The following are code examples for showing how to use . They are extracted from open source Python projects. You can vote up the examples you like or vote down the exmaples you don’t like. You can also save this page to your account.
Example 1
def test_usecols(self): # Test the selection of columns # Select 1 column control = np.array([[1, 2], [3, 4]], float) data = TextIO() np.savetxt(data, control) data.seek(0) test = np.ndfromtxt(data, dtype=float, usecols=(1,)) assert_equal(test, control[:, 1]) # control = np.array([[1, 2, 3], [3, 4, 5]], float) data = TextIO() np.savetxt(data, control) data.seek(0) test = np.ndfromtxt(data, dtype=float, usecols=(1, 2)) assert_equal(test, control[:, 1:]) # Testing with arrays instead of tuples. data.seek(0) test = np.ndfromtxt(data, dtype=float, usecols=np.array([1, 2])) assert_equal(test, control[:, 1:])
Example 2
def test_invalid_raise(self): # Test invalid raise data = ["1, 1, 1, 1, 1"] * 50 for i in range(5): data[10 * i] = "2, 2, 2, 2 2" data.insert(0, "a, b, c, d, e") mdata = TextIO("\n".join(data)) # kwargs = dict(delimiter=",", dtype=None, names=True) # XXX: is there a better way to get the return value of the # callable in assert_warns ? ret = {} def f(_ret={}): _ret['mtest'] = np.ndfromtxt(mdata, invalid_raise=False, **kwargs) assert_warns(ConversionWarning, f, _ret=ret) mtest = ret['mtest'] assert_equal(len(mtest), 45) assert_equal(mtest, np.ones(45, dtype=[(_, int) for _ in 'abcde'])) # mdata.seek(0) assert_raises(ValueError, np.ndfromtxt, mdata, delimiter=",", names=True)
Example 3
def test_auto_dtype_largeint(self): # Regression test for numpy/numpy#5635 whereby large integers could # cause OverflowErrors. # Test the automatic definition of the output dtype # # 2**66 = 73786976294838206464 => should convert to float # 2**34 = 17179869184 => should convert to int64 # 2**10 = 1024 => should convert to int (int32 on 32-bit systems, # int64 on 64-bit systems) data = TextIO('73786976294838206464 17179869184 1024') test = np.ndfromtxt(data, dtype=None) assert_equal(test.dtype.names, ['f0', 'f1', 'f2']) assert_(test.dtype['f0'] == np.float) assert_(test.dtype['f1'] == np.int64) assert_(test.dtype['f2'] == np.integer) assert_allclose(test['f0'], 73786976294838206464.) assert_equal(test['f1'], 17179869184) assert_equal(test['f2'], 1024)
Example 4
def test_usecols(self): # Test the selection of columns # Select 1 column control = np.array([[1, 2], [3, 4]], float) data = TextIO() np.savetxt(data, control) data.seek(0) test = np.ndfromtxt(data, dtype=float, usecols=(1,)) assert_equal(test, control[:, 1]) # control = np.array([[1, 2, 3], [3, 4, 5]], float) data = TextIO() np.savetxt(data, control) data.seek(0) test = np.ndfromtxt(data, dtype=float, usecols=(1, 2)) assert_equal(test, control[:, 1:]) # Testing with arrays instead of tuples. data.seek(0) test = np.ndfromtxt(data, dtype=float, usecols=np.array([1, 2])) assert_equal(test, control[:, 1:])
Example 5
def test_invalid_raise(self): # Test invalid raise data = ["1, 1, 1, 1, 1"] * 50 for i in range(5): data[10 * i] = "2, 2, 2, 2 2" data.insert(0, "a, b, c, d, e") mdata = TextIO("\n".join(data)) # kwargs = dict(delimiter=",", dtype=None, names=True) # XXX: is there a better way to get the return value of the # callable in assert_warns ? ret = {} def f(_ret={}): _ret['mtest'] = np.ndfromtxt(mdata, invalid_raise=False, **kwargs) assert_warns(ConversionWarning, f, _ret=ret) mtest = ret['mtest'] assert_equal(len(mtest), 45) assert_equal(mtest, np.ones(45, dtype=[(_, int) for _ in 'abcde'])) # mdata.seek(0) assert_raises(ValueError, np.ndfromtxt, mdata, delimiter=",", names=True)
