The following are code examples for showing how to use . They are extracted from open source Python projects. You can vote up the examples you like or vote down the exmaples you don’t like. You can also save this page to your account.
Example 1
def generate_price_df(ticker,financialreportingdf,stockpricedf,discountrate,marginrate): dfprice = pd.DataFrame(columns =['ticker','annualgrowthrate','lasteps','futureeps']) pd.options.display.float_format = '{:20,.2f}'.format # Find EPS Annual Compounded Growth Rate annualgrowthrate = financialreportingdf.epsgrowth.mean() #growth rate # Estimate stock price 10 years from now (Stock Price EPS * Average PE) lasteps = financialreportingdf.eps.tail(1).values[0] #presentvalue years = 10 #period futureeps = abs(np.fv(annualgrowthrate,years,0,lasteps)) dfprice.loc[0] = [ticker,annualgrowthrate,lasteps,futureeps] dfprice.set_index('ticker',inplace=True) dfprice['lastshareprice']=stockpricedf.Close.tail(1).values[0] dfprice['peratio'] = dfprice['lastshareprice']/dfprice['lasteps'] dfprice['futureshareprice'] = dfprice['futureeps']*dfprice['peratio'] dfprice['presentshareprice'] = abs(np.pv(discountrate,years,0,fv=dfprice['futureshareprice'])) dfprice['marginalizedprice'] = dfprice['presentshareprice']*(1-marginrate) return dfprice
Example 2
def test_pv(self): assert_almost_equal(np.pv(0.07, 20, 12000, 0), -127128.17, 2)
Example 3
def assets_required(self): rate = self.financial_planning.real_gain() return numpy.pv(rate, self.duration_of_usufruct, -self.remain_patrimony * 12)
Example 4
def patrimony_necessery_in_period(self, mounth_quantities, value): rate = self.protection_manager.financial_planning.real_gain() return numpy.pv(rate, mounth_quantities, -value)
Example 5
def _rbl(rate, per, pmt, pv, when): """ This function is here to simply have a different name for the 'fv' function to not interfere with the 'fv' keyword argument within the 'ipmt' function. It is the 'remaining balance on loan' which might be useful as it's own function, but is easily calculated with the 'fv' function. """ return fv(rate, (per - 1), pmt, pv, when)
Example 6
def ppmt(rate, per, nper, pv, fv=0.0, when='end'): """ Compute the payment against loan principal. Parameters ---------- rate : array_like Rate of interest (per period) per : array_like, int Amount paid against the loan changes. The `per` is the period of interest. nper : array_like Number of compounding periods pv : array_like Present value fv : array_like, optional Future value when : {{'begin', 1}, {'end', 0}}, {string, int} When payments are due ('begin' (1) or 'end' (0)) See Also -------- pmt, pv, ipmt """ total = pmt(rate, nper, pv, fv, when) return total - ipmt(rate, per, nper, pv, fv, when)
Example 7
def test_pv(self): assert_almost_equal(np.pv(0.07, 20, 12000, 0), -127128.17, 2)
Example 8
def _rbl(rate, per, pmt, pv, when): """ This function is here to simply have a different name for the 'fv' function to not interfere with the 'fv' keyword argument within the 'ipmt' function. It is the 'remaining balance on loan' which might be useful as it's own function, but is easily calculated with the 'fv' function. """ return fv(rate, (per - 1), pmt, pv, when)
Example 9
def ppmt(rate, per, nper, pv, fv=0.0, when='end'): """ Compute the payment against loan principal. Parameters ---------- rate : array_like Rate of interest (per period) per : array_like, int Amount paid against the loan changes. The `per` is the period of interest. nper : array_like Number of compounding periods pv : array_like Present value fv : array_like, optional Future value when : {{'begin', 1}, {'end', 0}}, {string, int} When payments are due ('begin' (1) or 'end' (0)) See Also -------- pmt, pv, ipmt """ total = pmt(rate, nper, pv, fv, when) return total - ipmt(rate, per, nper, pv, fv, when)
Example 10
def test_pv(self): assert_almost_equal(np.pv(0.07, 20, 12000, 0), -127128.17, 2)
Example 11
def _rbl(rate, per, pmt, pv, when): """ This function is here to simply have a different name for the 'fv' function to not interfere with the 'fv' keyword argument within the 'ipmt' function. It is the 'remaining balance on loan' which might be useful as it's own function, but is easily calculated with the 'fv' function. """ return fv(rate, (per - 1), pmt, pv, when)
Example 12
