np.issubdtype(p2.coeffs.dtype, np.object_))
        p = np.poly([Decimal(1), Decimal(2)])
        assert_equal(np.poly([Decimal(1), Decimal(2)]),
                     [1, Decimal(-3), Decimal(2)]) 

Example 34

def test_zero_dims(self):
        try:
            np.poly(np.zeros((0, 0)))
        except ValueError:
            pass 

Example 35

def test_poly_int_overflow(self):
        """
        Regression test for gh-5096.
        """
        v = np.arange(1, 21)
        assert_almost_equal(np.poly(v), np.poly(np.diag(v))) 
点赞

发表评论

电子邮件地址不会被公开。 必填项已用*标注