Example 6
def test_auto_dtype_largeint(self): # Regression test for numpy/numpy#5635 whereby large integers could # cause OverflowErrors. # Test the automatic definition of the output dtype # # 2**66 = 73786976294838206464 => should convert to float # 2**34 = 17179869184 => should convert to int64 # 2**10 = 1024 => should convert to int (int32 on 32-bit systems, # int64 on 64-bit systems) data = TextIO('73786976294838206464 17179869184 1024') test = np.ndfromtxt(data, dtype=None) assert_equal(test.dtype.names, ['f0', 'f1', 'f2']) assert_(test.dtype['f0'] == np.float) assert_(test.dtype['f1'] == np.int64) assert_(test.dtype['f2'] == np.integer) assert_allclose(test['f0'], 73786976294838206464.) assert_equal(test['f1'], 17179869184) assert_equal(test['f2'], 1024)
Example 7
def test_usecols(self): # Test the selection of columns # Select 1 column control = np.array([[1, 2], [3, 4]], float) data = TextIO() np.savetxt(data, control) data.seek(0) test = np.ndfromtxt(data, dtype=float, usecols=(1,)) assert_equal(test, control[:, 1]) # control = np.array([[1, 2, 3], [3, 4, 5]], float) data = TextIO() np.savetxt(data, control) data.seek(0) test = np.ndfromtxt(data, dtype=float, usecols=(1, 2)) assert_equal(test, control[:, 1:]) # Testing with arrays instead of tuples. data.seek(0) test = np.ndfromtxt(data, dtype=float, usecols=np.array([1, 2])) assert_equal(test, control[:, 1:])
Example 8
def test_invalid_raise(self): # Test invalid raise data = ["1, 1, 1, 1, 1"] * 50 for i in range(5): data[10 * i] = "2, 2, 2, 2 2" data.insert(0, "a, b, c, d, e") mdata = TextIO("\n".join(data)) # kwargs = dict(delimiter=",", dtype=None, names=True) # XXX: is there a better way to get the return value of the # callable in assert_warns ? ret = {} def f(_ret={}): _ret['mtest'] = np.ndfromtxt(mdata, invalid_raise=False, **kwargs) assert_warns(ConversionWarning, f, _ret=ret) mtest = ret['mtest'] assert_equal(len(mtest), 45) assert_equal(mtest, np.ones(45, dtype=[(_, int) for _ in 'abcde'])) # mdata.seek(0) assert_raises(ValueError, np.ndfromtxt, mdata, delimiter=",", names=True)
Example 9
def test_auto_dtype_largeint(self): # Regression test for numpy/numpy#5635 whereby large integers could # cause OverflowErrors. # Test the automatic definition of the output dtype # # 2**66 = 73786976294838206464 => should convert to float # 2**34 = 17179869184 => should convert to int64 # 2**10 = 1024 => should convert to int (int32 on 32-bit systems, # int64 on 64-bit systems) data = TextIO('73786976294838206464 17179869184 1024') test = np.ndfromtxt(data, dtype=None) assert_equal(test.dtype.names, ['f0', 'f1', 'f2']) assert test.dtype['f0'] == np.float assert test.dtype['f1'] == np.int64 assert test.dtype['f2'] == np.integer assert_allclose(test['f0'], 73786976294838206464.) assert_equal(test['f1'], 17179869184) assert_equal(test['f2'], 1024)
Example 10
def test_usecols(self): # Test the selection of columns # Select 1 column control = np.array([[1, 2], [3, 4]], float) data = TextIO() np.savetxt(data, control) data.seek(0) test = np.ndfromtxt(data, dtype=float, usecols=(1,)) assert_equal(test, control[:, 1]) # control = np.array([[1, 2, 3], [3, 4, 5]], float) data = TextIO() np.savetxt(data, control) data.seek(0) test = np.ndfromtxt(data, dtype=float, usecols=(1, 2)) assert_equal(test, control[:, 1:]) # Testing with arrays instead of tuples. data.seek(0) test = np.ndfromtxt(data, dtype=float, usecols=np.array([1, 2])) assert_equal(test, control[:, 1:])