def ppmt(rate, per, nper, pv, fv=0.0, when='end'): """ Compute the payment against loan principal. Parameters ---------- rate : array_like Rate of interest (per period) per : array_like, int Amount paid against the loan changes. The `per` is the period of interest. nper : array_like Number of compounding periods pv : array_like Present value fv : array_like, optional Future value when : {{'begin', 1}, {'end', 0}}, {string, int} When payments are due ('begin' (1) or 'end' (0)) See Also -------- pmt, pv, ipmt """ total = pmt(rate, nper, pv, fv, when) return total - ipmt(rate, per, nper, pv, fv, when)
Example 13
def test_pv(self): assert_almost_equal(np.pv(0.07, 20, 12000, 0), -127128.17, 2)
Example 14
def _rbl(rate, per, pmt, pv, when): """ This function is here to simply have a different name for the 'fv' function to not interfere with the 'fv' keyword argument within the 'ipmt' function. It is the 'remaining balance on loan' which might be useful as it's own function, but is easily calculated with the 'fv' function. """ return fv(rate, (per - 1), pmt, pv, when)
Example 15
def ppmt(rate, per, nper, pv, fv=0.0, when='end'): """ Compute the payment against loan principal. Parameters ---------- rate : array_like Rate of interest (per period) per : array_like, int Amount paid against the loan changes. The `per` is the period of interest. nper : array_like Number of compounding periods pv : array_like Present value fv : array_like, optional Future value when : {{'begin', 1}, {'end', 0}}, {string, int} When payments are due ('begin' (1) or 'end' (0)) See Also -------- pmt, pv, ipmt """ total = pmt(rate, nper, pv, fv, when) return total - ipmt(rate, per, nper, pv, fv, when)
Example 16
def test_pv(self): assert_almost_equal(np.pv(0.07, 20, 12000, 0), -127128.17, 2)
Example 17
def _rbl(rate, per, pmt, pv, when): """ This function is here to simply have a different name for the 'fv' function to not interfere with the 'fv' keyword argument within the 'ipmt' function. It is the 'remaining balance on loan' which might be useful as it's own function, but is easily calculated with the 'fv' function. """ return fv(rate, (per - 1), pmt, pv, when)
Example 18
def ppmt(rate, per, nper, pv, fv=0.0, when='end'): """ Compute the payment against loan principal. Parameters ---------- rate : array_like Rate of interest (per period) per : array_like, int Amount paid against the loan changes. The `per` is the period of interest. nper : array_like Number of compounding periods pv : array_like Present value fv : array_like, optional Future value when : {{'begin', 1}, {'end', 0}}, {string, int} When payments are due ('begin' (1) or 'end' (0)) See Also -------- pmt, pv, ipmt """ total = pmt(rate, nper, pv, fv, when) return total - ipmt(rate, per, nper, pv, fv, when)
Example 19
def test_pv(self): assert_almost_equal(np.pv(0.07, 20, 12000, 0), -127128.17, 2)
Example 20
def _rbl(rate, per, pmt, pv, when): """ This function is here to simply have a different name for the 'fv' function to not interfere with the 'fv' keyword argument within the 'ipmt' function. It is the 'remaining balance on loan' which might be useful as it's own function, but is easily calculated with the 'fv' function. """ return fv(rate, (per - 1), pmt, pv, when)
Example 21
def ppmt(rate, per, nper, pv, fv=0.0, when='end'): """ Compute the payment against loan principal. Parameters ---------- rate : array_like Rate of interest (per period) per : array_like, int Amount paid against the loan changes. The `per` is the period of interest. nper : array_like Number of compounding periods pv : array_like Present value fv : array_like, optional Future value when : {{'begin', 1}, {'end', 0}}, {string, int} When payments are due ('begin' (1) or 'end' (0)) See Also -------- pmt, pv, ipmt """ total = pmt(rate, nper, pv, fv, when) return total - ipmt(rate, per, nper, pv, fv, when)
Example 22
def rate(nper, pmt, pv, fv, when='end', guess=0.10, tol=1e-6, maxiter=100): """ Compute the rate of interest per period. Parameters ---------- nper : array_like Number of compounding periods pmt : array_like Payment pv : array_like Present value fv : array_like Future value when : {{'begin', 1}, {'end', 0}}, {string, int}, optional When payments are due ('begin' (1) or 'end' (0)) guess : float, optional Starting guess for solving the rate of interest tol : float, optional Required tolerance for the solution maxiter : int, optional Maximum iterations in finding the solution Notes ----- The rate of interest is computed by iteratively solving the (non-linear) equation:: fv + pv*(1+rate)**nper + pmt*(1+rate*when)/rate * ((1+rate)**nper - 1) = 0 for ``rate``. References ---------- Wheeler, D. A., E. Rathke, and