Example 11
def test_invalid_raise(self): # Test invalid raise data = ["1, 1, 1, 1, 1"] * 50 for i in range(5): data[10 * i] = "2, 2, 2, 2 2" data.insert(0, "a, b, c, d, e") mdata = TextIO("\n".join(data)) # kwargs = dict(delimiter=",", dtype=None, names=True) # XXX: is there a better way to get the return value of the # callable in assert_warns ? ret = {} def f(_ret={}): _ret['mtest'] = np.ndfromtxt(mdata, invalid_raise=False, **kwargs) assert_warns(ConversionWarning, f, _ret=ret) mtest = ret['mtest'] assert_equal(len(mtest), 45) assert_equal(mtest, np.ones(45, dtype=[(_, int) for _ in 'abcde'])) # mdata.seek(0) assert_raises(ValueError, np.ndfromtxt, mdata, delimiter=",", names=True)
Example 12
def test_auto_dtype_largeint(self): # Regression test for numpy/numpy#5635 whereby large integers could # cause OverflowErrors. # Test the automatic definition of the output dtype # # 2**66 = 73786976294838206464 => should convert to float # 2**34 = 17179869184 => should convert to int64 # 2**10 = 1024 => should convert to int (int32 on 32-bit systems, # int64 on 64-bit systems) data = TextIO('73786976294838206464 17179869184 1024') test = np.ndfromtxt(data, dtype=None) assert_equal(test.dtype.names, ['f0', 'f1', 'f2']) assert_(test.dtype['f0'] == np.float) assert_(test.dtype['f1'] == np.int64) assert_(test.dtype['f2'] == np.integer) assert_allclose(test['f0'], 73786976294838206464.) assert_equal(test['f1'], 17179869184) assert_equal(test['f2'], 1024)
Example 13
def test_usecols(self): # Test the selection of columns # Select 1 column control = np.array([[1, 2], [3, 4]], float) data = TextIO() np.savetxt(data, control) data.seek(0) test = np.ndfromtxt(data, dtype=float, usecols=(1,)) assert_equal(test, control[:, 1]) # control = np.array([[1, 2, 3], [3, 4, 5]], float) data = TextIO() np.savetxt(data, control) data.seek(0) test = np.ndfromtxt(data, dtype=float, usecols=(1, 2)) assert_equal(test, control[:, 1:]) # Testing with arrays instead of tuples. data.seek(0) test = np.ndfromtxt(data, dtype=float, usecols=np.array([1, 2])) assert_equal(test, control[:, 1:])
Example 14
def test_invalid_raise(self): # Test invalid raise data = ["1, 1, 1, 1, 1"] * 50 for i in range(5): data[10 * i] = "2, 2, 2, 2 2" data.insert(0, "a, b, c, d, e") mdata = TextIO("\n".join(data)) # kwargs = dict(delimiter=",", dtype=None, names=True) # XXX: is there a better way to get the return value of the # callable in assert_warns ? ret = {} def f(_ret={}): _ret['mtest'] = np.ndfromtxt(mdata, invalid_raise=False, **kwargs) assert_warns(ConversionWarning, f, _ret=ret) mtest = ret['mtest'] assert_equal(len(mtest), 45) assert_equal(mtest, np.ones(45, dtype=[(_, int) for _ in 'abcde'])) # mdata.seek(0) assert_raises(ValueError, np.ndfromtxt, mdata, delimiter=",", names=True)
Example 15
def test_auto_dtype_largeint(self): # Regression test for numpy/numpy#5635 whereby large integers could # cause OverflowErrors. # Test the automatic definition of the output dtype # # 2**66 = 73786976294838206464 => should convert to float # 2**34 = 17179869184 => should convert to int64 # 2**10 = 1024 => should convert to int (int32 on 32-bit systems, # int64 on 64-bit systems) data = TextIO('73786976294838206464 17179869184 1024') test = np.ndfromtxt(data, dtype=None) assert_equal(test.dtype.names, ['f0', 'f1', 'f2']) assert_(test.dtype['f0'] == np.float) assert_(test.dtype['f1'] == np.int64) assert_(test.dtype['f2'] == np.integer) assert_allclose(test['f0'], 73786976294838206464.) assert_equal(test['f1'], 17179869184) assert_equal(test['f2'], 1024)
Example 16
def test_usecols(self): # Test the selection of columns # Select 1 column control = np.array([[1, 2], [3, 4]], float) data = TextIO() np.savetxt(data, control) data.seek(0) test = np.ndfromtxt(data, dtype=float, usecols=(1,)) assert_equal(test, control[:, 1]) # control = np.array([[1, 2, 3], [3, 4, 5]], float) data = TextIO() np.savetxt(data, control) data.seek(0) test = np.ndfromtxt(data, dtype=float, usecols=(1, 2)) assert_equal(test, control[:, 1:]) # Testing with arrays instead of tuples. data.seek(0) test = np.ndfromtxt(data, dtype=float, usecols=np.array([1, 2])) assert_equal(test, control[:, 1:])
Example 17
def test_invalid_raise(self): # Test invalid raise data = ["1, 1, 1, 1, 1"] * 50 for i in range(5): data[10 * i] = "2, 2, 2, 2 2" data.insert(0, "a, b, c, d, e") mdata = TextIO("\n".join(data)) # kwargs = dict(delimiter=",", dtype=None, names=True) # XXX: is there a better way to get the return value of the # callable in assert_warns ? ret = {} def f(_ret={}): _ret['mtest'] = np.ndfromtxt(mdata, invalid_raise=False, **kwargs) assert_warns(ConversionWarning, f, _ret=ret) mtest = ret['mtest'] assert_equal(len(mtest), 45) assert_equal(mtest, np.ones(45, dtype=[(_, int) for _ in 'abcde'])) # mdata.seek(0) assert_raises(ValueError, np.ndfromtxt, mdata, delimiter=",", names=True)
Example 18
def test_auto_dtype_largeint(self): # Regression test for numpy/numpy#5635 whereby large integers could # cause OverflowErrors. # Test the automatic definition of the output dtype # # 2**66 = 73786976294838206464 => should convert to float # 2**34 = 17179869184 => should convert to int64 # 2**10 = 1024 => should convert to int (int32 on 32-bit systems, # int64 on 64-bit systems) data = TextIO('73786976294838206464 17179869184 1024') test = np.ndfromtxt(data, dtype=None) assert_equal(test.dtype.names, ['f0', 'f1', 'f2']) assert_(test.dtype['f0'] == np.float) assert_(test.dtype['f1'] == np.int64) assert_(test.dtype['f2'] == np.integer) assert_allclose(test['f0'], 73786976294838206464.) assert_equal(test['f1'], 17179869184) assert_equal(test['f2'], 1024)
Example 19
def test_record(self): # Test w/ explicit dtype data = TextIO('1 2\n3 4') test = np.ndfromtxt(data, dtype=[('x', np.int32), ('y', np.int32)]) control = np.array([(1, 2), (3, 4)], dtype=[('x', 'i4'), ('y', 'i4')]) assert_equal(test, control) # data = TextIO('M 64.0 75.0\nF 25.0 60.0') descriptor = {'names': ('gender', 'age', 'weight'), 'formats': ('S1', 'i4', 'f4')} control = np.array([('M', 64.0, 75.0), ('F', 25.0, 60.0)], dtype=descriptor) test = np.ndfromtxt(data, dtype=descriptor) assert_equal(test, control)
Example 20
def test_array(self): # Test outputing a standard ndarray data = TextIO('1 2\n3 4') control = np.array([[1, 2], [3, 4]], dtype=int) test = np.ndfromtxt(data, dtype=int) assert_array_equal(test, control) # data.seek(0) control = np.array([[1, 2], [3, 4]], dtype=float) test = np.loadtxt(data, dtype=float) assert_array_equal(test, control)
Example 21
def test_1D(self): # Test squeezing to 1D control = np.array([1, 2, 3, 4], int) # data = TextIO('1\n2\n3\n4\n') test = np.ndfromtxt(data, dtype=int) assert_array_equal(test, control) # data = TextIO('1,2,3,4\n') test = np.ndfromtxt(data, dtype=int, delimiter=',') assert_array_equal(test, control)
Example 22