R. Weir (Eds.) (2009, May). Open Document Format for Office Applications (OpenDocument)v1.2, Part 2: Recalculated Formula (OpenFormula) Format - Annotated Version, Pre-Draft 12. Organization for the Advancement of Structured Information Standards (OASIS). Billerica, MA, USA. [ODT Document]. Available: http://www.oasis-open.org/committees/documents.php?wg_abbrev=office-formula OpenDocument-formula-20090508.odt """ when = _convert_when(when) (nper, pmt, pv, fv, when) = map(np.asarray, [nper, pmt, pv, fv, when]) rn = guess iter = 0 close = False while (iter < maxiter) and not close: rnp1 = rn - _g_div_gp(rn, nper, pmt, pv, fv, when) diff = abs(rnp1-rn) close = np.all(diff < tol) iter += 1 rn = rnp1 if not close: # Return nan's in array of the same shape as rn return np.nan + rn else: return rn
Example 23
def rate(nper, pmt, pv, fv, when='end', guess=0.10, tol=1e-6, maxiter=100): """ Compute the rate of interest per period. Parameters ---------- nper : array_like Number of compounding periods pmt : array_like Payment pv : array_like Present value fv : array_like Future value when : {{'begin', 1}, {'end', 0}}, {string, int}, optional When payments are due ('begin' (1) or 'end' (0)) guess : float, optional Starting guess for solving the rate of interest tol : float, optional Required tolerance for the solution maxiter : int, optional Maximum iterations in finding the solution Notes ----- The rate of interest is computed by iteratively solving the (non-linear) equation:: fv + pv*(1+rate)**nper + pmt*(1+rate*when)/rate * ((1+rate)**nper - 1) = 0 for ``rate``. References ---------- Wheeler, D. A., E. Rathke, and R. Weir (Eds.) (2009, May). Open Document Format for Office Applications (OpenDocument)v1.2, Part 2: Recalculated Formula (OpenFormula) Format - Annotated Version, Pre-Draft 12. Organization for the Advancement of Structured Information Standards (OASIS). Billerica, MA, USA. [ODT Document]. Available: http://www.oasis-open.org/committees/documents.php?wg_abbrev=office-formula OpenDocument-formula-20090508.odt """ when = _convert_when(when) (nper, pmt, pv, fv, when) = map(np.asarray, [nper, pmt, pv, fv, when]) rn = guess iter = 0 close = False while (iter < maxiter) and not close: rnp1 = rn - _g_div_gp(rn, nper, pmt, pv, fv, when) diff = abs(rnp1-rn) close = np.all(diff < tol) iter += 1 rn = rnp1 if not close: # Return nan's in array of the same shape as rn return np.nan + rn else: return rn
Example 24
def rate(nper, pmt, pv, fv, when='end', guess=0.10, tol=1e-6, maxiter=100): """ Compute the rate of interest per period. Parameters ---------- nper : array_like Number of compounding periods pmt : array_like Payment pv : array_like Present value fv : array_like Future value when : {{'begin', 1}, {'end', 0}}, {string, int}, optional When payments are due ('begin' (1) or 'end' (0)) guess : float, optional Starting guess for solving the rate of interest tol : float, optional Required tolerance for the solution maxiter : int, optional Maximum iterations in finding the solution Notes ----- The rate of interest is computed by iteratively solving the (non-linear) equation:: fv + pv*(1+rate)**nper + pmt*(1+rate*when)/rate * ((1+rate)**nper - 1) = 0 for ``rate``. References ---------- Wheeler, D. A., E. Rathke, and R. Weir (Eds.) (2009, May). Open Document Format for Office Applications (OpenDocument)v1.2, Part 2: Recalculated Formula (OpenFormula) Format - Annotated Version, Pre-Draft 12. Organization for the Advancement of Structured Information Standards (OASIS). Billerica, MA, USA. [ODT Document]. Available: http://www.oasis-open.org/committees/documents.php?wg_abbrev=office-formula OpenDocument-formula-20090508.odt """ when = _convert_when(when) (nper, pmt, pv, fv, when) = map(np.asarray, [nper, pmt, pv, fv, when]) rn = guess iter = 0 close = False while (iter < maxiter) and not close: rnp1 = rn - _g_div_gp(rn, nper, pmt, pv, fv, when) diff = abs(rnp1-rn) close = np.all(diff < tol) iter += 1 rn = rnp1 if not close: # Return nan's in array of the same shape as rn return np.nan + rn else: return rn
Example 25