def test_comments(self): # Test the stripping of comments control = np.array([1, 2, 3, 5], int) # Comment on its own line data = TextIO('# comment\n1,2,3,5\n') test = np.ndfromtxt(data, dtype=int, delimiter=',', comments='#') assert_equal(test, control) # Comment at the end of a line data = TextIO('1,2,3,5# comment\n') test = np.ndfromtxt(data, dtype=int, delimiter=',', comments='#') assert_equal(test, control)
Example 23
def test_skiprows(self): # Test row skipping control = np.array([1, 2, 3, 5], int) kwargs = dict(dtype=int, delimiter=',') # data = TextIO('comment\n1,2,3,5\n') test = np.ndfromtxt(data, skip_header=1, **kwargs) assert_equal(test, control) # data = TextIO('# comment\n1,2,3,5\n') test = np.loadtxt(data, skiprows=1, **kwargs) assert_equal(test, control)
Example 24
def test_auto_dtype(self): # Test the automatic definition of the output dtype data = TextIO('A 64 75.0 3+4j True\nBCD 25 60.0 5+6j False') test = np.ndfromtxt(data, dtype=None) control = [np.array([b'A', b'BCD']), np.array([64, 25]), np.array([75.0, 60.0]), np.array([3 + 4j, 5 + 6j]), np.array([True, False]), ] assert_equal(test.dtype.names, ['f0', 'f1', 'f2', 'f3', 'f4']) for (i, ctrl) in enumerate(control): assert_equal(test['f%i' % i], ctrl)
Example 25
def test_auto_dtype_uniform(self): # Tests whether the output dtype can be uniformized data = TextIO('1 2 3 4\n5 6 7 8\n') test = np.ndfromtxt(data, dtype=None) control = np.array([[1, 2, 3, 4], [5, 6, 7, 8]]) assert_equal(test, control)
Example 26
def test_fancy_dtype(self): # Check that a nested dtype isn't MIA data = TextIO('1,2,3.0\n4,5,6.0\n') fancydtype = np.dtype([('x', int), ('y', [('t', int), ('s', float)])]) test = np.ndfromtxt(data, dtype=fancydtype, delimiter=',') control = np.array([(1, (2, 3.0)), (4, (5, 6.0))], dtype=fancydtype) assert_equal(test, control)
Example 27
def test_names_overwrite(self): # Test overwriting the names of the dtype descriptor = {'names': ('g', 'a', 'w'), 'formats': ('S1', 'i4', 'f4')} data = TextIO(b'M 64.0 75.0\nF 25.0 60.0') names = ('gender', 'age', 'weight') test = np.ndfromtxt(data, dtype=descriptor, names=names) descriptor['names'] = names control = np.array([('M', 64.0, 75.0), ('F', 25.0, 60.0)], dtype=descriptor) assert_equal(test, control)
Example 28
def test_autonames_and_usecols(self): # Tests names and usecols data = TextIO('A B C D\n aaaa 121 45 9.1') test = np.ndfromtxt(data, usecols=('A', 'C', 'D'), names=True, dtype=None) control = np.array(('aaaa', 45, 9.1), dtype=[('A', '|S4'), ('C', int), ('D', float)]) assert_equal(test, control)
Example 29
def test_converters_with_usecols_and_names(self): # Tests names and usecols data = TextIO('A B C D\n aaaa 121 45 9.1') test = np.ndfromtxt(data, usecols=('A', 'C', 'D'), names=True, dtype=None, converters={'C': lambda s: 2 * int(s)}) control = np.array(('aaaa', 90, 9.1), dtype=[('A', '|S4'), ('C', int), ('D', float)]) assert_equal(test, control)
Example 30
def test_converters_cornercases(self): # Test the conversion to datetime. converter = { 'date': lambda s: strptime(s, '%Y-%m-%d %H:%M:%SZ')} data = TextIO('2009-02-03 12:00:00Z, 72214.0') test = np.ndfromtxt(data, delimiter=',', dtype=None, names=['date', 'stid'], converters=converter) control = np.array((datetime(2009, 2, 3), 72214.), dtype=[('date', np.object_), ('stid', float)]) assert_equal(test, control)
Example 31
def test_converters_cornercases2(self): # Test the conversion to datetime64. converter = { 'date': lambda s: np.datetime64(strptime(s, '%Y-%m-%d %H:%M:%SZ'))} data = TextIO('2009-02-03 12:00:00Z, 72214.0') test = np.ndfromtxt(data, delimiter=',', dtype=None, names=['date', 'stid'], converters=converter) control = np.array((datetime(2009, 2, 3), 72214.), dtype=[('date', 'datetime64[us]'), ('stid', float)]) assert_equal(test, control)
Example 32
def test_unused_converter(self): # Test whether unused converters are forgotten data = TextIO("1 21\n 3 42\n") test = np.ndfromtxt(data, usecols=(1,), converters={0: lambda s: int(s, 16)}) assert_equal(test, [21, 42]) # data.seek(0) test = np.ndfromtxt(data, usecols=(1,), converters={1: lambda s: int(s, 16)}) assert_equal(test, [33, 66])
Example 33
def test_dtype_with_converters(self): dstr = "2009; 23; 46" test = np.ndfromtxt(TextIO(dstr,), delimiter=";", dtype=float, converters={0: bytes}) control = np.array([('2009', 23., 46)], dtype=[('f0', '|S4'), ('f1', float), ('f2', float)]) assert_equal(test, control) test = np.ndfromtxt(TextIO(dstr,), delimiter=";", dtype=float, converters={0: float}) control = np.array([2009., 23., 46],) assert_equal(test, control)
Example 34
def test_missing(self): data = TextIO('1,2,3,,5\n') test = np.ndfromtxt(data, dtype=int, delimiter=',', converters={3: lambda s: int(s or - 999)}) control = np.array([1, 2, 3, -999, 5], int) assert_equal(test, control)
Example 35
def test_usecols_with_structured_dtype(self): # Test usecols with an explicit structured dtype data = TextIO("JOE 70.1 25.3\nBOB 60.5 27.9") names = ['stid', 'temp'] dtypes = ['S4', 'f8'] test = np.ndfromtxt( data, usecols=(0, 2), dtype=list(zip(names, dtypes))) assert_equal(test['stid'], [b"JOE", b"BOB"]) assert_equal(test['temp'], [25.3, 27.9])
Example 36
def test_shaped_dtype(self): c = TextIO("aaaa 1.0 8.0 1 2 3 4 5 6") dt = np.dtype([('name', 'S4'), ('x', float), ('y', float), ('block', int, (2, 3))]) x = np.ndfromtxt(c, dtype=dt) a = np.array([('aaaa', 1.0, 8.0, [[1, 2, 3], [4, 5, 6]])], dtype=dt) assert_array_equal(x, a)
Example 37
def test_default_field_format(self): # Test default format data = "0, 1, 2.3\n4, 5, 6.7" mtest = np.ndfromtxt(TextIO(data), delimiter=",", dtype=None, defaultfmt="f%02i") ctrl = np.array([(0, 1, 2.3), (4, 5, 6.7)], dtype=[("f00", int), ("f01", int), ("f02", float)]) assert_equal(mtest, ctrl)
Example 38
def test_single_dtype_wo_names(self): # Test single dtype w/o names data = "0, 1, 2.3\n4, 5, 6.7" mtest = np.ndfromtxt(TextIO(data), delimiter=",", dtype=float, defaultfmt="f%02i") ctrl = np.array([[0., 1., 2.3], [4., 5., 6.7]], dtype=float) assert_equal(mtest, ctrl)
Example 39
def test_single_dtype_w_explicit_names(self): # Test single dtype w explicit names data = "0, 1, 2.3\n4, 5, 6.7" mtest = np.ndfromtxt(TextIO(data), delimiter=",", dtype=float, names="a, b, c") ctrl = np.array([(0., 1., 2.3), (4., 5., 6.7)], dtype=[(_, float) for _ in "abc"]) assert_equal(mtest, ctrl)
Example 40
def test_single_dtype_w_implicit_names(self): # Test single dtype w implicit names data = "a, b, c\n0, 1, 2.3\n4, 5, 6.7" mtest = np.ndfromtxt(TextIO(data), delimiter=",", dtype=float, names=True) ctrl = np.array([(0., 1., 2.3), (4., 5., 6.7)], dtype=[(_, float) for _ in "abc"]) assert_equal(mtest, ctrl)
Example 41
def test_easy_structured_dtype(self): # Test easy structured dtype data = "0, 1, 2.3\n4, 5, 6.7" mtest = np.ndfromtxt(TextIO(data), delimiter=",", dtype=(int, float, float), defaultfmt="f_%02i") ctrl = np.array([(0, 1., 2.3), (4, 5., 6.7)], dtype=[("f_00", int), ("f_01", float), ("f_02", float)]) assert_equal(mtest, ctrl)
Example 42