def rate(nper, pmt, pv, fv, when='end', guess=0.10, tol=1e-6, maxiter=100): """ Compute the rate of interest per period. Parameters ---------- nper : array_like Number of compounding periods pmt : array_like Payment pv : array_like Present value fv : array_like Future value when : {{'begin', 1}, {'end', 0}}, {string, int}, optional When payments are due ('begin' (1) or 'end' (0)) guess : float, optional Starting guess for solving the rate of interest tol : float, optional Required tolerance for the solution maxiter : int, optional Maximum iterations in finding the solution Notes ----- The rate of interest is computed by iteratively solving the (non-linear) equation:: fv + pv*(1+rate)**nper + pmt*(1+rate*when)/rate * ((1+rate)**nper - 1) = 0 for ``rate``. References ---------- Wheeler, D. A., E. Rathke, and R. Weir (Eds.) (2009, May). Open Document Format for Office Applications (OpenDocument)v1.2, Part 2: Recalculated Formula (OpenFormula) Format - Annotated Version, Pre-Draft 12. Organization for the Advancement of Structured Information Standards (OASIS). Billerica, MA, USA. [ODT Document]. Available: http://www.oasis-open.org/committees/documents.php?wg_abbrev=office-formula OpenDocument-formula-20090508.odt """ when = _convert_when(when) (nper, pmt, pv, fv, when) = map(np.asarray, [nper, pmt, pv, fv, when]) rn = guess iter = 0 close = False while (iter < maxiter) and not close: rnp1 = rn - _g_div_gp(rn, nper, pmt, pv, fv, when) diff = abs(rnp1-rn) close = np.all(diff < tol) iter += 1 rn = rnp1 if not close: # Return nan's in array of the same shape as rn return np.nan + rn else: return rn
Example 26
def rate(nper, pmt, pv, fv, when='end', guess=0.10, tol=1e-6, maxiter=100): """ Compute the rate of interest per period. Parameters ---------- nper : array_like Number of compounding periods pmt : array_like Payment pv : array_like Present value fv : array_like Future value when : {{'begin', 1}, {'end', 0}}, {string, int}, optional When payments are due ('begin' (1) or 'end' (0)) guess : float, optional Starting guess for solving the rate of interest tol : float, optional Required tolerance for the solution maxiter : int, optional Maximum iterations in finding the solution Notes ----- The rate of interest is computed by iteratively solving the (non-linear) equation:: fv + pv*(1+rate)**nper + pmt*(1+rate*when)/rate * ((1+rate)**nper - 1) = 0 for ``rate``. References ---------- Wheeler, D. A., E. Rathke, and R. Weir (Eds.) (2009, May). Open Document Format for Office Applications (OpenDocument)v1.2, Part 2: Recalculated Formula (OpenFormula) Format - Annotated Version, Pre-Draft 12. Organization for the Advancement of Structured Information Standards (OASIS). Billerica, MA, USA. [ODT Document]. Available: http://www.oasis-open.org/committees/documents.php?wg_abbrev=office-formula OpenDocument-formula-20090508.odt """ when = _convert_when(when) (nper, pmt, pv, fv, when) = map(np.asarray, [nper, pmt, pv, fv, when]) rn = guess iter = 0 close = False while (iter < maxiter) and not close: rnp1 = rn - _g_div_gp(rn, nper, pmt, pv, fv, when) diff = abs(rnp1-rn) close = np.all(diff < tol) iter += 1 rn = rnp1 if not close: # Return nan's in array of the same shape as rn return np.nan + rn else: return rn
Example 27
def rate(nper, pmt, pv, fv, when='end', guess=0.10, tol=1e-6, maxiter=100): """ Compute the rate of interest per period. Parameters ---------- nper : array_like Number of compounding periods pmt : array_like Payment pv : array_like Present value fv : array_like Future value when : {{'begin', 1}, {'end', 0}}, {string, int}, optional When payments are due ('begin' (1) or 'end' (0)) guess : float, optional Starting guess for solving the rate of interest tol : float, optional Required tolerance for the solution maxiter : int, optional Maximum iterations in finding the solution Notes ----- The rate of interest is computed by iteratively solving the (non-linear) equation:: fv + pv*(1+rate)**nper + pmt*(1+rate*when)/rate * ((1+rate)**nper - 1) = 0 for ``rate``. References ---------- Wheeler, D. A., E. Rathke, and R. Weir (Eds.) (2009, May). Open Document Format for Office Applications (OpenDocument)v1.2, Part 2: Recalculated Formula (OpenFormula) Format - Annotated Version, Pre-Draft 12. Organization for the Advancement of Structured Information Standards (OASIS). Billerica, MA, USA. [ODT Document]. Available: http://www.oasis-open.org/committees/documents.php?wg_abbrev=office-formula OpenDocument-formula-20090508.odt """ when = _convert_when(when) (nper, pmt, pv, fv, when) = map(np.asarray, [nper, pmt, pv, fv, when]) rn = guess iter = 0 close = False while (iter < maxiter) and not close: rnp1 = rn - _g_div_gp(rn, nper, pmt, pv, fv, when) diff = abs(rnp1-rn) close = np.all(diff < tol) iter += 1 rn = rnp1 if not close: # Return nan's in array of the same shape as rn return np.nan + rn else: return rn