def test_incomplete_names(self): # Test w/ incomplete names data = "A,,C\n0,1,2\n3,4,5" kwargs = dict(delimiter=",", names=True) # w/ dtype=None ctrl = np.array([(0, 1, 2), (3, 4, 5)], dtype=[(_, int) for _ in ('A', 'f0', 'C')]) test = np.ndfromtxt(TextIO(data), dtype=None, **kwargs) assert_equal(test, ctrl) # w/ default dtype ctrl = np.array([(0, 1, 2), (3, 4, 5)], dtype=[(_, float) for _ in ('A', 'f0', 'C')]) test = np.ndfromtxt(TextIO(data), **kwargs)
Example 43
def test_fixed_width_names(self): # Test fix-width w/ names data = " A B C\n 0 1 2.3\n 45 67 9." kwargs = dict(delimiter=(5, 5, 4), names=True, dtype=None) ctrl = np.array([(0, 1, 2.3), (45, 67, 9.)], dtype=[('A', int), ('B', int), ('C', float)]) test = np.ndfromtxt(TextIO(data), **kwargs) assert_equal(test, ctrl) # kwargs = dict(delimiter=5, names=True, dtype=None) ctrl = np.array([(0, 1, 2.3), (45, 67, 9.)], dtype=[('A', int), ('B', int), ('C', float)]) test = np.ndfromtxt(TextIO(data), **kwargs) assert_equal(test, ctrl)
Example 44
def test_filling_values(self): # Test missing values data = b"1, 2, 3\n1, , 5\n0, 6, \n" kwargs = dict(delimiter=",", dtype=None, filling_values=-999) ctrl = np.array([[1, 2, 3], [1, -999, 5], [0, 6, -999]], dtype=int) test = np.ndfromtxt(TextIO(data), **kwargs) assert_equal(test, ctrl)
Example 45
def test_record(self): # Test w/ explicit dtype data = TextIO('1 2\n3 4') test = np.ndfromtxt(data, dtype=[('x', np.int32), ('y', np.int32)]) control = np.array([(1, 2), (3, 4)], dtype=[('x', 'i4'), ('y', 'i4')]) assert_equal(test, control) # data = TextIO('M 64.0 75.0\nF 25.0 60.0') descriptor = {'names': ('gender', 'age', 'weight'), 'formats': ('S1', 'i4', 'f4')} control = np.array([('M', 64.0, 75.0), ('F', 25.0, 60.0)], dtype=descriptor) test = np.ndfromtxt(data, dtype=descriptor) assert_equal(test, control)
Example 46
def test_array(self): # Test outputing a standard ndarray data = TextIO('1 2\n3 4') control = np.array([[1, 2], [3, 4]], dtype=int) test = np.ndfromtxt(data, dtype=int) assert_array_equal(test, control) # data.seek(0) control = np.array([[1, 2], [3, 4]], dtype=float) test = np.loadtxt(data, dtype=float) assert_array_equal(test, control)
Example 47
def test_1D(self): # Test squeezing to 1D control = np.array([1, 2, 3, 4], int) # data = TextIO('1\n2\n3\n4\n') test = np.ndfromtxt(data, dtype=int) assert_array_equal(test, control) # data = TextIO('1,2,3,4\n') test = np.ndfromtxt(data, dtype=int, delimiter=',') assert_array_equal(test, control)
Example 48
def test_comments(self): # Test the stripping of comments control = np.array([1, 2, 3, 5], int) # Comment on its own line data = TextIO('# comment\n1,2,3,5\n') test = np.ndfromtxt(data, dtype=int, delimiter=',', comments='#') assert_equal(test, control) # Comment at the end of a line data = TextIO('1,2,3,5# comment\n') test = np.ndfromtxt(data, dtype=int, delimiter=',', comments='#') assert_equal(test, control)
Example 49
def test_skiprows(self): # Test row skipping control = np.array([1, 2, 3, 5], int) kwargs = dict(dtype=int, delimiter=',') # data = TextIO('comment\n1,2,3,5\n') test = np.ndfromtxt(data, skip_header=1, **kwargs) assert_equal(test, control) # data = TextIO('# comment\n1,2,3,5\n') test = np.loadtxt(data, skiprows=1, **kwargs) assert_equal(test, control)
Example 50
def test_auto_dtype(self): # Test the automatic definition of the output dtype data = TextIO('A 64 75.0 3+4j True\nBCD 25 60.0 5+6j False') test = np.ndfromtxt(data, dtype=None) control = [np.array([b'A', b'BCD']), np.array([64, 25]), np.array([75.0, 60.0]), np.array([3 + 4j, 5 + 6j]), np.array([True, False]), ] assert_equal(test.dtype.names, ['f0', 'f1', 'f2', 'f3', 'f4']) for (i, ctrl) in enumerate(control): assert_equal(test['f%i' % i], ctrl)